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Abstract—String stability issues in vehicle platoons have been
studied in various ways. In the homogeneous unidirectional
case, the platoon can be considered as a two dimensional (2D)
continuous-discrete systems with an unavoidable singularity on
the stability boundary and care is needed in their analysis.
Frequency domain analysis of such 2D systems allows analysis
of BIBO stability and other features.

I. Introduction
One control objective in the field of coordinated systems

is formation control. Here a group of vehicles (e.g. platoon)
should follow a given group trajectory and in addition
every vehicle needs to maintain a prescribed distance to the
surrounding vehicles.
In its simplest form platoon control requires a constant

distance between the vehicles and the lead vehicle to follow
a given trajectory, e.g. [1]–[3]. To simplify communication
requirements we consider the case where the automobiles are
equipped with a local controller based on sensing the distance
to the preceding vehicle. We call the string homogeneous if
the dynamics of the vehicle and controller are independent
of location in the string.
Even though it is easy to achieve a stable string in the

conventional understanding, i.e. the local error signals for
every vehicle in the string are bounded and go to zero,
error signals can amplify when traveling through the string
resulting in the local error norm to grow with the position
in the string. This effect is referred to as ‘string instability’
or ‘slinky effect’. It has been shown that it is not possible to
achieve string stability in a homogeneous string of strictly
proper feedback control systems with nearest neighbour
communications when using only linear systems with two in-
tegrators in the open loop and constant inter-vehicle spacing,
[3], [4], independent of the particular linear controller design,
[5]. However, string stability can be guaranteed among other
things with a speed dependent inter-vehicle spacing policy
(also called ‘time headway policy’), [6].
In the past, different definitions of string stability have

been used. While most researchers work with input-output
formulations, definitions involving the initial conditions and
state space formulations can also be found, e.g. [5], [7]–[9].
One possibility to discus string stability is to treat the

platoon as a two-dimensional continuous-discrete system
with two independent variables: continuous time t and the
discrete position within the string k.
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Due to a wider field of applications the related field of two-
dimensional discrete systems has been studied in more detail.
One of the first sufficient conditions for Bounded-Input
Bounded-Output (BIBO) stability in the frequency domain
(using the two-dimensional Z transform and requiring the
poles of the system transfer function to lay inside the open
stability region) was presented in [10], leading to different
stability tests such as in [11], [12].
Similar results for BIBO stability of continuous systems

(using the two-dimensional Laplace transform) can be found
in [13] and stability tests in [14]–[16].
Most researchers, however, explicitly or implicitly, exclude

an important special case called Nonessential Singularity of
the Second Kind (NSSK) where there exist a set of (z1,z2) (in
the discrete case), (s1,s2) (in the continuous case) or s,z (in
the continuous-discrete case) such that both the denominator
and the numerator of the transfer function go to zero at the
same time. It was shown that while some transfer functions
with an NSSK on the stability boundary are BIBO stable,
others with an NSSK at the same place are BIBO unstable,
[17]. This was followed by a sufficient stability condition
in [18] and a necessary condition that the system cannot be
stable if the NSSK lies outside the boundary of the stability
region, [19].
Here we will use the combined Laplace-Z transform in-

troduced in [20] to analyse the two-dimensional continuous-
discrete platooning problem in the frequency domain. Due to
the nature of that system, an NSSK at the stability boundary,
i.e. at s = 0 and z = 1, cannot be avoided. Thus, the
BIBO stability of the system cannot be determined by the
location of the poles of the transfer function. In fact, to
guarantee BIBO stability, it is sufficient to show that the
induced operator norm is bounded in the stability region.
We will start with preliminary results in Section II, discuss

the induced operator norm in Section III and analyse the
stability of a simple platooning problem in Section IV.

II. Mathematical Preliminaries
We assume that x(t,k) is a two dimensional continuous-

discrete signal, which does not grow faster than exponen-
tially, i.e. ∃c,a,b,T,K < ∞ such that

|x(t,k)| ≤ ceatbk for all t ≥ T and k ≥ K. (1)

Thus, the unilateral, combined Laplace-Z transform X(s,z)
of x(t,k) is defined as, [20],

X(s,z) = ZL{x(t,k)} = Z{ L {x(t,k)}} =
∞∑
k=0

∞∫
0

x(t,k)e−stdtz−k

(2)
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and its inverse

x(t,k) = {ZL}−1 {X(s,z)} = 1
(2π j)2

∮
C

α+ j∞∫
α− j∞

X(s,z)estdszk−1dz

where α > a and C is the contour |z| = β > b. In the case
where a < 0 and b < 1 (that is where the two-dimensional
transform has no poles with �(s) ≥ 0, and |z| ≥ 1) we can
take α = 0 and β = 1, such that

x(t,k) =
1

(2π)2

π∫
−π

∞∫
−∞
X
(
jω, e jθ

)
e jωtdωe jθkdθ (3)

To prove Parseval’s Theorem later several properties of
the Laplace-Z transformation are needed (some are given in
[20], others are simple extensions of well known results on
Laplace and Z transform, [21]–[23]):
Permutability: Assuming that both transforms

and inverse transforms exist, we can write X(s,z) =

ZL{x(t,k)} = Z{ L {x(t,k)}} = L { Z {x(t,k)}} and x(t,k) =
{ZL}−1 {X(s,z)} = Z−1 { L−1 {X(s,z)}

}
= L−1 { Z−1 {X(s,z)}

}
.

Integration: If the Laplace-Z transform of x(t,k) is X(s,z)
and the integral

∫ t
0 x(τ,k)dτ exists, we can write

ZL
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t∫
0

x(τ,k)dτ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 1s X(s,z). (4)

Accumulation: If the Laplace-Z transform of x(t,k) is
X(s,z), then the Laplace-Z transform of the cumulative sum
can be written as

ZL
⎧⎪⎪⎨⎪⎪⎩
k∑
i=0
x(t,i)

⎫⎪⎪⎬⎪⎪⎭ = 1
1 − z−1 X(s,z). (5)

Final Value Theorem: If the final values limt→∞ x(t,k)
and limk→∞ x(t,k) exist, then

lim
(t,k)→(∞,∞)

x(t,k) = lim
(s,z)→(0,1)

s(1 − z−1)X(s,z). (6)

Multiplication: If both Laplace-Z transforms of x1(t,k)
and x2(t,k) exist (X1(s,z) and X2(s,z), respectively), the
Laplace-Z transform of x1(t,k)x2(t,k) is a combined convo-
lution in the frequency domain

ZL{x1(t,k)x2(t,k)}

=
1

(2π j)2

∮
C

α1+ j∞∫
α1− j∞

X1(p,v)X2
(
s − p, z

v

)
v−1dpdv. (7)

Lemma 1 (Parseval’s Theorem for 2D Cont.-Disc. Sys.):
If the Laplace-Z transform X(s,z) of x(t,k) exists and there
exist a < 0 and |b| < 1 such that |x(t,k)| ≤ ceatbk, the
L2-norm in the time domain is bounded and the same as the
L2-norm in the frequency domain:

∞∑
k=0

∞∫
0

x2(t,k)dt = ‖x(·,·)‖22 = ‖X (·,·)‖22

=
1

(2π)2

π∫
−π

∞∫
−∞
X2
(
jω,e jθ

)
dωdθ. (8)

Proof: First, we will define φ(t,k), ψ(t,k), and ξ(t,N)
such that

t∫
0

x2(τ,k)dτ =
t∫
0

φ(τ,k)dτ = ψ(t,k),
N∑
k=0

ψ(t,k) = ξ(t,N).

(9)
Since x(t,k) ∈ L2 [0,∞) × [0,∞) and x(t,k) ∈ R

N∑
k=0

t∫
0

x2(t,k)dt ≤
∞∑
k=0

∞∫
0

x2(t,k)dt =
∞∑
k=0

∞∫
0

|x(t,k)|22dt < ∞

(10)
Thus, the order of summation, integration and limits can be
interchanged. We can write the norm of x(t,k) as

‖x(·,·)‖22 =
∞∑
k=0

∞∫
0

x2(t,k)dt =
∞∑
k=0
lim
t→∞

t∫
0

x2(τ,k)dτ

= lim
t→∞

∞∑
k=0

ψ(t,k) = lim
t→∞

lim
N→∞

ξ(t,N) (11)

With the final value theorem (6), the limit of ξ(t,N) in (11)
can be expressed as the limit in the frequency domain of the
corresponding Laplace-Z transform Ξ(s,z),

‖x(·,·)‖22 = lims→0 limz→1 s
(
1 − z−1

)
Ξ(s,z) (12)

Because ξ(t,N) is the accumulation of ψ(t,k), (9), (12) yields

‖x(·,·)‖22 = lims→0 limz→1 sΨ(s,z) (13)

where Ψ(s,z) = LZ{ψ(t,k)}. Since ψ(t,k) is the integral of
φ(t,k), (9), we have LZ{φ(t,k)} = Φ(s,z) = sΨ(s,z) and can
write according to (4)

‖x(·,·)‖22 = lims→0 limz→1Φ(s,z) (14)

Furthermore, we know that a multiplication in the time do-
main corresponds to a convolution in the frequency domain,
(7), and transform (14) into

‖x(·,·)‖22 = lims→0 limz→1
1

(2π j)2

∮
C

c+ j∞∫
c− j∞

X(p,v)X
(
s − p, z

v

)
v−1dpdv

=
1

(2π j)2

∮
C

c+ j∞∫
c− j∞

|X(s,z)|2z−1dsdz (15)

Since X(s,z) does not have any poles with �(s) ≥ 0, and
|z| ≥ 1 (that is the same as requiring |x(t,k)| ≤ ceatbk with
a < 0 and |b| < 1), (15) becomes

‖x(·,·)‖22 =
1

(2π)2

π∫
−π

∞∫
−∞

∣∣∣∣X ( jω,e jθ)∣∣∣∣2 dωdθ
= ‖X (·,·)‖22 (16)

Thus, the Euclidean norm in time domain is equivalent to the
Euclidean norm in the frequency domain ‖x(·,·)‖2 = ‖X (·,·)‖2.
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III. Induced Operator Norm

We now want to find the induced 2-norm for the
norm in ω and θ introduced in (16). Consider the
two-dimensional continuous-discrete system Ê

(
jω,e jθ

)
=

Hê,d̂
(
jω,e jθ

)
D̂
(
jω,e jθ

)
. The induced 2-norm of Hê,d̂

(
jω,e jθ

)
is the upper bound for the norm of Ê

(
jω,e jθ

)
for all

D̂
(
jω,e jθ

)
with ‖D̂(·,·)‖2 = 1. Assume Hê,d̂

(
jω,e jθ

)
is con-

tinuous almost everywhere except at a finite number of
discontinuous “pinch off” points at the NSSKs

(
jωp,e jθp

)
. For

every such point there exist a curve θ = θ(ω) and a function
g(ω) =

∣∣∣∣Hê,d̂ ( jω,e jθ(ω))∣∣∣∣ such that limω→ωp g(ω) = C. Then
the induced operator norm of Hê,d̂

(
jω,e jθ

)
is∥∥∥Hê,d̂ (·,·)∥∥∥i2 = ess sup

ω,θ

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ . (17)

The induced Norm of Hê,d̂
(
jω,e jθ

)
is defined as

∥∥∥Hê,d̂ (·,·)∥∥∥2i2 := sup
‖D̂‖22=1

∥∥∥∥Hê,d̂ ( jω,e jθ) D̂ ( jω,e jθ)∥∥∥∥22
= sup
‖D̂‖22=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1
(2π)2

π∫
−π

∞∫
−∞

∣∣∣∣Hê,d̂ ( jω,e jθ) D̂ ( jω,e jθ)∣∣∣∣2 dωdθ
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (18)

First, we will show that the essential supremum of∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ over all ω and θ is the upper bound of
the induced operator norm. With Hölder’s Inequality, [24,
Theorem 3.8.2], (18) yields∥∥∥Hê,d̂ (·,·)∥∥∥2i2 ≤ ess sup

ω,θ

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣2

· sup
‖D̂‖22=1

(
1

(2π)2

π∫
−π

∞∫
−∞

∣∣∣∣D̂ ( jω,e jθ)∣∣∣∣2 dωdθ)

= ess sup
ω,θ

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣2 . (19)

To show that the essential supremum also is a lower bound
we will use the following Lemma:
Lemma 2: Given a two-dimensional operator Hê,d̂

(
jω,e jθ

)
which is continuous in

(
jω0,e jθ0

)
the induced operator norm

of Hê,d̂
(
jω,e jθ

)
is always greater or equal to the magnitude

of Hê,d̂
(
jω0,e jθ0

)
:∥∥∥Hê,d̂ (·,·)∥∥∥i2 ≥

∣∣∣∣Hê,d̂ ( jω0,e jθ0)∣∣∣∣ . (20)
Proof: We choose the disturbance signal

d̂ε(t,k) = αω0e
−εt cosω0t · αθ0e−εk cos θ0k (21)

with

α2ω0 =
4ε2 + 4ω20
2ε + ω20/ε

(22)

and
α2θ0 =

2
1

1−e−2ε +
1−e−2ε cos 2θ0

1−2e−2ε cos 2θ0+e−4ε
(23)

to guarantee
∥∥∥d̂ε(·,·)∥∥∥2 = 1. We will now use the following

trick with Rε = {ω,θ : |ω − ω0| ≤
√
ε,|θ − θ0| ≤

√
ε}.∥∥∥Hê,d̂ (·,·)∥∥∥2i2 = ess sup‖D̂‖2=1

∥∥∥∥Hê,d̂ ( jω,e jθ) D̂ ( jω,e jθ)∥∥∥∥22
≥
∥∥∥∥Hê,d̂ ( jω,e jθ) D̂ε ( jω,e jθ)∥∥∥∥22

=
1

(2π)2

π∫
−π

∞∫
−∞

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣2 ∣∣∣∣D̂ε ( jω,e jθ)∣∣∣∣2 dωdθ
≥ 1
(2π)2

∫∫
ω,θ∈Rε

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣2 ∣∣∣∣D̂ε ( jω,e jθ)∣∣∣∣2 dωdθ
≥ 1
(2π)2

ess inf
ω,θ∈Rε

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣2
∫∫
ω,θ∈Rε

∣∣∣∣D̂ε ( jω,e jθ)∣∣∣∣2 dωdθ
To conclude the proof we will now take the limit for ε
approaching 0. Given that Hê,d̂

(
jω,e jθ

)
is continuous around

ω0 and θ0 the limit of ess infRε
∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ is

lim
ε→0
ess inf

Rε

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣2 = ∣∣∣∣Hê,d̂ ( jω0,e jθ0)∣∣∣∣2
To evaluate the integral of

∣∣∣∣D̂ε ( jω,e jθ)∣∣∣∣2 over Rε requires
some more work. We will use the Laplace-Z transform of
d̂ε(t,k) and show that in the limit ε → 0 the integral is equal
to (2π)2. For details refer to Section VI. Note that for ω0 = 0
or θ0 = 0 a simplified dε(t,k) can be chosen with d̂εω(t) =
αωe−εt or d̂εθ(k) = αθe−εk, respectively. The corresponding
coefficients are α2ω = 2ε and α2θ = 1 − e−2ε . It can be shown
in the same way that the limit of

∫∫
ω,θ∈Rε

∣∣∣D̂ε ( jω,e jθ)∣∣∣2 dωdθ
is (2π)2. Thus,∥∥∥Hê,d̂ (·,·)∥∥∥i2 ≥

∣∣∣∣Hê,d̂ ( jω0,e jθ0)∣∣∣∣ .
If the essential supremum of

∣∣∣Hê,d̂ ∣∣∣ exists it can be achieved
in three different cases:
First we will assume that the essential supremum of

∣∣∣Hê,d̂ ∣∣∣
is achieved at ω and θ and

∣∣∣Hê,d̂∣∣∣ is continuous in and around
the supremum. In that case, we can set (ω0,θ0) = (ω,θ) in
(20) and use Lemma 2.
However, it is also possible that the essential supremum is

achieved at a discontinuous point (ωp,θp) of
∣∣∣Hê,d̂∣∣∣. We will

use the assumptions made at the beginning of this section.
For every discontinuous “pinch off” point there exist a curve
θ = θ(ω) and a function g(ω) =

∣∣∣∣Hê,d̂ ( jω,e jθ(ω))∣∣∣∣ such that
limω→ωp g(ω) = C. We assume that C = ess supω,θ

∣∣∣Hê,d̂∣∣∣.
Using the Lemma above we can show that ‖Hê,d̂‖i2 ≥ g(ω)
arbitrarily close to (ωp,θp). Therefore, it most be true that
‖Hê,d̂‖i2 ≥ C.
In the third case the supremum of

∣∣∣Hê,d̂∣∣∣ is achieved at
ω0 → ∞ and θ0

ess sup
ω,θ

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ = lim
ω→∞

∣∣∣∣Hê,d̂ ( jω,e jθ0)∣∣∣∣ .
For the time dependent part of d̂ε(t,k) we will choose ε =

1/N and ω0 = N so that dN(t) = αNe−t/N cosNt with
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α2N = 4 1+N4
2N2+N5 . It can then be shown that for N → ∞ the

integral of |D̂N(ω)|2 for ω ∈
[
N − N−1/2,N + N−1/2

]
is equal

to 2π. At the same time we can use a similar argument as
above to show that ‖Hê,d̂‖i2 ≥ limω→∞

∣∣∣∣Hê,d̂ ( jω,e jθ0)∣∣∣∣.
Thus, it is always true that∥∥∥Hê,d̂ (·,·)∥∥∥i2 ≤ ess sup

ω,θ

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ (24)

Together with (19) the induced L2-norm of Hê,d̂( jω,e jθ) is∥∥∥Hê,d̂ (·,·)∥∥∥i2 = ∥∥∥Hê,d̂ (·,·)∥∥∥∞ := ess sup
ω,θ

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ (25)

IV. Linear, Unidirectional Control

A. System Description
We wish to discuss the stability of a simple chain of

vehicles where all but the first should keep a fixed distance x̂d
to their predecessor. The first car follows a given trajectory.
We will choose the same vehicle model with transfer function
P(s) and the same linear controller C(s) for every car. The
open loop transfer function L(s) has exactly two poles at
the origin, L(s) = P(s)C(s) = 1

s2 L̃(s) with L̃(0) � 0. The
position of the kth vehicle x̂(t,k) depends on the disturbance
d̂(t,k) and the actuator signal of the kth controller û(t,k). The
local control objective is to force the separation error ê(t,k)
to zero. Measurement noise is neglected. Using the Laplace
transform with respect to time t the system is described by

X̂(s,k) = P(s)
(
Û(s,k) + D̂(s,k)

)
(26)

Û(s,k) = C(s)Ê(s,k) (27)

Ê(s,k) = X̂(s,k − 1) − X̂(s,k) − x̂d
s

(28)

It is known that the absolute value of the complementary
sensitivity function of a single subsystem, T (s) = L(s)

1+L(s) , is
greater than one for a range of frequencies ω ∈ (ω−,ω+),
and that the system therefore will be ‘string unstable’ for
constant spacing (x̂d = const), [3], [5], which means that the
error signals ê(t,k) grow without bound as k increases.
Since using a constant spacing policy the system is string

unstable, a linear time headway h is incorporated in the
feedback path. In addition to a fixed vehicle separation, a
velocity v̂(t,k) dependent distance is required between the
vehicles, x̂d(t,k) = x̂d0 + hv̂(t,k).
Note that in order to preserve the closed loop poles of the

time headway free system, an additional pole is inserted into
the controller transfer function such that Ch(s) = C(s)

Q(s) with
Q(s) = hs + 1.
To simplify the following derivations and because we are

interested in the disturbance to error behaviour we shall set
x̂d0 = 0 below. The dependence of the error signal ê(t,k) on
the disturbances d̂(t,k) and d̂(t,k − 1) and on the previous
error ê(t,k − 1) for k > 1 can be expressed as
Ê(s,k) = X̂(s,k − 1) − Q(s)X̂(s,k)
= Γ(s)Ê(s,k − 1) + Γ(s)C−1h (s)

(
D̂(s,k − 1) − Q(s)D̂(s,k)

)
(29)

with the single loop complementary sensitivity function

Γ(s) =
P(s)Ch(s)

1 + Q(s)P(s)Ch(s)
=

1
Q(s)

P(s)C(s)
1 + P(s)C(s)

=
T (s)
Q(s)

.

Applying the Z transform (29) becomes

Ê(s,z) =Γ(s)z−1E(s,z) + Γ(s)C−1h (s)
(
z−1 − Q(s)

)
D̂(s,z)

=
z−1 − Q(s)
1 − z−1Γ(s)Γ(s)C

−1
h (s)︸�����������������������︷︷�����������������������︸

Hê,d̂(s,z)

D̂(s,z) (30)

with Ê(s,z) = Z
{
Ê(s,k)

}
= ZL{ê(t,k)} and D̂(s,z) =

Z
{
D̂(s,k)

}
= ZL

{
d̂(t,k)

}
.

B. Conditions for String Stability
To guarantee

∥∥∥Ê(s,z)∥∥∥2 < ∞ for any D̂(s,z) satisfying∥∥∥D̂(s,z)∥∥∥2 < ∞,
∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ must be bounded for any ω

and θ.
This is always true if Hê,d̂ (s,z) has no poles with{�{s} ≥ 0} ∩ {|z| ≥ 1}. As discussing stability of the string

only makes sense for strings with stable subsystems Γ(s)
must not have any poles with �{s} ≥ 0. Also a local
controller with zeros with positive real parts has to be
avoided to guarantee

∣∣∣C−1h (s)∣∣∣ < ∞ for �{s} ≥ 0.
Note that X̂(s,k) = Γ(s)X̂(s,k−1)+Γ(s)C−1h (s)D̂(s,k). Every

vehicle should be able to follow its predecessor and the
local error should be forced to 0 for t → ∞. Therefore,
the subsystem closed loop transfer function Γ(s) is designed
such that Γ(0) = 1. However, this implies that Hê,d̂(s,z)
will always have a pole at {s = 0} ∩ {z = 1}. Note that
the numerator of Hê,d̂(s,z) is also 0 at the same point, i.e.
1−Q(0) = 1−1−h·0 = 0. This is referred to as a nonessential
singularity of the second kind (NSSK).
Therefore, we have to show that

limε→0 sup(ω,θ)∈Bε(0,0)
∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ is bounded.

lim
ε→0

sup
(ω,θ)∈Bε (0,0)

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣
= lim

ε→0
sup

(ω,θ)∈Bε(0,0)

∣∣∣∣∣∣ e− jθ − Q( jω)1 − e− jθΓ( jω)Γ( jω)C
−1
h ( jω)

∣∣∣∣∣∣
= lim

ε→0
sup

(ω,θ)∈Bε(0,0)

∣∣∣∣∣∣Q−1( jω) − e jθe jθ − Γ( jω)
T ( jω)C−1h ( jω)

∣∣∣∣∣∣
≤
(
lim
ε→0

sup
ω∈Bε (0)

∣∣∣∣∣∣Q−1( jω) − Γ( jω)
e jθ − Γ( jω)

∣∣∣∣∣∣ + 1
) ∣∣∣T (0)C−1h (0)∣∣∣ (31)

Since
∣∣∣T (0)C−1h (0)∣∣∣ is bounded, we will focus on the first term

on the right hand side of (31):

lim
ε→0

sup
(ω,θ)∈Bε (0,0)

∣∣∣∣∣∣Q−1( jω) − Γ( jω)
e jθ − Γ( jω)

∣∣∣∣∣∣
≤ lim

ε→0

∣∣∣Q−1( jω) − Γ( jω)
∣∣∣

1 − |Γ( jω)|
= lim

ε→0
ω2√

h2ω2 + 1
∣∣∣L̃( jω) − ω2∣∣∣ − ∣∣∣L̃( jω)∣∣∣ (32)

Remember that L̃( jω) is the open loop transfer function of
a single subsystem without the two integrators. Around the
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origin we can therefore express L̃( jω) as L̃( jω) = a0+a2ω2+
a4ω4 + . . .+ j(a1ω + a3ω3 + . . . ). Using that and L’Hôpital’s
Rule (32) becomes

lim
ε→0

sup
(ω,θ)∈Bε (0,0)

∣∣∣∣∣∣Q−1( jω) − Γ( jω)
e jθ − Γ( jω)

∣∣∣∣∣∣
≤ lim
ω→0

(
1
2

h2√
h2ω2 + 1

∣∣∣L̃( jω) − ω2∣∣∣
+
√
h2ω2 + 1

∂

∂ω2

∣∣∣L̃( jω) − ω2∣∣∣ − ∂

∂ω2

∣∣∣L̃( jω)∣∣∣)−1
=

1
1
2h2a0 − 1

. (33)

Thus using a time headway greater than
√
2/L̃(0) will

guarantee that Hê,d̂(s,z) is bounded at the NSSK.
To ensure

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ < ∞ for all ω � 0 and θ, we must
guarantee that |Γ( jω)| < 1 for all ω � 0. Otherwise, since we
know that Γ(s) is strictly proper, there must exist an ω0 � 0
such that |Γ( jω0)| = 1. To ensure |Γ( jω)| < 1 ∀ω � 0, the time
headway h must be greater than the infimal time headway
h0:

h0 :=

√
sup
ω

( |T ( jω)|2 − 1
ω2

)
(34)

where T (s) =
L(s)
1+L(s) is the single loop complementary

sensitivity function of the system with zero time headway
and L(s) = 1

s2 L̃(s) is the corresponding open loop transfer
function with exactly two integrators and L̃(0) � 0.
Since the maximum in (34) can be attained at ω = 0 or at

at least one ω0 � 0, we will distinguish between these two
cases:
(a) The maximum in (34) is attained at ω = 0 only. Using

L’Hôpital’s Rule and the fact that L̃(0) =
∣∣∣L̃(0)∣∣∣ condition

(34) becomes
h0 =

√
2
/∣∣∣L̃(0)∣∣∣. (35)

(b) The maximum in (34) is attained at at least one ω0 � 0.
In that case condition (34) becomes

h0 =

√∣∣∣∣∣ L( jω0)
1 + L( jω0)

∣∣∣∣∣2 − 1
/
ω0 (36)

Choosing a time headway which is strictly greater than h0,
h > h0, will guarantee |Γ( jω)| ≤ 1 for all ω and |Γ( jω)| = 1
only at ω = 0 in both cases.
Note that if the supremum of (34) is achieved at ω = 0

and h0 is chosen according to (35) the essential supremum
of

∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ is achieved at the origin. In that case
approaching the origin along the curve θ = θ(ω) = −hω
allows us to obtain the limit: limω→0

∣∣∣∣Hê,d̂ ( jω,eθ(ω))∣∣∣∣ =

1/2h2a0
1/2h2a0−1 |C−1h (0)Γ(0)|. This is in fact the supremum of∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ over ω and θ obtained at the origin (compare
with (31) and (33)).
However, if h0 is chosen according to (36) the point

where the essential supremum of
∣∣∣∣Hê,d̂ ( jω,e jθ)∣∣∣∣ is reached

is continuous.
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ê(
t,k
)

Time t

k = 1

k = 20

0 10 20 30 40 50
−2

−1

0

1

2

Fig. 1. Step Response for h = 1
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Fig. 2. Step Response for h = 1.5

C. Example and Simulations
To illustrate our results we will simulate a string of

twenty vehicles with the open loop transfer function L(s) =
(s + 1)/s2, such that the complementary sensitivity function
for a single subsystem is T (s) = (s + 1)/(s2 + s + 1). The
infimal time headway is h0 ≈ 1.47, for details see [25,
Fig. (a)]. Simulations for different time headways are shown
in Figures 1 and 2. (Note that the step response is applied
to the first vehicle in the string (drawn in red) and the
disturbance travels trough the string towards the 20th vehicle
(drawn in violet).)

V. Conclusions
We have analszed two-dimensional continuous-discrete

systems using the combined Laplace-Z transform. We
showed that the induced L2 operator norm is equivalent to the
L∞ norm in the frequency domain. This was used to study
the stability of a simple unidirectional homogeneous string
of vehicles.
However, due to the special system architecture in a

vehicle platoon a nonessential singularity of the second kind
(NSSK) on the boundary of the stability region cannot be
avoided. To show that the operator transfer function is also
bounded at the NSSK requires a detailed discussion. Hence,
the advantages of a standardised and short stability analysis
using the induced operator norm in the frequency domain
are reduced.
The authors will therefore work on more efficient possibil-

ities to discuss the stability of two-dimensional continuous-
discrete systems and platooning problems in particular.
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VI. Appendix

To show that limε→0
∫
Rε |D̂ε( jω,e

jθ)|2dωdθ = (2π)2 we will
start to evaluate the part of D̂ε depending on ω. Due to space
constraints the rest will be summarised in

D̂εθ
(
e jθ
)
= αθ0

1 − e−ε cos θ0e− jθ
1 − 2e−ε cos θ0e− jθ + e−2εe−2 jθ . (37)

(Note that ln is the natural logarithm.) Thus

∫∫
ω,θ∈Rε

∣∣∣∣D̂ε ( jω,e jθ)∣∣∣∣2∣∣∣D̂εθ (e jθ)∣∣∣2 dωdθ
=

∫
θ∈Rε

α2ω0
1
8

1
(ε2 + ω20)ε

[
− ω0ε ln

(
ω20 + ε

2 + 2ω0ω + ω2
)

+
(
4ε2 + 2ω20

) (
arctan

(
ω + ω0

ε

)
+ arctan

(
ω − ω0
ε

))
+ω0ε ln

(
ω20 + ε

2 − 2ω0ω + ω2
) ]

∂Rε
dθ.

The next step is to evaluate the antiderivative for both peaks
(around ω0 and −ω0) and the limit for ε → 0. With (22) it
yields

lim
ε→0

∫∫
ω,θ∈Rε

∣∣∣∣D̂ε ( jω,e jθ)∣∣∣∣2∣∣∣D̂εθ (e jθ)∣∣∣2 dωdθ =
∫
θ∈Rε

2πdθ. (38)

Also, the interval over D̂εθ
(
e jθ
)
has to be equal 2π. First, we

will write
∣∣∣∣D̂εθ (e jθ)∣∣∣∣2 as

|D̂εθ
(
e jθ
)
|2 =α2θ0

(
M +

A
1 − e−ε+ jθ0e− jθ +

B
1 − e−ε− jθ0e− jθ

+
C

1 − e−ε− jθ0e jθ +
D

1 − e−ε+ jθ0e jθ
)

(39)

with A = D =
1− e−ε2 (e jθ0−e− jθ0 )(e−ε+ jθ0−eε− jθ0 )+e2ε cos2 θ0

(1−e−2ε)(1−e− j2θ0 )(1−e−2ε+ j2θ0 ) ,

B = C =
1− e−ε2 (e jθ0−e− jθ0 )(eε+ jθ0−e−ε− jθ0 )+e2ε cos2 θ0

(1−e−2ε)(1−e j2θ0 )(1−e−2ε− j2θ0 ) and

M =
e−2ε+4 jθ0−e−2ε+2 jθ0 cos2 θ0(1+e−2ε)+e−2ε+2 jθ0−e2 jθ0+e−2ε

(1−e−2ε)(1−e−2ε+2 jθ0 )(e2 jθ0−e−2ε) .

Evaluating the anti-derivative of
∣∣∣D̂εθ ∣∣∣2 at Rε and allowing

ε to go to 0 the integral can be simplified to

lim
ε→0

∫
Rε

|D̂εθ
(
e jθ
)
|2dθ

= lim
ε→0
2α2θ0 (A + B)

⎛⎜⎜⎜⎜⎜⎜⎝ ln
(
1 − e−εe− j

√
ε
)

j
−
ln
(
1 − e−εe j

√
ε
)

j

⎞⎟⎟⎟⎟⎟⎟⎠
= lim
ε→0
2α2θ0 (A + B)

(
π

2
− −π
2

)
(40)

Using l’Hôspital’s Rule we see that the limits of α2
θ0
A

and α2θ0B for ε → 0 are 1/2. Therefore (40) becomes

limε→0
∫
Rε

∣∣∣∣D̂εθ (e jθ)∣∣∣∣2 dθ = 2π.
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