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Abstract— It is shown that the existence of a negative
semidefinite solution Q of the Lyapunov equation ATP+AP = Q
with a positive definite block diagonal matrix P = PT together
with simple additional conditions is sufficient to guarantee
asymptotic stability. The stability conditions presented can be
used to study a wider range of dynamical systems, including
systems with singularities at the stability boundary, which
cannot be exponentially stable.

I. Introduction

In this work we will discuss asymptotic stability of

a special class of two-dimensional systems. Here, two-

dimensional refers to the fact that functions and variables

depend not only on one independent variable such as time

or space but on two completely independent continuous

variables t1 and t2.

Due to a broad range of applications the related field

of two-dimensional discrete systems has been studied in a

more comprehensive form. One of the earliest discussions

of stability of such systems was presented by Shanks et al.

in [1]. Using the transfer function of the system in frequency

domain (z-biplane), Hz(z1,z2) = num(z1,z2)/den(z1,z2) they

showed BIBO stability for systems devoid of poles out-

side the stability region. This led to different stability tests

presented in the literature, such as [2], [3], and was later

extended to show exponential stability in the frequency

domain by [4].

Around the same time an explicit state space description

was presented by Roesser in [5]. Two well known models

were introduced by Fornasini and Marchesini in [6], [7].

With the appearance of state space formulations the first

stability results using LMIs were published. Fornasini and

Marchesini presented a sufficient stability condition for their

second model in [8]. However, the first LMI based necessary

and sufficient stability condition for repetitive processes with

finite path length (i.e. one of the dimensions is bounded)

and dynamic boundary conditions was presented by [9]. Ebi-

hara et al. expanded this result for systems with unbounded

dimensions in [10].

Although the second model of Fornasini–Marchesini has

attracted most attention a sufficient condition for stability

of the first model of Fornasini–Marchesini was developed in

[11], and necessary and sufficient conditions for stability can

be found in [12].
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Using the state space description by Roesser, Lodge and

Fahmy claimed in [13] that the characteristic polynomial

B(z1,z2) fulfills Shank’s stability criterion if and only if there

exists a positive definite, symmetric matrix P = P1 ⊕ P2

where P1 ∈ Rn1×n1 and P2 ∈ Rn2×n2 and ⊕ denotes the direct

sum, such that ATPA − P = Q < 0. However, Anderson et

al. later showed that in general the existence of such a P is

sufficient but not necessary for stability [14].

For two-dimensional continuous systems some similar

results have been presented in the literature. In [15] Ansell

showed stability conditions using the transfer function

Hs(s1,s2) = A(s1,s2)/B(s1,s2) in the frequency (s) biplane

for systems devoid of poles with non negative real parts of

s1 and s2. This is the continuous equivalent to the condition

presented by Shanks et al., [2], for the discrete case. Different

conditions to test for two-dimensional very strict Hurwitz

polynomials have been published in [16]–[18].

A different approach to study stability of two-dimensional

continuous systems based on the impulse response was taken

by Jury and Bauer in [19].

As in the field of discrete systems, LMI–based stability

conditions have been developed for two-dimensional con-

tinuous systems. In contrast to discrete systems, researchers

have focused on the continuous version of the Roesser model.

Piekarski presented in [20] a sufficient stability condition:

The system is stable if there exists a positive definite,

symmetric matrix P = P1 ⊕ P2 such that ATP+ PA = Q < 0.

This was extended by Galkowski in [21].

Furthermore an important special case is often excluded

in the stability discussions mentioned above. This is the case

when there exists a set of (z1,z2) (in the discrete-discrete case)

or (s1,s2) (in the continuous-continuous case) such that both

the denominator and the numerator of the transfer function

go to zero at the same time. In contrast to the case where

the numerator is non-zero for (z1,z2) or (s1,s2) (nonessential

singularity of the first kind) these special points are often

called nonessential singularities of the second kind (NSSK).

Note that the state space matrix A of every system with a

NSSK at the stability boundary will therefore also exhibit a

singularity at the stability boundary (SSB). Although most

researchers try to avoid these special cases, they sometimes

cannot be avoided due to special needs in the application

studied or they are even desirable to obtain a system with

special properties, [22].

Goodman showed in [23] that some transfer functions

with NSSK are BIBO stable, while some with NSSK at the

same point in the biplane are BIBO unstable. A sufficient

BIBO stability condition in the frequency domain for two-



dimensional discrete systems with NSSK at the boundary

of the bidisc (i.e. |z1| = |z2| = 1) has been presented in [24].

This was followed by a necessary condition that stability can

only be achieved when the NSSK occur at the border of the

bidisc in [25].

Although these results were obtained in the frequency

domain, it should be noted that previous LMI–based results

in time domain also exclude systems with SSB since a sign

definite solution of the LMI is required. However, as we

will show later, a system including a SSB cannot achieve

a sign definite solution to the required LMI. The LMI–

based conditions for asymptotic stability of two-dimensional

continuous systems presented in this paper only require a

semidefinite solution and are therefore suitable to discuss

stability of systems with SSB.

Before presenting our main theorem in Section IV we

will clarify our notation in Section II and give mathematical

preliminaries in Section III. The paper closes with illustrative

examples in Section V and conclusions in Section VI.

II. Notation

Consider the following autonomous two-dimensional con-

tinuous Roesser model
( ∂
∂t1

x1(t1,t2)
∂
∂t2

x2(t1,t2)

)

=

[

A11 A12

A21 A22

]

︸       ︷︷       ︸

A

(

x1(t1,t2)

x2(t1,t2)

)

︸     ︷︷     ︸

x(t1 ,t2)

(1)

with the initial or boundary conditions

x10
(t2) = x1(0,t2) and x20

(t1) = x2(t1,0) (2)

where x1 ∈ Rn1 , x2 ∈ Rn2 , and the real matrix A and its

submatrices are chosen with the appropriate dimensions. We

will discuss the stability of such system according to the

following definitions.

Definition 1 (L2 and L∞ Bounded Initial Conditions):

The initial conditions of a two-dimensional continuous

Roesser Model are L2 bounded, if there exist ci < ∞ such

that for i ∈ {1,2}:

‖xi0 (·)‖22 =
∫ ∞

0

xT
i0

(t)xi0 (t)dt ≤ ci. (3)

The initial conditions of a two-dimensional continuous

Roesser Model are L∞ bounded, if there exist ζi < ∞ such

that for i ∈ {1,2}:

‖xi0 (·)‖∞ = sup
t>0

|xi0 (t)| ≤ ζi. (4)

Definition 2 (L′
2

and L′′∞ Smooth Bounded Initial Cond.):

The initial conditions of a two-dimensional continuous

Roesser Model are in L′
2

and L′′∞ if there are L2 and L∞
bounded according to Definition 1 and in addition there

exist c′
i
,ζ′

i
,ζ′′

i
< ∞ such that for i ∈ {1,2}:

‖ẋi0 (·)‖22 =
∫ ∞

0

d

dt
xT

i0
(t)

d

dt
xi0 (t)dt ≤ c′i , (5)

‖ẋi0 (·)‖∞ = sup
t>0

∣
∣
∣
∣
∣

d

dt
xi0 (t)

∣
∣
∣
∣
∣
≤ ζ′i (6)

‖ẍi0 (·)‖∞ = sup
t>0

∣
∣
∣
∣
∣
∣

d2

dt2
xi0 (t)

∣
∣
∣
∣
∣
∣
≤ ζ′′i . (7)

Definition 3 (Stability of 2D Continuous Roesser Model):

The autonomous two-dimensional continuous Roesser

Model (1) is stable if for any L2 and L∞ bounded initial

conditions (according to Definition 1), there exists a constant

M < ∞ such that for all t1,t2:

|x(t1,t2)|2 = xT(t1,t2)x(t1,t2) ≤ M. (8)

Definition 4 (Asymp. Stab. of 2D Sys. with S. B. I. C.):

The autonomous two-dimensional continuous Roesser

Model (1) is asymptotically stable, if it is stable, and for

L′
2

and L′′∞ smooth bounded initial conditions (according to

Definition 2) the following limit holds:

lim
t1,t2→∞

x(t1,t2) = 0. (9)

Note that asymptotic stability requires the states to tend to

zero as t1 and t2 tend to +∞ at the same time but in any

possible form and direction.

III. Mathematical Preliminaries

Lemma 1: Consider the autonomous two-dimensional

continuous system (1). If the characteristic polynomial has

a singularity at the stability boundary, i.e. den(s1,s2) = 0

for s1 = jω1 and s2 = jω2, then for every block diagonal

P = P1 ⊕ P2, there exists a non-zero vector v such that

vHQv = 0 where Q = ATP + PA.

Proof: The characteristic polynomial is equal to:

den(s1,s2) = det

[

s1In1
− A11 −A12

−A21 s2In2
− A22

]

(10)

Since the system has a singularity at s1 = jω1, s2 = jω2,

there exists a non-zero vector v such that
([

jω1In1
0

0 jω2In2

]

− A

)

v = 0 (11)

Using (11) we can rewrite vHQv = vH(ATP + PA)v as

vHQv =vH

([

− jω1In1
0

0 − jω2In2

] [

P1 0

0 P2

]

+

[

P1 0

0 P2

] [

jω1In1
0

0 jω2In2

])

v (12)

Thus, vHQv = 0 independently of P.

Note therefore, that for a system including SSB it is not

possible to find a positive definite matrix P = P1 ⊕ P2 such

that Q is sign definite. However, the existence of a negative

semi-definite Q together with additional assumptions on A

might be sufficient for stability and even asymptotic stability.

Lemma 2: Consider the two-dimensional space of two

continuous variables t1 and t2 and the two-dimensional non-

negative vector field VT(t1,t2) = (V1(t1,t2),V2(t1,t2)). If the

divergence of the vector field V is non-positive for every

t1 and t2, then the integral of V1(t1,t2) and V2(t1,t2) over

t2 ∈ [0,T2] and t1 ∈ [0,T1], respectively, is bounded by

the initial conditions V1(0,t2) and V2(t1,0), that is for all

T1,T2 > 0:
∫ T2

0

V1(T1,t2)dt2 ≤
∫ T2

0

V1(0,t2)dt2 +

∫ T1

0

V2(t1,0)dt1 (13)

∫ T1

0

V2(t1,T2)dt1 ≤
∫ T2

0

V1(0,t2)dt2 +

∫ T1

0

V2(t1,0)dt1. (14)



Proof: To prove this lemma we will simply consider the

surface integral of the divergence of V over the rectangular

region [0,T1]× [0,T2]: W(T1,T2) :=
∫ T2

0

∫ T1

0
divV(t1,t2)dt1dt2.

Using the fundamental theorem of calculus or Gauss Diver-

gence Theorem, it can be transformed into

W(T1,T2) =

∫ T2

0

V1(T1,t2)dt2 −
∫ T2

0

V1(0,t2)dt2

+

∫ T1

0

V2(t1,T2)dt1 −
∫ T1

0

V2(t1,0)dt1 (15)

Since the divergence is non-positive for every t1 and t2,

W(T1,T2) ≤ 0. Also, V2 is a non-negative function of t1
and t2. Therefore (15) becomes (13). The bound on of the

integral of V2(t1,t2) in (14) follows similarly.

We will now introduce the two-dimensional continuous

Lyapunov function VT = (V1,V2) with V1 = xT
1

P1x1 and

V2 = xT
2

P2x2, where P1 = PT
1
> 0 and P2 = PT

2
> 0, to show

that under some assumptions x1(t1,t2) and x2(t1,t2) in (1) are

stable according to Definition 3.

Corollary 1: Consider the two-dimensional continuous

autonomous system in (1). If the following conditions hold

(i) A11 and A22 are Hurwitz stable, and

(ii) there exist positive definite, symmetric matrices P1 and

P2 such that P = P1 ⊕ P2, and Q = ATP + PA ≤ 0,

then the system is stable according to Definition 3 and there

exist M1,M2 < ∞ independent of t1 and t2, such that for all

t1 and t2

|x1(t1,t2)| ≤M1 and |x2(t1,t2)| ≤ M2. (16)

Proof: Using the state space description given in (1),

we can write x1 (t1,t2) as

x1 (t1,t2) = eA11t1 x1 (0,t2) +

∫ t1

0

eA11(t1−τ)A12x2 (τ,t2) dτ (17)

Since A11 is Hurwitz stable, there exist λ1 > 0 and K1 < ∞
such that we can transform (17) into

|x1 (t1,t2)| ≤K1e−λ1t1 |x1 (0,t2)|

+

∫ t1

0

K1e−λ1(t1−τ) ‖A12‖ |x2 (τ,t2)| dτ (18)

We choose the Lyapunov function candidate V2 (t1,t2) =

xT
2

(t1,t2) P2x2 (t1,t2) with P2 = PT
2
> 0. Using the definition

of V2(t1,t2) and the Cauchy-Schwarz inequality (18) becomes

|x1 (t1,t2)| ≤K1 |x1 (0,t2)| + K1‖A12‖
σmin(P2)

∫ t1

0

e−λ1(t1−τ)
√

V2 (τ,t2)dτ

≤K1 |x1 (0,t2)|

+
K1‖A12‖
σmin(P2)

√
∫ t1

0

e−2λ1(t1−τ)dτ ·
∫ t1

0

V2 (τ,t2) dτ

(19)

With Lemma 2 and the fact that the initial conditions are in

L2 and L∞ (19) becomes

|x1 (t1,t2)| ≤K1ζ1 +
K1‖A12‖

σmin(P2)
√

2λ1

√

‖P1‖c1 + ‖P2‖c2

The boundedness of x2 (t1,t2) can be shown similarly.

Corollary 2: Consider the autonomous two-dimensional

continuous System in (1). If the following conditions hold

(i) the initial conditions are L2 and L∞ bounded according

to Definition 1,

(ii) A11 and A22 are Hurwitz stable, and

(iii) there exist positive definite, symmetric matrices P1 and

P2 such that P = P1 ⊕ P2, and Q = ATP + AP ≤ 0,

then there exist M1,M2 < ∞ independently of t2 and t1,

respectively, such that
∫ ∞

0

|x1(t1,t2)|2 dt1 ≤ M1 and

∫ ∞

0

|x2(t1,t2)|2 dt2 ≤ M2.

(20)

Proof: From (18) together with the fact that (x+ y)2 ≤
2(x2 + y2), note that

∫ ∞

0

|x1(t1,t2)|2 dt1 ≤ 2K2
1

( ∫ ∞

0

e−2λ1t1 |x1(0,t2)|2 dt1

+‖A12‖2
∫ ∞

0

(∫ t1

0

e−λ1(t1−τ)|x2(τ,t2)|dτ
)2

dt1

)

(21)

The first term of the right hand side of (21) can be bounded

by

2K2
1

∫ ∞

0

e−2λ1t1 |x1(0,t2)|2 dt1 ≤
K2

1
ζ2

1

λ1

. (22)

With the Cauchy-Schwarz inequality the second term of the

right hand side of (21) allows a bound to be calculated as

2K2
1‖A12‖2

∫ ∞

0

(∫ t1

0

e−λ1(t1−τ)|x2(τ,t2)|dτ
)2

dt1

≤
2K2

1
‖A12‖2

λ1

∫ ∞

0

∫ t1

0

e−λ1(t1−τ)|x2(τ,t2)|2dτdt1 (23)

Interchanging the order of integration in (23) yields

2K2
1‖A12‖2

∫ ∞

0

(∫ t1

0

e−λ1(t1−τ)|x2(τ,t2)|dτ
)2

dt1

≤
2K2

1
‖A12‖2

λ1

∫ ∞

0

∫ ∞

τ

e−λ1(t1−τ)|x2(τ,t2)|2dt1dτ

≤
2K2

1
‖A12‖2

λ2
1

∫ ∞

0

|x2(τ,t2)|2dτ (24)

Taking the limit as T1 → ∞ of (14) in Lemma 2 we see that

the integral in (24) is bounded independently of t2.

To facilitate the proof of our main theorem in Section IV

we will show that under suitable assumptions the first deriva-

tives of x are in L2[0,∞) × [0,∞) and L∞[0,∞) × [0,∞), and

the second derivatives are in L∞[0,∞) × [0,∞).

Lemma 3: Consider the autonomous two-dimensional

continuous system in (1). If the following conditions hold

(i) the initial conditions are L′
2

and L′′∞ smooth bounded

according to Definition 2,

(ii) A11 and A22 are Hurwitz stable, and

(iii) there exist positive definite, symmetric matrices

P1, P2 and R such that P = P1 ⊕ P2 and

Q = ATP + PA = −ATRA ≤ 0

then



(a) the first derivatives of x1(t1,t2) and x2(t1,t2) are in

L2[0,∞) × [0,∞) and L∞[0,∞) × [0,∞), i.e. there exist

Mik,Mik < ∞ such that for i,k ∈ {1,2},

sup
(t1,t2)∈R+×R+

∣
∣
∣
∣
∣

d

dtk
xi(t1,t2)

∣
∣
∣
∣
∣
≤ Mik (25)

∫ ∞

0

∫ ∞

0

∣
∣
∣
∣
∣

d

dtk
xi(t1,t2)

∣
∣
∣
∣
∣

2

dt1dt2 ≤ Mik, and (26)

(b) the second derivatives of x1(t1,t2) and x2(t1,t2) are in

L∞[0,∞) × [0,∞), i.e. there exist Mikl < ∞ such that

for i,k,l ∈ {1,2}

sup
(t1,t2)∈R+×R+

∣
∣
∣
∣
∣
∣

d2

dtkdtl
xi(t1,t2)

∣
∣
∣
∣
∣
∣
≤ Mikl. (27)

Proof: (a): We will first show that d
dt1

x1(t1,t2) and
d

dt2
x2(t1,t2) are in L∞[0,∞) × [0,∞) using the state space

description for d
dt1

x1(t1,t2) in (1)
∣
∣
∣
∣
∣

d

dt1
x1(t1,t2)

∣
∣
∣
∣
∣
≤ ‖A11‖ · |x1(t1,t2)| + ‖A12‖ · |x2(t1,t2)| (28)

Since x1(t1,t2) and x2(t1,t2) are bounded from Corollary 1 for

all t1 and t2 by M1 and M2, M11 = ‖A11‖M1 + ‖A12‖M2. M22

follows in the same way.

To show that d
dt2

x1(t1,t2) and d
dt1

x2(t1,t2) are in L∞[0,∞)×
[0,∞) as well, we will transform the solution given in (17)

into
∣
∣
∣
∣
∣

d

dt2
x1(t1,t2)

∣
∣
∣
∣
∣
≤K1e−λ1t1

∣
∣
∣
∣
∣

d

dt2
x1(0,t2)

∣
∣
∣
∣
∣

+

∫ t1

0

K1e−λ1τ ‖A12‖
∣
∣
∣
∣
∣

d

dt2
x2 (t1 − τ,t2)

∣
∣
∣
∣
∣
dτ

≤K1ζ
′
1 +

K1‖A12‖M22

λ1

(29)

To show that the first derivatives are also in L2[0,∞)× [0,∞)

we will use the Lyapunov function candidate V(t1,V2) in-

troduced above. Given the fact that xT(t1,t2)Qx(t1,t2) is the

divergence of V(t1,t2) we can show with the fundamental

theorem of calculus that
∫ T2

0

∫ T1

0

[
d

dt1
xT

1
(t1,t2) d

dt2
xT

2
(t1,t2)

]

R

[ d
dt1

x1(t1,t2)
d

dt2
xT

2
(t1,t2)

]

dt1dt2

≤
∫ T2

0

V1(0,t2)dt2 +

∫ T1

0

V2(t1,0)dt1 (30)

Taking the limit on both sides as T1,T2 → ∞ we see that

M11 = M22 =
‖P1‖c1 + ‖P2‖c2

σmin(R)
. (31)

To show the existence of M12 we will transform the

solution given in (17) into
∫ ∞

0

∫ ∞

0

∣
∣
∣
∣
∣

d

dt2
x1(t1,t2)

∣
∣
∣
∣
∣

2

dt1dt2

≤2K2
1

∫ ∞

0

∫ ∞

0

e−2λ1t1

∣
∣
∣
∣
∣

d

dt2
x1(0,t2)

∣
∣
∣
∣
∣

2

dt1dt2

+ 2K2
1‖A12‖2

∫ ∞

0

∫ ∞

0

∣
∣
∣
∣
∣
∣

∫ t1

0

e−λ1(t1−τ) d

dt2
x2(τ,t2)dτ

∣
∣
∣
∣
∣
∣

2

dt1dt2

︸                                                                    ︷︷                                                                    ︸

α

.

(32)

Since the initial conditions are L′
2

smooth the first term on

the right side of (32) can be bounded by

2K2
1

∫ ∞

0

∫ ∞

0

e−2λ1t1

∣
∣
∣
∣
∣

d

dt2
x1(0,t2)

∣
∣
∣
∣
∣

2

dt1dt2 ≤
2K2

1
c′

1

2λ1

. (33)

The second term can be transformed using the Cauchy

Schwarz inequality so that it becomes

α ≤2K2
1‖A12‖2

∫ ∞

0

∫ ∞

0

(∫ t1

0

e−λ1(t1−τ)dτ

·
∫ t1

0

e−λ1(t1−τ1)

∣
∣
∣
∣
∣

d

dt2
x2(τ,t2)

∣
∣
∣
∣
∣

2

dτ

)

dt1dt2. (34)

We will now solve the first inner integral and change the

order of integration of the remaining part. Thus (34) becomes

α ≤
2K2

1
‖A12‖2

λ1

∫ ∞

0

∫ ∞

0

∫ ∞

τ1

e−λ1(t1−τ)
∣
∣
∣
∣
∣

d

dt2
x2(τ,t2)

∣
∣
∣
∣
∣

2

dt1dτdt2

≤
2K2

1
‖A12‖2

λ2
1

M22. (35)

(b): To complete the proof we will show that the second

derivatives are in L∞ [0,∞) × [0,∞). First the norm of the

derivatives d2

dt2
1

x1(t1,t2) and d2

dt1dt2
x1(t1,t2) will be considered.

Taking the derivative of the first part of the state space

description (1) with respect to t1 yields

d2

dt2
1

x1(t1,t2) =A11

d

dt1
x1(t1,t2) + A12

d

dt1
x2(t1,t2) (36)

Thus M111 = ‖A11‖M11+‖A12‖M12. To show that
∣
∣
∣
∣

d2

dt2
2

x1(t1,t2)
∣
∣
∣
∣

is bounded, follow a similar argument as in (29), so that M122

becomes

M122 = K1ζ
′′
1 +

K1‖A12‖M222

λ1

. (37)

The existence of M112,M121,M211,M212,M221 and M222 can

be proven in the same manor.

Lemma 4: Consider the two-dimensional function

f : R+ ×R+ → R. If f (t1,t2) is both in Lp [0,∞) × [0,∞)

and L∞ [0,∞)× [0,∞) and both its derivatives d
dt1

f (t1,t2) and
d

dt2
f (t1,t2) are in L∞ [0,∞)×[0,∞), then limt1,t2→∞ f (t1,t2) = 0

and f (t1,t2) is uniformly convergent in both directions, i.e.

for all ǫ > 0 there exists a T (ǫ) < ∞ such that

∀(t1,t2) ∈
{

R
+ × [T (ǫ),∞)

}

∪
{

[T (ǫ),∞) ×R+
}

: | f (t1,t2)| < ǫ.
(38)

Proof: Define the supremum of f (t1,t2) and the supre-

mum over the maximum of both derivatives in the complete

quadrant as

f := sup
t1,t2∈R+×R+

| f (t1,t2)| and (39)

f ′ := sup
t1,t2∈R+×R+

{

max

{∣
∣
∣
∣
∣

d

dt1
f (t1,t2)

∣
∣
∣
∣
∣
;

∣
∣
∣
∣
∣

d

dt2
f (t1,t2)

∣
∣
∣
∣
∣

}}

(40)

and the region Rl as

Rl := {[0,l + 1) × [l,l + 1)} ∪ {[l,l + 1) × [0,l)} . (41)



Note then that

‖ f (·,·)‖p
Lp [0,∞)×[0,∞)

=

∞∑

l=0

∫∫

Rl

| f (t1,t2)|pdt1dt2 < ∞ (42)

where
∫∫

Rl
· dt1dt2 refers to the two-dimensional integration

over the region Rl. Therefore,

lim
l→∞

∫∫

Rl

| f (t1,t2)|pdt1dt2 = 0. (43)

Let the supremum of f within Rl be defined as

fl := sup
(t1,t2)∈Rl

| f (t1,t2)|. (44)

Then

sup
(t1,t2)∈Rl

d

dt1
| f (t1,t2)|p ≤ sup

(t1,t2)∈Rl

(

p| f (t1,t2)|p−1

∣
∣
∣
∣
∣

d

dt1
f (t1,t2)

∣
∣
∣
∣
∣

)

≤p fl
p−1

f ′. (45)

We will now bound the double integral
∫∫

Rl
| f (t1,t2)|pdt1dt2

from below by the pyramid with height f
p

l , where the base

is bounded by
f l

p f ′
or the length and width of the region Rl.

∫∫

Rl

| f (t1,t2)|pdt1dt2 ≥
1

6
fl

p
min






fl

p f ′
; l + 1





min






fl

p f ′
; 1






(46)

We can transform (46) into

∫∫

Rl

| f (t1,t2)|pdt1dt2 ≥
1

6
fl

p+2
min






1

p f ′
;

l + 1

f





min






1

p f ′
;

1

f






Thus

fl
p+2
≤6

(

max
{

p f ′; f
})2

∫∫

Rl

| f (t1,t2)|pdt1dt2 (47)

As f ′ and f are bounded fl tends to zero as l grows without

bound. Hence from the definition of fl (44), f (t1,t2) for

(t1,t2) ∈ Rl tends to zero as l grows without bound.

IV. Asymptotic Stability

In this section we will now present our main theorem for

asymptotic stability of two-dimensional continuous systems

described by the Roesser model.

Theorem 1 (Asympt. Stab. of 2D Cont. Roesser Models):

The two-dimensional continuous system (1) is asymptotically

stable with smooth bounded initial conditions according to

Definition 4 if the following conditions hold

(i) A11 and A22 are Hurwitz stable, and

(ii) there exist positive definite, symmetric matrices

P1, P2 and R such that P = P1 ⊕ P2 and

Q = ATP + PA = −ATRA ≤ 0.

Proof: Consider the two-dimensional Lyapunov func-

tion V(t1,t2) defined earlier and the integral of V1(t1,t2) +

V2(t1,t2) along the line Ω(l) := (t1,t2) ∈ {[0,l] × {l}} ∪
{{l} × [0,l]} for l ∈ R+, and l > 0 as:

U(l) :=

∫

Ω(l)

V1(t1,t2) + V2(t1,t2)ds

=

∫ l

0

(V1(t1,l) + V2(t1,l)) dt1 +

∫ l

0

(V1(l,t2) + V2(l,t2)) dt2

Using the results in Lemma 2 and Corollary 2 we see that

there exists a C such that for all l: U(l) ≤ C. Since the first

derivatives of x(t1,t2) with respect to t1 and t2 are L2 bounded

(Lemma 3) we can find d11(l), d12(l), d21(l) and d22(l) such

that for i ∈ {1,2}

di1(l) := sup
t1≤l

∥
∥
∥
∥
∥

d

dt1
xi(t1,l)

∥
∥
∥
∥
∥

, di2(l) := sup
t2≤l

∥
∥
∥
∥
∥

d

dt2
xi(l,t2)

∥
∥
∥
∥
∥
. (48)

Note that d11(l) ≤ supt1≥0

∥
∥
∥
∥

d
dt1

x1(t1,l)
∥
∥
∥
∥. Making use of the

version of the Barbalat’s Lemma in Lemma 4, we can

conclude that the first derivatives tend to zero as t1,t2 → ∞
and are uniformly convergent in both directions. That allows

us to interchange the order of supremum and limit and thus

we can conclude that

lim
l→∞

d11(l) ≤ lim
l→∞

sup
t1≥0

∣
∣
∣
∣
∣

d

dt1
x1(t1,l)

∣
∣
∣
∣
∣

= sup
t1≥0

lim
l→∞

∣
∣
∣
∣
∣

d

dt1
x1(t1,l)

∣
∣
∣
∣
∣

=0. (49)

It can be shown in a similar way that the limits of d12(l),

d21(l), and d22(l) for l→ ∞ are 0.

Thus we can bound the derivatives of Vi(t1,t2) with respect

to t1 for i ∈ {1,2} by

∀t1 ≤ l :
d

dt1
Vi(t1,l) ≤2nidi1(l)‖Pi‖Mi (50)

where M1 and M2 are bounds on |x1(t1,t2)| and |x2(t1,t2)| from

Corollary 1 and n1 and n2 are the dimensions of x1(t1,t2) and

x2(t1,t2), respectiveley. A similar bound on the derivatives

with respect to t2 can be found.

To find a lower bound on U(l) we will use a similar trick as

in the proof of Lemma 4 above. If the maximum of Vi(t1,t2)

for i ∈ {1,2}) alongΩ(l), V i(l) := max(t1,t2)∈Ω(l) Vi(t1,t2), occurs

along the part of Ω(l) where (t1,t2) ∈ [0,l] × {l} we can

bound the integral of Vi(t1,t2) over Ω(l) from below by a

triangle with the base equal to min
{

V i(l)
/

(2nidi1(l)‖Pi‖Mi), l
}

and V i(l) as the height of the triangle.

U(l) ≥min






V
2

1(l)

4n1d11(l)‖P1‖M1

;
V

2

1(l)

4n1d12(l)‖P1‖M1

;
V1(l)l

2






+min






V
2

2(l)

4n2d21(l)‖P2‖M2

;
V

2

2(l)

4n2d22(l)‖P2‖M2

;
V2(l)l

2





.

(51)

Since V i(l) ≤ M2
i
‖Pi‖ this implies

V
2

i (l) ≤ C ·max





4nidi1(l)‖Pi‖Mi; 4nidi2(l)‖Pi‖Mi;

2M2
i
‖Pi‖
l






(52)
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Note that as l tends to infinity each component of the max-

imum in (52) goes to zero and, hence, limt1,t2→∞ |xi(t1,t2)| =
0. Note that the limits limt1→∞ |xi(t1,t2)| = 0 and

limt2→∞ |xi(t1,t2)| = 0 exist as well.

V. Examples

We will present a simple example to illustrate our main

theorem. The system is described by the dynamic matrix

A =





−3/2 −1/2 1

1 0 0

1/4 1/4 −1/2




. (53)

Since the system contains a SSB at s1 = s2 = 0 Q cannot be

sign definite. Both A11 and A22 only have eigenvalues with

negative real parts. Using

P1 =

[

5 2

2 2

]

and P2 = 8 (54)

and R = [4,1,0; 1,4,0; 0,0,16] (rank(R) = 3) we see that the

eigenvalues of ATP + PA = −ATRA = Q are −18.34, −2.66

and 0. Hence, the system is asymptotically stable. The system

has been simulated for x10
(t2) = (e−t2 ,0) and x20

(t1) = e−t1 for

t1,t2 ≤ 2500. The maximum of |x| over t2 can be seen in the

figure above.

VI. Conclusions

A proof of asymptotic stability of two-dimensional con-

tinuous systems using Lyapunov type arguments has been

presented in this paper. It has been shown that a two-

dimensional continuous system with Hurwitz stable matrices

A11 and A22 and bounded smooth initial conditions satisfying

our Lyapunov condition is asymptotically stable.

We would like to stress that our Lyapunov condition only

requires two positive definite matrices P1 and P2, such that

Q = ATP+ PA (where P = P1 ⊕ P2) is negative semidefinite.

Allowing Q to be singular widens the areas where such

stability result can be used. For example, asymptotic stability

of systems with singularities at the stability boundary (where

Q can never be sign definite) can be tested using the main

theorem presented, based on an LMI condition.

For future research, the authors will focus to extend the

results presented for two-dimensional continuous-discrete

systems.
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