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Stability of Two-Dimensional Linear Systems With
Singularities on the Stability Boundary Using LMIs

Steffi Knorn and Richard H. Middleton

Abstract—This paper gives results on stability and asymptotic stability
of two-dimensional systems using linear matrix inequalities (LMIs).
Despite a long history of research in this area, systems withsingularities
on the stability boundary (SSB) have received limited attention because
they cannot produce a sign definite solution to the required LMI.
However, 2D systems describing some classes of models of vehicle platoons
generically involve an SSB. Therefore, commonly used definitions for
(asymptotic) stability and strict LMI conditions are not suitable to
discuss the stability of these systems. It is shown that the existence of a
negativesemidefinite solution together with simple additional conditions is
sufficient to guarantee asymptotic stability. Thus, the stability conditions
discussed here can be used to study a wider range of dynamicalsystems,
including systems with singularities on the stability boundary (SSB),
which cannot be exponentially stable. A unified framework isused to
analyse continuous-continuous, continuous-discrete anddiscrete-discrete
systems simultaneously.

Index Terms—Linear matrix inequalities (LMIs), stability analysis,
two-dimensional (2-D) systems

I. Introduction

In this paper stability of two-dimensional (2D) linear systems will
be examined. 2D refers to the fact that signals and variablesdepend
on two independent variables. Since both variables can be continuous
or discrete, most analyses distinguish between discrete, continuous
and continuous-discrete 2D systems. The majority of the past research
focuses on discrete 2D systems due to the range of applications for
this case.

Early stability results on discrete 2D systems used 2D Z transforms,
involving functions of two complex variables,z1, z2. [1] analysed the
input-output systemY(z1,z2) = num(z1,z2)/den(z1,z2) · W(z1,z2) and
claimed1 it is BIBO stable if and only if the characteristic polynomial,
den(z1,z2), has no zeros in the closed unit bi-discU

2
= {(z1,z2) :

|z1| ≤ 1, |z2| ≤ 1}. This led to different stability tests such as [2] and
[3], or for the continuous time case [4]. Necessary and sufficient
conditions to guarantee a given polynomial is ‘very strictly Hurwitz’
(for the continuous case) were published in (for example) [5] and
[6].

A. Singularities on the Stability Boundary

An important special case is often neglected in discussionsof 2D
systems stability. This is the case when there exists a Singularity on
the Stability Boundary (SSB). In discrete time, this means that there
exists a set of (z1,z2), such that|z1| = |z2| = 1 and den(z1,z2) = 0.
In a 2D transfer function setting, and where the numerator is
simultaneously zero (num(z1,z2) = 0), this is referred to as a Non-
essential Singularity of the Second Kind (NSSK) on the stability
boundary.
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1The claim is correct except for some cases with singularities on the

stability boundary.

Note that it may not be straightforward to detect if an NSSK is
present. Also, it may be tempting to treat such cases as esoteric and
irrelevant in practice. However, the existence of an NSSK cannot
always be avoided and might even be desirable or a structural
requirement. For example, the design of fan filters inherently require
an NSSK on the stability boundary, [7]. Also, as we will show later,
some classes of models of vehicle platoons generically involve an
SSB.

It was shown in [8] that transfer functions with NSSK on the
stability boundary may be either BIBO stable or unstable. Thus,
the location of the poles of a 2D transfer function alone doesnot
determine BIBO stability of the system. It was shown in [9] that the
system is stable if the transfer function has finitely many NSSK on
the stability boundary and can be continuously extended to the closed
polydisc. [10] gave a necessary condition for stability, namely that
there should be no NSSK inside the open unit bi-disk.

Thus we see that the analysis of stability of marginally stable
2D systems (that is those with an SSB) is a subtle issue that needs
careful examination. We next turn to discuss closely related stability
questions from the perspective of internal stability.

B. Internal Stability and 2D State Space Systems

Different state space models have been presented to describe
discrete 2D systems in the time domain. Two well known modelsare
Fornasini-Marchesini’s first model (FM1), [11], and secondmodel
(FM2), [12]. Although FM2 has attracted the most attention,a
necessary condition for asymptotic stability for FM1 appeared in [13].
Sufficient LMI conditions for asymptotic stability were developed in
[14] and necessary and sufficient conditions in [15].

In [12] the authors proved asymptotic stability for FM2. A straight
diagonal separation set or “contour” and its norm‖Xr‖ = supn∈Z |x(r−
n,n)| are defined. In this line of work, asymptotic stability is defined
as‖X0‖ < ∞ implies limr→∞ ‖Xr‖ = 0. This is true if and only if the
characteristic polynomial is non-zero for any (z1,z2) in U

2
. Note that

this, as with the other definitions of asymptotic stability,also implies
2D exponential stability. An extension can be found in [16] where the
authors prove asymptotic stability using a more general contour. The
result uses a linear matrix inequality constraint requiring a positive
definite Hermitian solutionP(ω) for all realω.

Based on the necessary and sufficient condition on the character-
istic polynomial to be devoid of zeros inU

2
, a sufficient LMI based

condition for asymptotic stability was derived in [17] providing the
first LMI condition for FM2 with constant coefficients. Necessary and
sufficient conditions with constant coefficients for asymptotic stability
were presented in [18].

Note that the definition of asymptotic stability used in the refer-
ences on FM2 above implies that for any set ofL∞ bounded boundary
conditions, the states tend to zero as both independent variables tend
to infinity.

Another widely used state space description was presented by
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Roesser in [19]:
(

x1(k+ 1,l)
x2(k,l + 1)

)

=

[

A1 A2

A3 A4

]

︸      ︷︷      ︸

A

(

x1(k,l)
x2(k,l)

)

+

(

B1

B2

)

︸︷︷︸

B

u(k,l) (1)

y(k,l) =
[

C1 C2

]

︸     ︷︷     ︸

C

(

x1(k,l)
x2(k,l)

)

+ Du(k,l) (2)

where x1(k,l) ∈ R
n1, x2(k,l) ∈ R

n2 and the dimensions ofA, B, C,
and D are chosen appropriately.

It was claimed in [20] that the characteristic polynomial den(z1,z2)
fulfils Shanks’ stability criterion [1] if and only if there exists a
positive definite, symmetric matrixP = P1⊕ P2, where⊕ denotes the
direct sum, i. e.P1⊕ P2 = diag{P1,P2}, P1 ∈ Rn1×n1 and P2 ∈ Rn2×n2,
such thatAT PA− P = Q < 0. However, Andersonet al. later showed
that for discrete 2D systems, in general, the existence of such a P is
sufficient but not necessary for stability, [21].

A continuous analogue of the Roesser model is widely used
to describe linear continuous 2D systems. It was claimed in [22]
that a continuous 2D system is stable (characteristic polynomial is
very strictly Hurwitz) if and only if there exists a positivedefinite,
symmetric matrixP = P1 ⊕ P2 such thatAT P + PA = Q < 0. Again
however, the existence of such aP is sufficient but not necessary for
stability [21]. For continuous systems, necessary and sufficient LMI
conditions for the existence of such aP appeared in [23].

Another necessary and sufficient LMI condition to ensure that
the characteristic polynomial is very strict Hurwitz, thatrequires
the existence of a positive definite Hermitian solutionP(ω) for all
real ω was given in [6]. Necessary and sufficient LMI conditions
for asymptotic stability with constant matrices are presented in [24].
Piekarski’s LMI condition AT P + PA = Q < 0 was later found to
be sufficient to guarantee asymptotic stability for continuous systems
with bounded initial conditions, [25].

Alongside discrete repetitive processes (modelled as discrete 2D
systems) some researchers also studied “differential” repetitive pro-
cesses leading to the study of continuous-discrete 2D systems.
Stability theory for continuous-discrete 2D systems appears to be well
developed. Different conditions for stability and asymptotic stability
of differential repetitive processes with dynamic boundary conditions
(depending on the pass profiles of the previous passes) are given in
[26]. These results were extended to stability tests based on a one-
dimensional Lyapunov function in [27].

In [28] the authors discuss stability along the pass (similar to
asymptotic stability) for differential repetitive processes modelled in
a form similar to the Roesser model. They claim that such a system
is stable along the pass if there exist two positive definite,symmetric
matricesP1 and P2 such thatAT(P1⊕0)+ (P1⊕0)A+ AT(0⊕ P2)A−
(0⊕ P2) = Q < 0. The proof in [28] refers to [29] for details. While
this book covers extensive results in the area, a complete LMI based
stability proof for the Roesser Model is not given.

It should also be noted here that similar to the results on
the Fornasini-Marchesini models the commonly used definitions of
asymptotic stability for the Roesser model require that forany set of
L∞ bounded initial or boundary conditions, the states tend to 0as
t1,t2→ ∞.

C. A Motivating Example

To motivate consideration of 2D systems with an SSB, we give an
example of a class of problems where an SSB is generic. Consider
the situation of vehicle platooning. In order to achieve tight spacing
between vehicles travelling in a string (or “platoon”), suppose the
vehicles have an automatic controller for longitudinal position. This

controller uses local measurements to regulate the distance to the
predecessor, or in the case of the lead vehicle, to follow a given
trajectory.

Assume that the local state space variables of thekth vehicle
(such as its position ˆx(t,k), velocity v̂(t,k) and controller states) are
summarised in the vectorx1(t,k) ∈ Rn1. Further, assume the position
of the preceding vehicle ˆx(t,k− 1), that is used as a reference for the
kth vehicle, is set to be the scalar ˆx(t,k−1) = x2(t,k) ∈ R. The overall
2D system can be described by

(

ẋ1(t,k)
∆x2(t,k)

)

=

(
d
dt x1(t,k)

x2(t,k+ 1)− x2(t,k)

)

=

[

A11 A12

A21 −1

]

︸        ︷︷        ︸

=:A

(

x1(t,k)
x2(t,k)

)

. (3)

For further details on this model, refer to the examples in Section V.
The characteristic polynomial for the 2D system in (3) is:

pch(s,z) := det

([

sI 0
0 (z− 1)I

]

− A
)

. (4)

Now suppose, as we normally require for platoon following, that
in response to a unit step,x2(t,0) = 1, that a steady state is reached
where all vehicles follow an identical reference with zero steady
state error. The condition of identical steady state references means
limt→∞ x2(t,k) = 1,∀k. Furthermore, from (3), for this to be an
equilibrium, there must exist anx1 such thatA11x1 + A12 = 0 and
A21x1 = 1. This immediately implies thatA is singular. SinceA
is singular, (4) implies immediately that we have an SSB, since
pch(0,1) = det(A) = 0.

Hence, the presence of this SSB is a consequence of the structure
of the vehicle platoon system. It can also be shown that a 2D system
describing a vehicle platoon exhibits an SSB ats = 0 andz = 1 for
more general settings withx2 ∈ Rn2 (see [30] for further details).

Note that in a similar approach, [31, Example 2], a single lane of
a motorway is modelled as a 2D positive system. The authors divide
the vehicles into groups depending on their speed and investigate the
number of vehicles of each group per time interval and stretch of the
highway. Here, however, we are interested in studying the behaviour
of individual vehicles whose control actions explicitly depend on the
behaviour of the preceding vehicles.

D. Contribution

Previous LMI based results in the time domain exclude systems
where A has an SSB since a sign definite solution of the LMI is
required. However, as we will show later in Lemma 1, such systems
never admit a sign definite solution to the required LMI. (Indeed it
will be shown in Lemma 2 that if the system exhibits an SSB ats= 0
andz= 1 there exists no Lyapunov function with a negative definite
divergence.) Hence, all LMI based stability conditions presented in
the literature so far cannot be employed to study the stability of 2D
systems including an SSB. In particular, none of the previous LMI
based results are suitable for studying vehicle platoon string stability.

This issue is closely related to the definitions used for asymptotic
stability. Most common definitions for asymptotic stability require
the states to tend to zero in the presence of any set ofL∞ bounded
initial conditions. As discussed above in Section I-C it is highly
desirable that applying a bounded initial condition (i.e. astep signal
as a reference) in a vehicle platoon leads to convergence of all states
to a nonzero equilibrium. Therefore, these previous definitions of
asymptotic stability are uninformative in this context.

In this paper we fill this gap. We extend previous 2D LMI based
stability results to the case of systems with SSB(s). We use an
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alternate notion of asymptotic stability that proves useful in the
context of our motivating example. We give results that permit
asymptotic stability proofs for some systems with SSBs using a 2D
Lyapunov function with negative semi-definite divergence.

Our paper is structured as follows. After clarifying the notation in
Section II we will discuss preliminary results in Section III (including
stability of 2D systems in Corollary 1). Our main result on asymptotic
stability is presented in Section IV. Illustrative resultsare given in
Section V before concluding remarks and suggestions for further
work in Section VI.

II. Notation

We will study stability of 2D systems using a unified notationto
describe the stability of the state variablex(t1,t2) where for i ∈ {1,2}

ti ∈ Ti that is ti ∈





R
+ : ti continuous,

N : ti discrete.
(5)

We will use the generalised derivative operatorδi ; i ∈ {1,2} to repre-
sent either a derivative (continuous) or forward difference (discrete)
with respect toti . For example:

δ1x(t1,t2) :=






d
dt1

x(t1,t2) : t1 continuous,

x(t1 + 1,t2) − x(t1,t2) : t1 discrete.
(6)

The generalised integration operatorS is defined as regular integra-
tion in continuous time, or left Riemann summation in discrete time.
For example:

b
S
a

x(t1,t2)dt1 :=






∫ b

a
x(t1,t2)dt1 : t1 continuous,

∑t1=b−1
t1=a x(t1,t2) : t1 discrete.

(7)

We will consider autonomous 2D systems of the following form
(Roesser model, [19])

(

δ1x1(t1,t2)
δ2x2(t1,t2)

)

︸        ︷︷        ︸

δx(t1,t2)

=

[

A11 A12

A21 A22

]

︸        ︷︷        ︸

A

(

x1(t1,t2)
x2(t1,t2)

)

︸     ︷︷     ︸

x(t1,t2)

(8)

where x1 ∈ Rn1, x2 ∈ Rn2, with the initial conditionsx1(0,t2) =
x10(t2) and x2(t1,0) = x20(t1). The autonomous system (8) has a
solution that satisfies:

x1(t1,t2) =E(A11)
t1 x10(t2) +

t1
S
0

E(A11)
τA12x2(t1 − I1 − τ,t2)dτ, (9)

x2(t1,t2) =E(A22)
t2 x20(t1) +

t2
S
0

E(A22)
τA21x1(t1,t2 − I2 − τ)dτ, (10)

whereIi for i ∈ {1,2} denotes the indicator function

Ii :=






0 : ti continuous,

1 : ti discrete,
(11)

and the generalised exponential

E(A)t :=






eAt : t continuous,

(I + A)t : t discrete.
(12)

We say A is stable to mean eitherA is Hurwitz stable (continuous
case) orI + A is Schur stable (discrete case). In either case, ifA is
stable, then there existλ > 0 (and in additionλ < 1 in the discrete
case) andk < ∞ such that

∥
∥
∥E(A)t

∥
∥
∥ ≤ kE(−λ)t. (13)

Note that
t
S
0

E(−λ)τdτ = 1− E(−λ)t

λ
(14)

and for−λ stable
∞
S
t

E(−λ)τdτ = E(−λ)t

λ
. (15)

Moreover⊕ denotes the direct sum of matrices, e. g.P = P1 ⊕ P2 =

diag{P1,P2}, I and0 denote the identity matrix and the zero matrix,
respectively, of appropriate dimensions and the imaginaryunit is
denoted byj. Consider the 2D vector Lyapunov function

V(t1,t2) :=

[

xT
1(t1,t2) 0

0 xT
2(t1,t2)

]

Px(t1,t2)=

(

V1(t1,t2)
V2(t1,t2)

)

(16)

with P1 = PT
1 > 0, P2 = PT

2 > 0, P = P1 ⊕ P2 and

div V(t1,t2) = δ1V1(t1,t2) + δ2V2(t1,t2) = xTQx (17)

with δiVi(t1,t2) = xTQi x and

Q = Q1 + Q2 where Qi = AT P̃i + P̃i A + Ii AT P̃i A (18)

for i ∈ {1,2} with P̃1 = (P1 ⊕ 0) and P̃2 = (0⊕ P2).
Furtherξi for i ∈ {1,2} is the Laplace variablesi if ti is continuous

or the Z transform variablezi if ti is discrete.

Definition 1 (Singularity on the Stability Boundary (SSB)). The 2D
Roesser Model has a singularity on the stability boundary ifthere
exits a set ofωi (ti continuous) orθi (ti discrete) such that the matrix
((ξ1 − I1)I ⊕ (ξ2 − I2)I ) − A is singular for ξi = jωi or ξi = ejθi ,
respectively.

We will make use of the following different definitions of initial
conditions.

Definition 2 (L2 and L∞ Bounded Initial Conditions). We say the
initial conditions of a 2D Roesser Model are “Bounded” if they are
in L2 and L∞, that is there existci ,ζi < ∞ such that fori ∈ {1,2}

‖xi0(·)‖22 =
∞
S
0
|xi0(t)|2dt ≤ ci , and (19)

‖xi0(·)‖∞ = sup
t≥0
|xi0(t)| ≤ ζi . (20)

Definition 3 (L′2 and L′′∞ Smooth Bounded Initial Conditions). We
say the initial conditions of a 2D Roesser Model are Smooth Bounded
Initial Conditions if they areL2 and L∞ bounded according to
Definition 2, and in addition there existc′i ,ζ

′
i ,ζ
′′
i < ∞ such that for

i ∈ {1,2}

‖δxi0(·)‖22 =
∞
S
0
|δxi0(t)|2dt ≤ c′i , (21)

‖δxi0(·)‖∞ = sup
t>0
|δxi0(t)| ≤ ζ′i , and (22)

‖δ2xi0(·)‖∞ = sup
t>0
|δ2xi0(t)| ≤ ζ′′i . (23)

We will discuss the stability of 2D systems according to the
following definitions.

Definition 4 (Stability of 2D Roesser Model). The autonomous 2D
Roesser Model (8) is stable if for eachM > 0 there exists a set of
ci(M),ζi(M) > 0 such that if the initial conditions are inL2 and L∞
with boundsci and ζi for i ∈ {1,2}, respectively, then

|x(t1,t2)| ≤ M for all t1,t2 > 0. (24)

Definition 5 (Asymptotic Stability of 2D Roesser Model with
Smooth Bounded Initial Conditions). The autonomous two-dimen-
sional Roesser Model (8) is asymptotically stable, if for any Smooth
Bounded Initial Conditions (according to Definition 3) it isstable,
and the following limit holds fori ∈ {1,2}

lim
t1+t2→∞

xi(t1,t2) = 0. (25)

Note that asymptotic stability requires the states to tend to zero as
t1 + t2→ ∞. That includes the cases wheret1→ ∞, t2→ ∞ and the
double limit limt1,t2→∞ wheret1 and t2 tend to+∞ at the same time
but in any possible form and direction.



4

III. M athematical Preliminaries

Before presenting our results concerning the asymptotic stability
of 2D systems we would like to show the connection between
singularities on the stability boundary and the Lyapunov function.

Lemma 1. Consider the autonomous 2D system (8). If the system
has a singularity on the stability boundary (SSB), then for every
symmetric choice ofP1 and P2, there exists a vectorv such that
vTQv = 0 whereQ is given in (18).

Proof: The characteristic polynomial is equal to
det(((ξ1 − I1)I ⊕ (ξ2 − I2)I ) − A). Since the system has a
singularity at ξi = jωi or ξi = ejθi , respectively, the matrix
((ξ1 − I1)I ⊕ (ξ2 − I2)I ) − A is singular for ξi = jωi or ξi = ejθi ,
respectively. Therefore, there exists a non-zero vectorv ∈ Cn such
that

([

(ξ1 − I1)I 0
0 (ξ2 − I2)I

]

− A
)

v = 0. (26)

Using (26) we can rewritevHQv = vH(Q1 + Q2)v and see from (18)
that for instance ift1 is continuous andt2 is discrete

vHQv = vH AT P̃1v + vH P̃1A+
¯
vH AT P̃2v + vH P̃2Av + vH AT P̃2 Av

= vH

[
(− jω1 + jω1) P1 0

0
(

e− jθ2−1+ejθ2−1+1−e− jθ2−ejθ2+1
)

P2

]

v

= 0. (27)

If t1 is discrete ort2 is continuous it can be shown in a similar way
that vHQv = 0. Thus,vHQv = 0 independently ofP.

Note therefore that, for a system including SSB it is not possible to
find positive definite matricesP1 and P2 such thatQ is sign definite.
Thus, there exists no quadratic 2D Lyapunov function with negative
definite divergence. Assuming that the system exhibits a SSBat s= 0
andz= 1, we can further show that there exists no Lyapunov function
of any form with a negative definite divergence.

Lemma 2. Consider the autonomous 2D system (8). If the system
has a singularity on the stability boundary (SSB) at si = jωi = 0
(in case ti is continuous) and zi = ejθi = 1 (i. e. θi = 0 in case
ti is discrete), then for every choice of a 2D Lyapunov function

V =
(

V1(x1) V2(x2)
)T

there exists a setx1 , 0 and x2 , 0
such that for all scalarγ , 0: δ1V1(x1)|(x1,x2)=(γx1,γx2) = 0 and
δ2V2(x2)|(x1,x2)=(γx1,γx2) = 0 and thusdiv V|(x1,x2)=(γx1,γx2) = 0.

Proof: Since the system has a singularity atξi = jωi = 0 or
ξi = ejθi = 1, respectively, there exists a non-zero vectorv ∈ Cn such
that (26) is satisfied forξi = jωi = 0 or ξi = ejθi = 1, respectively,
and thusAv = 0 and thusγAv = 0. Choosingx1 and x2 such that

v =
(

x1

x2

)

yields δx|(x1,x2)=(γx1,γx2) = γAv = 0.

If t1 is continuous, δ1V1(x1)|(x1,x2)=(γx1,γx2) =
(

dV1
dx1

)T dx1
dt1

∣
∣
∣
∣
(x1,x2)=(γx1,γx2)

=
(

dV1
dx1

)T
δ1x1

∣
∣
∣
∣
(x1,x2)=(γx1,γx2)

= 0. If t1 is dis-

crete note thatδ1V1(x1) = ∆1V1(x1) = V1(x1(t1+ 1,t2))−V1(x1(t1,t2)).
Setting (x1,x2) = (γx1,γx2) implies x1(t1 + 1,t2) = x1(t1,t2) = γx1

and thusδ1V1(x1)|(x1,x2)=(γx1,γx2) = V1(γx1) − V1(γx1) = 0.
Hence, for systems that exhibit a SSB atsi = 0 or zi = 1,

respectively, there exists no 2D Lyapunov function with negative
definite divergence.

Even though for systems including SSBQ can never be sign
definite, the existence of a negative semi-definiteQ together with
some additional assumptions onA might be sufficient for stability.
Furthermore, with some additional assumptions on the initial con-
ditions we are able to guarantee asymptotic stability (withbounded
smooth initial conditions).

Before we show stability we will first use some interesting prop-
erties of 2D non-negative vector fields with non-positive divergence.

Lemma 3. Consider the 2D space of two variables t1 and t2 and
the 2D non-negative vector fieldVT(t1,t2) = (V1(t1,t2),V2(t1,t2)). If
the divergence of the vector fieldV(t1,t2) is non-positive for every
t1 and t2, then the generalised integral of V1(t1,t2) and V2(t1,t2) over
t2 ∈ [0,T2] and t1 ∈ [0,T1], respectively, is bounded by the initial
conditions V1(0,t2) and V2(t1,0), that is for all T1,T2 > 0:

T2

S
0

V1(T1,t2)dt2 ≤
T2

S
0

V1(0,t2)dt2 +
T1

S
0

V2(t1,0)dt1 (28)

T1

S
0

V2(t1,T2)dt1 ≤
T2

S
0

V1(0,t2)dt2 +
T1

S
0

V2(t1,0)dt1. (29)

Proof: To prove this lemma we will simply consider the
generalised surface integral of the divergence ofV(t1,t2) over the
rectangular regiont1 ∈ [0,T1], t2 ∈ [0,T2]:

W(T1,T2) :=
T2

S
0

T1

S
0

(δ1V1(t1,t2) + δ2V2(t1,t2)) dt1dt2 (30)

Using the fundamental theorem of calculus or Gauss Divergence
Theorem for continuous variables and simple arithmetic fordiscrete
variables (30) can be transformed into

W(T1,T2) =
T2

S
0

V1(T1,t2)dt2 −
T2

S
0

V1(0,t2)dt2

+
T1

S
0

V2(t1,T2)dt1 −
T1

S
0

V2(t1,0)dt1. (31)

Since the divergence is non-positive for everyt1 and t2, from (30)
we get W(T1,T2) ≤ 0. Also, V2(t1,t2) is a non-negative function of
t1 and t2. Therefore (31) implies (28). The bound on the integral of
V2(t1,t2) in (29) follows equivalently.

We now consider the 2D Lyapunov functionV(t1,t2) introduced
above, to show that under some assumptions the system is therefore
stable according to Definition 4.

Corollary 1. Consider the autonomous 2D system in (8). If the
following conditions hold

(i) A11 and A22 are stable, and
(ii) there exist positive definite, symmetric matricesP1 and P2 such

that Q ≤ 0, whereQ is given in (18),

then the system is stable as per Definition 4.

Proof: SinceAii is stable, there existki < ∞ andλi > 0 (andλi <

1 in the discrete case) such that
∥
∥
∥E(Aii )

ti
∥
∥
∥ ≤ kiE(−λi)

ti . Therefore,
using (9) we have

|x1 (t1,t2)| ≤k1E(−λ1)
t1 |x10 (t2)|

+
t1
S
0

k1E(−λ1)
τ ‖A12‖ |x2 (t1 − I1 − τ,t2)| dτ. (32)

We chooseP2 as in condition (ii) and then define the Lyapunov func-
tion candidateV2 (t1,t2) = xT

2 (t1,t2) P2x2 (t1,t2). Using the definition
of V2(t1,t2) and the Cauchy-Schwarz inequality, (32) becomes

|x1 (t1,t2)| ≤k1 |x10 (t2)| +
k1‖A12‖√
σmin(P2)

t1
S
0

E(−λ1)
τ
√

V2 (t1 − I1 − τ,t2)dτ

≤k1 |x10 (t2)| +
k1‖A12‖√
σmin(P2)

·
(

t1
S
0

E(−λ1)
2τdτ

)1/2 (
t1
S
0

V2 (τ,t2) dτ

)1/2

. (33)

With (14), Lemma 3 and the fact that the initial conditions are in L2,
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(33) becomes

|x1 (t1,t2)| ≤k1 |x10 (t2)| +
k1‖A12‖√
σmin(P2)

√

1− E(−λ1)2t1

2λ1 − λ2
1I1

·
(

t2
S
0

V1(0,τ)dτ +
t1
S
0

V2(τ,0)dτ

)1/2

≤k1 |x10 (t2)| +
k1‖A12‖

√
‖P1‖c1 + ‖P2‖c2

√
σmin(P2)

√

2λ1 − λ2
1I1

. (34)

Note that since forti discrete we haveIi = 1 andλi < 1 we find
that 2λi − λ2

i Ii > λi . Thus, 1/(2λi − λ2
i Ii ) < 1/λi . Since the initial

conditions are also inL∞, we find that

|x1 (t1,t2)| ≤ M1 =: k1ζ1 +
k1‖A12‖

√
‖P1‖c1 + ‖P2‖c2√
σmin(P2)

√
λ1

(35)

for all t1,t2 > 0. Note that the boundM1 is scaled by theL2 and
L∞ norms of the initial conditions, i. e.ζ1,c1,c2. A similar bound for
x2 (t1,t2) can be found in the same way. The system is therefore stable.

Under the same assumptions as in Corollary 1 we can further
show that not only isxi(t1,t2) bounded (that is inL∞) but also
the generalised integralsS∞0 |x1(t1,t2)|2dt1 and S∞0 |x2(t1,t2)|2dt2 are
bounded. This will facilitate the proof of asymptotic stability later in
Section IV.

Corollary 2. Consider the autonomous 2D System in (8). If the
following conditions hold

(i) the initial conditions are L2 and L∞ bounded according to
Definition 2,

(ii) A11 and A22 are stable, and
(iii) there exist positive definite, symmetric matricesP1 and P2 such

that Q ≤ 0, whereQ is given in (18),
then there existM1,M2 < ∞ independently of t2 and t1, respectively,
such that

∞
S
0
|x1(t1,t2)|2 dt1 ≤ M1 and

∞
S
0
|x2(t1,t2)|2 dt2 ≤ M2. (36)

Proof: From (32), note that
∞
S
0
|x1(t1,t2)|2 dt1 ≤ 2k2

1

∞
S
0

E(−λ1)
2t1 |x10 (t2)|2 dt1

+2k2
1‖A12‖2

∞
S
0

(
t1
S
0

E(−λ1)τ|x2(t1 − I1 − τ,t2)|dτ
)2

dt1. (37)

The first term of the right hand side of (37) can be bounded as follows

2k2
1

∞
S
0

E(−λ1)
2t1 |x10 (t2)|2 dt1 ≤

2k2
1ζ

2
1

λ1
. (38)

With the Cauchy-Schwarz inequality the second term of the right
hand side of (37) allows a bound to be calculated as

2k2
1‖A12‖2

∞
S
0

(
t1
S
0

E(−λ1)
τ|x2(t1 − I1 − τ,t2)|dτ

)2

dt1

≤2k2
1‖A12‖2

∞
S
0

(
t1
S
0

E(−λ1)
τdτ

) (
t1
S
0

E(−λ1)
τ|x2(t1 − I1 − τ,t2)|2dτ

)

dt1

≤
2k2

1‖A12‖2

λ1

∞
S
0

t1
S
0

E(−λ1)τ |x2(t1 − I1 − τ,t2)|2 dτdt1. (39)

Interchanging the order of integration in (39) yields

2k2
1‖A12‖2

λ1

∞
S
0

t1
S
0

E(−λ1)t1−I1−τ|x2(τ,t2)|2dτdt1

≤
2k2

1‖A12‖2

λ1

∞
S
0

∞
S
τ+I1

E(−λ1)
t1−I1−τ|x2(τ,t2)|2dt1dτ

≤
2k2

1‖A12‖2

λ2
1

∞
S
0
|x2(τ,t2)|2dτ. (40)

Taking the limit asT1 → ∞ of (29) in Lemma 3 we see that the
generalised integral in (40) is bounded independently oft2. ThusM1

exists. The existence ofM2 follows similarly.
To facilitate the proof of asymptotic stability of 2D systems in

Section IV we also need results on the state derivatives and will show
that under suitable assumptions the first generalised derivatives, i.e.
δi xk(t1,t2), i,k ∈ {1,2}, are in bothL2 [0,∞) × [0,∞) and L∞ [0,∞) ×
[0,∞) and the second generalised derivatives, i.e.δiδkxk(t1,t2) for i,k
∈ {1,2}, are inL∞ [0,∞) × [0,∞).

Lemma 4. Consider the autonomous 2D System in (8). If the
following conditions hold

(i) the initial conditions are L′2 and L′′∞ smooth bounded according
to Definition 3,

(ii) A11 and A22 are stable, and
(iii) there exist positive definite, symmetric matricesP1, P2 and R

such thatQ = −ATRA ≤ 0, whereQ is given in (18),

then

(a) the first generalised derivatives ofx1(t1,t2) and x2(t1,t2) are in L∞
[0,∞)× [0,∞) and L2 [0,∞)× [0,∞), i.e. there exist Mik,Mik < ∞
such that for i,k ∈ {1,2},

sup
(t1,t2)∈T1×T2

|δkxi(t1,t2)| ≤ Mik (41)

∞
S
0

∞
S
0
|δkxi(t1,t2)|2dt1dt2 ≤ Mik, and (42)

(b) the second generalised derivatives ofx1(t1,t2) and x2(t1,t2) are
in L∞ [0,∞) × [0,∞), i.e. there exist Mikl < ∞ such that for
i,k,l ∈ {1,2}

sup
(t1,t2)∈T1×T2

|δkδl xi(t1,t2)| ≤ Mikl . (43)

Proof: (a): We will first prove thatδ1x1(t1,t2) (andδ2x2(t1,t2)) is
in L∞ [0,∞)× [0,∞). Using the state space description forδ1x1(t1,t2)
in (8) we have

|δ1x1(t1,t2)| ≤ ‖A11‖ · |x1(t1,t2)| + ‖A12‖ · |x2(t1,t2)|. (44)

Since x1(t1,t2) and x2(t1,t2) are stable (Corollary 1), there exist
M1,M2 < ∞ such that|xi(t1,t2)| ≤ Mi for all t1,t2 and i ∈ {1,2}. Thus,
M11 = ‖A11‖M1 + ‖A12‖M2 and M22 = ‖A21‖M1 + ‖A22‖M2.

To show thatδ2x1(t1,t2) andδ1x2(t1,t2) are inL∞ [0,∞)× [0,∞) as
well, we operate on (9) byδ2 and obtain the bound

|δ2x1(t1,t2)| ≤k1E(−λ1)
t1 |δ2x10(t2)| + ‖

+k1‖A12

∣
∣
∣
∣
∣
∣

t1
S
0

E(−λ1)
τδ2x2(t1 − I1 − τ,t2)dτ

∣
∣
∣
∣
∣
∣

≤k1ζ
′
1 +

k1‖A12‖M22

λ1
=: M12. (45)

The boundedness ofδ1x2(t1,t2) can be proven in the same way.
To show that the first generalised derivatives are also inL2 [0,∞)×

[0,∞) we will use the Lyapunov function candidateV(t1,t2) from (16).
Given the fact thatxT(t1,t2)Qx(t1.t2) is the divergence ofV(t1,t2) we
can show with the fundamental theorem of calculus that

T2

S
0

T1

S
0

[

δ1xT
1(t1,t2) δ2xT

2(t1,t2)
]

R
[

δ1x1(t1,t2)
δ2x2(t1,t2)

]

dt1dt2

≤
T2

S
0

V1(0,t2)dt2 +
T1

S
0

V2(t1,0)dt1 (46)

Taking the limit of both sides of (46) asT1,T2→∞ we see that

∞
S
0

∞
S
0
|δ1x1(t1,t2)|2 dt1dt2 ≤

‖P1‖c1 + ‖P2‖c2

σmin(R)
=: M11, (47)

∞
S
0

∞
S
0
|δ2x2(t1,t2)|2 dt1dt2 ≤

‖P1‖c1 + ‖P2‖c2

σmin(R)
=: M22. (48)
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To show the existence ofM12 we will transform the solution given
in (9) into

∞
S
0

∞
S
0
|δ2x1(t1,t2)|2dt1dt2

≤2k2
1

∞
S
0

∞
S
0

E(−λ1)
2t1 |δ2x10(t2)|2dt1dt2 + 2k2

1‖A12‖2

·
∞
S
0

∞
S
0

∣
∣
∣
∣
∣
∣

t1
S
0

E(−λ1)
t1−I1−τδ2x2(τ,t2)dτ

∣
∣
∣
∣
∣
∣

2

dt1dt2. (49)

Since the initial conditions areL′2 smooth the first term on the right
side of (49) can be bounded by

2k2
1

∞
S
0

∞
S
0

E(−λ1)
2t1 |δ2x10(t2)|2dt1dt2 ≤

2k2
1c′1
λ1
. (50)

The second term can be transformed using the Cauchy Schwarz
inequality

2k2
1‖A12‖2

∞
S
0

∞
S
0

∣
∣
∣
∣
∣
∣

t1
S
0

E(−λ1)
t1−I1−τδ2x2(τ,t2)dτ

∣
∣
∣
∣
∣
∣

2

dt1dt2

≤2k2
1‖A12‖2

∞
S
0

∞
S
0

(
t1
S
0

E(−λ1)
τdτ

t1
S
0

E(−λ1)
t1−I1−τ|δ2x2(τ,t2)|2dτ

)

dt1dt2.

(51)

We will now solve the first inner generalised integral and change the
order of (generalised) integration of the remaining part. Thus (51)
becomes

2k2
1‖A12‖2

∞
S
0

∞
S
0

∣
∣
∣
∣
∣
∣

t1
S
0

E(−λ1)
t1−I1−τδ2x2(τ,t2)dτ

∣
∣
∣
∣
∣
∣

2

dt1dt2

≤
2k2

1‖A12‖2

λ1

∞
S
0

∞
S
0

∞
S
τ1+I1

E(−λ1)
t1−I1−τ|δ2x2(τ,t2)|2dt1dτdt2

≤
2k2

1‖A12‖2

λ2
1

∞
S
0

∞
S
0
|δ2x2(τ,t2)|2dτdt2

≤
2k2

1‖A12‖2

λ2
1

M22 =: M12. (52)

(b): To complete the proof we will show that the second generalised
derivatives are inL∞ [0,∞)× [0,∞). First the norm of the generalised
derivativesδ21x1(t1,t2) andδ1δ2x1(t1,t2) will be considered. Taking the
generalised derivative of the first part of the state space description
(8) with respect tot1 or t2, respectively yields

δ21x1(t1,t2) =A11δ1x1(t1,t2) + A12δ1x2(t1,t2) (53)

δ1δ2x1(t1,t2) =A11δ2x1(t1,t2) + A12δ2x2(t1,t2) (54)

Thus M111 = ‖A11‖M11 + ‖A12‖M12 and M112 = M121 = ‖A11‖M12 +

‖A12‖M22. To show that|δ22x1(t1,t2)| is bounded, follow a similar
argument as in (45), so thatM122 becomes

M122 = k1ζ
′′
1 +

k1‖A12‖M222

λ1
. (55)

The existence ofM211,M212,M221 and M222 can be prooven in the
same manner.

We will now prove a 2D version of Barbalat’s Lemma, [32, Lemma
3.1], which will enable the proof of asymptotic stability of2D
systems.

Lemma 5. Consider the 2D function f: T1×T2→ R. If f (t1,t2) is
both in Lp [0,∞)×[0,∞) and L∞ [0,∞)×[0,∞) and both its generalised
derivativesδ1 f (t1,t2) and δ2 f (t1,t2) are in L∞ [0,∞) × [0,∞), then
limt1,t2→∞ f (t1,t2) = 0 and f(t1,t2) is uniformly convergent in both
directions, i.e. for allǫ > 0 there exists a T(ǫ) < ∞ such that

∀(t1,t2) ∈ {T1 × [T(ǫ),∞)} ∪ {[T(ǫ),∞) ×T2} : | f (t1,t2)| < ǫ.

Proof: Define the supremum off (t1,t2) and the supremum over
the maximum of both generalised derivatives in the completequadrant
as

f := sup
t1,t2∈T1×T2

| f (t1,t2)| and (56)

f ′ := sup
t1,t2∈T1×T2

{max{|δ1 f (t1,t2)|,|δ2 f (t1,t2)|}} (57)

and the regionRl as

Rl := {[0,l + 1)× [l,l + 1)} ∪ {[l,l + 1)× [0,l)} . (58)

Note then that

‖ f (·,·)‖pLp [0,∞)×[0,∞) =

∞∑

l=0

SS
Rl
| f (t1,t2)|pdt1dt2 < ∞ (59)

whereSSRl ·dt1dt2 refers to the 2D integration over the regionRl.
Therefore,

lim
l→∞
SS
Rl
| f (t1,t2)|pdt1dt2 = 0. (60)

Let the supremum off within Rl be defined as

fl := sup
(t1,t2)∈Rl

| f (t1,t2)|. (61)

Then if t1 is continuous

sup
(t1,t2)∈Rl

d
dt1
| f (t1,t2)|p ≤ sup

(t1,t2)∈Rl

(

p| f (t1,t2)|p−1
∣
∣
∣
∣
∣

d
dt1

f (t1,t2)
∣
∣
∣
∣
∣

)

≤ pfl
p−1

f ′.

(62)

We will now bound the double generalised integral
SSRl | f (t1,t2)|pdt1dt2 from below using the geometric form of
f (t1,t2) depending on the nature oft1 and t2.

If both independent variablest1 and t2 are continuous,
SSRl | f (t1,t2)|pdt1dt2 is the double integral over an L-shaped surface.
It can be bounded from below by the smallest possible pyramidwith
height f

p

l , where the base is bounded byf l

pf ′
or the dimensions of

the regionRl .
In case one variable is continuous and one is discrete (mixedcase)
SSRl | f (t1,t2)|pdt1dt2 is a summation ofl line integrals. It can be
bounded from below by the smallest possible triangle with height
f

p

l , where the base is bounded byf l

pf ′
or the smallest possible length

of any line fragment inRl.
If both variables are discreteSSRl | f (t1,t2)|pdt1dt2 is a summation

with 2l + 1 summands. Thus it can be bounded from below by a
single summand. (Here we will take the maximal summandf

p

l .)

SS
Rl
| f (t1,t2)|pdt1dt2

≥






1
6 fl

p
min

{

fl
pf ′
,l + 1

}

min
{

fl
pf ′
,1
}

: t1,t2 continuous

1
2 fl

p
min

{

fl
pf ′
,1
}

: mixed case

fl
p

: t1,t2 discrete

(63)

If both t1 andt2 are discrete the result follows immediately from (60).
In the continuous case we can transform (63) into

SS
Rl
| f (t1,t2)|pdt1dt2 ≥

1
6

fl
p

min






fl

pf ′
,(l + 1)

fl

f





min






fl

pf ′
,
fl

f






=
1
6

fl
p+2

min






1

pf ′
,
l + 1

f





min






1

pf ′
,
1

f





(64)

Thus

fl
p+2 ≤6 max





pf ′,

f
l + 1





max

{

pf ′, f
}

SS
Rl
| f (t1,t2)|pdt1dt2

≤6
(

max
{

pf ′, f
})2
SS

Rl
| f (t1,t2)|pdt1dt2 (65)
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As f ′ and f are boundedfl tends to zero asl grows without bound.
Hence from the definition offl (61), f (t1,t2) for (t1,t2) ∈ Rl tends to
zero asl grows without bound.

In case one variable is continuous and one is discrete a similar
argument can be made.

IV. A symptotic Stability

In this section we will present our theorem on asymptotic stability
of 2D systems described by the Roesser model using intermediate
results presented in the previous section.

Theorem 1 (Asymptotic Stability of 2D Roesser Models). The
2D system (8) is asymptotically stable with smooth bounded initial
conditions according to Definition 5 if the following conditions hold

(i) A11 and A22 are stable, and
(ii) there exist positive definite, symmetric matricesP1, P2 and R

such thatQ = −AT RA, whereQ is given in (18).

Proof: Consider the 2D Lyapunov functionV(t1,t2) given in (16)
and the integral ofV1(t1,t2) + V2(t1,t2) along the lineΩ(l) := (t1,t2) ∈
{[0,l] × {l}} ∪ {{l} × [0,l]} for l ∈ R+ or l ∈ N, respectively, andl > 0
as:

U(l) := S
Ω(l)

(V1(t1,t2) + V2(t1,t2)) ds

=
l
S
0

(V1(t1,l) + V2(t1,l)) dt1 +
l
S
0

(V1(l,t2) + V2(l,t2)) dt2 (66)

Using the results in Lemma 3 and Corollary 2 we see that there exists
aC such that for alll: U(l) ≤ C. Since the first generalised derivatives
of x(t1,t2) with respect tot1 and t2 are L∞ bounded (Lemma 4) we
can findd11(l), d12(l), d21(l) andd22(l) such that

d11(l) := sup
0≤t1≤l

|δ1x1(t1,l)|2 , (67)

d12(l) := sup
0≤t2≤l

|δ2x1(l,t2)|2 , (68)

d21(l) := sup
0≤t1≤l

|δ1x2(t1,l)|2 , (69)

d22(l) := sup
0≤t2≤l

|δ2x2(l,t2)|2 . (70)

Note that d11(l) ≤ supt1≥0 |δ1x1(t1,l)|2. Making use of the version
of Barbalat’s Lemma in Lemma 5, we can conclude that the first
generalised derivatives tend to zero ast1,t2 → ∞ and are uniformly
convergent in both directions. That allows us to interchange the order
of supremum and limit and thus we conclude that

lim
l→∞

d11(l) ≤ lim
l→∞

sup
t1≥0
|δ1x1(t1,l)|2

= sup
t1≥0

lim
l→∞
|δ1x1(t1,l)|2

=0. (71)

It can be shown in a similar way that the limits ofd12(l), d21(l), and
d22(l) for l → ∞ are 0.

Thus for t1,t2 continuous we can bound the derivatives ofV1(t1,t2)
andV2(t1,t2) by

∀t1 ≤ l :
d

dt1
V1(t1,l) ≤2d11(l)‖P1‖M1, (72)

∀t2 ≤ l :
d

dt2
V1(l,t2) ≤2d12(l)‖P1‖M1, (73)

∀t1 ≤ l :
d

dt1
V2(t1,l) ≤2d21(l)‖P2‖M2, (74)

∀t2 ≤ l :
d

dt2
V2(l,t2) ≤2d22(l)‖P2‖M2, (75)

where M1 and M2 are bounds on|x1(t1,t2)| and |x2(t1,t2)| (as in-
troduced in the proof of Lemma 4). Note that in fact the same

bounds apply fort1 or t2 discrete because fort1 discrete we have
for (t1,t2) ∈ Ω(l)

δ1
(

xT
1 P1x1

)

≤xT
1 P1x1 − (x1 − d11(l)1)T P1(x1 − d11(l)1)

≤2d11(l)‖P1‖M1 (76)

where1 is a vector of 1s of appropriate length.
To find a lower bound onU(l) we will use a similar trick as in the

proof of Lemma 5 above.
If t1 is continuous and the maximum ofVi(t1,t2) (Vi(l) :=

max(t1,t2)∈Ω(l) Vi(t1,t2) for i ∈ {1,2}) alongΩ(l) occurs along the part
of Ω(l) where (t1,t2) ∈ [0,l] × {l} we can bound the integral of
Vi(t1,t2) over Ω(l) from below by a triangle with the base equal to
min

{

Vi(l)
/

(2di1(l)‖Pi‖Mi), l
}

andVi(l) as the height of the triangle. In

caset1 is discrete andVi(l) occurs at (t1,t2) ∈ {l}×[0, l] the summation
of Vi(t1,t2) along t1 for l > Vi(l)/2di1(l)‖Pi‖Mi can be bounded by

l∑

t1=0

Vi(t1,t2) ≥Vi(l) +
(

Vi(l) − 2di1(l)‖Pi‖Mi

)

+
(

Vi(l) − 4di1(l)‖Pi‖Mi

)

. . .

=(ν + 1)Vi(l) − 2di1(l)‖Pi‖Mi

ν∑

n=1

n (77)

where ν =
⌊

Vi(l)/2di1(l)‖Pi‖Mi

⌋

. Resolving the summation on the
right hand side of (77) yields

l∑

t1=0

Vi(t1,t2) ≥(ν + 1)
(

Vi(l) − 2di1(l)‖Pi‖Mi
ν

2

)

≥(ν + 1)
(

Vi(l) − 2di1(l)‖Pi‖Mi
Vi(l)/2di1(l)‖Pi‖Mi

2

)

=(ν + 1)
Vi(l)

2

≥
V

2
i (l)

4di1(l)‖Pi‖Mi
. (78)

For l ≤ Vi(l)/2di1(l)‖Pi‖Mi the summation can be bounded by

l∑

t1=0

Vi(t1,t2) ≥
Vi(l)l

2
. (79)

Thus,U(l) can be bounded

U(l) ≥min






V
2
1(l)

4d11(l)‖P1‖M1
,

V
2
1(l)

4d12(l)‖P1‖M1
,
V1(l)l

2






+min






V
2
2(l)

4d21(l)‖P2‖M2
,

V
2
2(l)

4d22(l)‖P2‖M2
,
V2(l)l

2





. (80)

SinceVi(l) ≤ M2
i ‖Pi‖ this implies

V
2
i (l) ≤C max

{

4di1(l)‖Pi‖Mi ,4di2(l)‖Pi‖Mi ,
2M2

i ‖Pi‖
l

}

(81)

Note that asl tends to infinity each component of the maximum in
(81) goes to zero and, hence, limt1,t2→∞ |xi(t1,t2)| = 0. Note that the
limits lim t1→∞ |xi(t1,t2)| = 0 and limt2→∞ |xi(t1,t2)| = 0 exist as well.

V. Examples

To illustrate our result on asymptotic stability of 2D systems we
will discuss a simple platooning problem (Section I-C). As discussed
in Section I-C every such 2D system describing a vehicle platoon
includes a singularity ats= 0 andz= 1. Thus, there does not exist
a matrix P such thatQ < 0. (Note that relaxing the restriction to
quadratic Lyapunov functions does not alter this conclusion.)
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Example1. We will use a simplified, linearised second order model
for each vehicle withP(s) = 1

/
s(s+2Cdv0) where the drag coefficient

is Cd = 7·10−4m−1. We choose a simple PID controller withkp = 1.66,
ki = 0.17, kd = 4.1 andT = 1/30 to minimize the local spacing error.
(A more detailed discussion of the system can be found in [33,p. 7].)
It can be shown that using a fixed distance policy will lead to string
instability or the ‘slinky effect’, where disturbances are attenuated
while traveling through the string, [33].

One possibility, [34], to avert string instability is to introduce a
time headwayh and maintain a velocity depending distance between
each vehicle and its predecessor rather than a fixed distance. In order
to maintain the same closed loop poles of thekth vehicle an additional
pole at− 1

h is added to each local controller. Thus the system can be
described as a 2D Roesser model asδx(t,k) = Ax(t,k) with

A =





0 1 0 0 0 0
0 −2Cdv0 1 0 0 0

− 1
h

(

kp +
kd
T

)

−
(

kp +
kd
T

)

− 1
h

1
h − kd

hT2
1
h

(

kp +
kd
T

)

−ki −hki 0 0 0 0
−1 −h 0 0 − 1

T 0
1 0 0 0 0 −1





(82)

where t1 = t is continuous,t2 = k is discrete,x1(t,k) is the state
vector of thekth vehicle including its position ˆx(t,k), velocity v̂(t,k),
and three controller states ˆxci (t,k) for i ∈ {1,2,3} and x2(t,k) is the
position of the predecessor to vehiclek at time t, x̂(t,k− 1).

It can be shown that choosing a time headwayh > 1.18s the system
is string stable, [35]. Forh = 2s the eigenvalues of the upper left part
of A are−25.1, −4.5, −0.5, −0.25 and−0.18. ThusA11 is Hurwitz
stable.A22 + I = 0 is Schur stable.

Matlab finds two symmetric, positive definite matrices:

P1 =




1.72 · 103 0 0 5.05 · 103 0
0 2.65 · 103 2.09 · 103 −1.69 · 104 −1.27 · 105

0 2.09 · 103 5.92 · 103 −2.16 · 104 −3.65 · 105

5.05 · 103 −1.69 · 104 −2.16 · 104 1.77 · 105 1.32 · 106

0 −1.27 · 205 −3.65 · 105 1.32 · 106 2.25 · 107





with eigenvalues at 2.26 · 107, 105, 1.78 · 103, 711 and 7.84 and
P2 = 859 such that the eigenvalues ofQ are−4.5 · 106, −1.78 · 104,
−4.48·103, −587,−106 and 0. There exists a positive definite matrix

R1 =




3.01 · 103 −7.08 · 103 −1.15 · 104 6.98 · 104 7.08 · 105

−7.08 · 103 2.96 · 104 4.95 · 104 −2.95 · 105 3.04 · 106

−1.15 · 104 4.95 · 104 8.64 · 104 −4.93 · 105 −5.31 · 106

6.98 · 104 −2.95 · 105 −4.93 · 105 2.96 · 106 3.02 · 107

7.08 · 105 −3.04 · 106 −5.31 · 106 3.02 · 107 3.26 · 108





andR2 = 1 such thatQ = −AT RA. Thus the system is asymptotically
stable in the 2D sense and hence string stable.

Simulation results are displayed in Fig. 1 and Fig. 2. In Fig.1 we
see that the local error signal ˆe(t,k) tends to zero fort → ∞. Thus
every single subsystem is asymptotically stable. Also the maximum
of ê(t,k) over time and theL2 norm with respect to time decreases
whenk grows. See Fig. 2 for details.

After demonstrating an affirming example, where asymptotic sta-
bility can be shown using Theorem 1, we will choose two examples,
where one condition for asymptotic stability in Theorem 1 isviolated
each time and the system is not asymptotically stable. In this way we
show that there is no trivial relaxation of the conditions for Theorem 1
that produces the same result.
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Figure 1: String stable system withh = 2s: error ê(t,k)
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Figure 2: String stable system withh = 2s: ‖ê(·,k)‖2

Example 2. Consider the same system structure as presented in
Example 1. However, choosing a time headway ofh = 0.5s that
is clearly less than the infimal time headway required, will lead to a
string unstable system.

Even though A11 and A22 + I are Hurwitz and Schur stable,
respectively, it is not possible to find a symmetric, positive definite
matrix P such thatQ ≤ 0. To show that suppose that there exist
P1,P2 > 0 such thatP = P1 ⊕ P2. Without loss of generality we can
set P2 = 1. We have

Q =AT P + PA + AT

[

0 0
0 1

]

A

=

[

A11P1 + P1A11 + AT
21A21 P1A12

AT
12P1 −1

]

(83)

Using the Schur compliment we see thatQ ≤ 0 is equivalent to

A11P1 + P1 A11 + AT
21A21 + P1A12AT

12P1 ≤ 0 (84)

Using the Bounded Real Lemma we see that this is equivalent to
∥
∥
∥A21 (sI − A11)

−1 A12

∥
∥
∥
∞ ≤ 1. (85)

Note thatΓ(s) = A21 (sI − A11)
−1 A12 is the transfer function from

the position of thekth vehicle to the position of thek+ 1th vehicle.
However, when choosing a time headway that is less than the infimal
headway h0 = 1.18s we know that ‖Γ( jω)‖∞ > 1. Therefore,
generally, any string unstable system of this type (‖Γ( jω)‖∞ > 1),
does not permit a solution withQ ≤ 0.

In the simulation (displayed in Fig. 3) we observe that the system
is not stable in the 2D sense and thus not string stable because a
small perturbation at the beginning of the string is amplified while
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Figure 3: String unstable system withh = 0.5s: error ê(t,k)
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Figure 4: String unstable system withh = 0.5s: ‖ê(·,k)‖2

traveling through the string. The local error ˆe(t,k) goes to zero for
every fixedk as t → ∞. However, the maximal error over time for
each subsystem grows withk and the double limit limt,k→∞ ê(t,k) does
not exist. Also theL2 norm of ê(t,k) with respect to time grows ask
grows, Fig. 4.

Also when relaxing the first condition for asymptotic stability in
Theorem 1 and allowingA11 or A22 not to be stable the system might
not be asymptotically stable.

Example3. Consider the system described in (82) with the general
error êg(t,k) (that is the general error of the predecessor plus the
local error) as an additional state inx2(t,k) (and h = 2s) such that
the system matrixA is given by

A=





0 1 0 0 0 0 0
0 −2Cdv0 1 0 0 0 0

− 1
h

(

kp +
kd
T

)

−
(

kp +
kd
T

)

− 1
h

1
h − kd

hT2
1
h

(

kp +
kd
T

)

0
−ki −hki 0 0 0 ki 0
−1 −h 0 0 − 1

T 1 0
1 0 0 0 0 −1 0
−1 0 0 0 0 1 0





(86)
While A11 is still Hurwitz stable,A22 + I has one eigenvalue at 1.
Thus it is not Schur stable. The first part of the second condition
is not violated as Matlab can find strictly positive matricesP1 with
eigenvalues at 130, 7.72 · 103, 2.56 · 104, 7.71 · 105 and 1.58 · 108

and P2 with eigenvalues at 6.66 · 103 and 1.08 · 106 such thatQ
has eigenvalues at−1.75 · 107, −1.22 · 105,−4.42 · 104, −3.31 · 103,
−1.25 · 103 and two at 0.

Also A has two eigenvalues at 0 and there exists a positive definite
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Figure 5: String unstable system: general error ˆeg(t,k)
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Figure 6: String unstable system:L2 norm of general error ˆeg(t,k)

matrix R such that−AT RA = Q.
So, even thoughQ is negative semidefinite and there exists a

suitableR the system is not asymptotically stable as the simulation
in Fig. 5 and Fig. 6 demonstrate.

VI. Conclusions

Here we have discussed stability of 2D systems with two different
independent variables. Both continuous and discrete caseshave been
studied using LMIs and a 2D Lyapunov function.

We showed that a negative semidefinite solution of the Lyapunov
function together with additional stability requirementson the sys-
tems matrixA is sufficient to guarantee stability and even asymptotic
stability under some extra technical conditions of these special 2D
systems.

Since only a negative semidefinite solution is required the results
presented in this paper are suitable to discuss the stability of 2D
systems with singularities on the stability boundary.

In the future we will be interested to relax the requirementson the
systems matrixA and the initial conditions and extend the work to
non linear systems. Another interesting extension would bethe study
of suitable controller design techniques.

References

[1] J. Shanks, S. Treitel, and J. H. Justice, “Stability and Synthesis of
Two-Dimensional Recursive Filters,”IEEE Transactions on Audio and
Electroacoustics, vol. 20, no. 2, pp. 115–128, June 1972.

[2] T. S. Huang, “Stability of Two-Dimensional Recursive Filters,” IEEE
Transactions on Audio and Electroacoustics, vol. AU-20, no. 2, pp. 158–
163, June 1972.



10

[3] B. D. O. Anderson and E. I. Jury, “Stability Test for Two-Dimensional
Recursive Filters,”IEEE Transactions on Audio and Electroacoustics,
vol. AU-21, no. 4, pp. 366–372, August 1973.

[4] H. G. Ansell, “On certain two-variable generalizationsof circuit theory,
with applications to networks of transmission lines and lumped reac-
tances,” IEEE Transactions on Circuit Theory, vol. CT-11, no. 2, pp.
214–223, June 1964.

[5] H. C. Reddy and P. K. Rajan, “A Simpler Test Set for Two-Variable
Very Strict Hurwitz Polynomials,”Proceedings of the IEEE, vol. 74,
no. 6, pp. 890–891, June 1986.

[6] P. Agathoklis, E. I. Jury, and M. Mansour, “Algebraic Necessary and
Sufficient Conditions for Very strict Hurwitz Property of a 2-D Polyno-
mial,” Multidimensional Systems and Signal Processing, vol. 2, no. 1,
pp. 45–53, January 1991.

[7] L. T. Bruton and N. R. Bartley, “Using Nonessential Singularities of the
Second Kind in Two-Dimensional Filter Design,”IEEE Transactions on
Circuits and Systems, vol. 36, no. 1, pp. 113–116, January 1989.

[8] D. Goodman, “Some Stability Properties of Two-Dimensional Linear
Shift-Invariant Digital Filters,” IEEE Transactions on Circuits and
Systems, vol. CAS-24, no. 4, pp. 201–208, April 1977.

[9] S. A. Dautov, “On Absolute Convergence of the Series of Taylor
Coefficients of a Rational Function of Two-Variables. Stability of Two-
Dimensional Digital Filters,”Soviet Mathematics Doklady, vol. 23, no. 2,
pp. 448–451, 1981.

[10] H. C. Reddy and E. I. Jury, “Study of the BIBO Stability of2-D
Recursive Digital Filters in the Presence of Nonessential Singularties
of the Second kind – Analog Approach,”IEEE Transactions on Circuits
and Systems, vol. 34, no. 3, pp. 280–284, March 1987.

[11] E. Fornasini and G. Marchesini, “State-Space Realization Theory of
Two-Dimensional Filters,”IEEE Transactions on Automatic Control,
vol. 21, no. 4, pp. 484–492, August 1976.

[12] ——, “Doubly-Indexed Dynamical Systems: State-Space Models and
Structural Properties,”Mathematical Systems Theory, vol. 12, no. 1, pp.
59–72, 1978.

[13] T. Bose and D. Trautman, “Two’s complement quantization in two-
dimensional state-space digital filters,”IEEE Transactions on Signal
Processing, vol. 40, no. 10, pp. 2589–2592, October 1992.

[14] H. Kar and V. Singh, “Stability of 2-D Systems Describedby the
Fornasini–Marchesini First Model,”IEEE Transactions on Signal Pro-
cessing, vol. 51, no. 6, pp. 1675–1676, June 2003.

[15] T. Zhou, “Stability and Stability Margin for a Two-Dimensional System,”
IEEE Transactions on Signal Processing, vol. 54, no. 9, pp. 3483–3488,
September 2006.

[16] E. Fornasini and G. Marchesini, “Stability Analysis of2-D Systems,”
IEEE Transactions on Circuits and Systems, vol. 27, no. 12, pp. 1210–
1217, December 1980.

[17] T. Hinamoto, “2-D Lyapunov Equation and Filter Design Based on the
Fornasini-Marchesini Second Model,”IEEE Transactions on Circuits
and Systems, vol. 40, no. 2, pp. 102–110, February 1993.

[18] Y. Ebihara, Y. Ito, and T. Hagiwara, “Exact Stability Analysis of 2-D
Systems Using LMIs,”IEEE Transactions on Automatic Control, vol. 51,
no. 9, pp. 1509–1513, September 2006.

[19] R. P. Roesser, “A Discrete State-Space Model for LinearImage Process-
ing,” IEEE Transactions on Automatic Control, vol. 20, no. 1, pp. 1–10,
February 1975.

[20] J. H. Lodge and M. M. Fahmy, “Stability and Overflow Oscillations in 2-
D State-Space Digital Filters,”IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 29, no. 6, pp. 1161–1171, December 1981.

[21] B. D. O. Anderson, P. Agathoklis, E. I. Jury, and M. Mansour, “Stability
and the Matrix Lyapunov Equation for Discrete 2-Dimensional Systems,”
IEEE Transactions on Circuits and Systems, vol. CAS-33, no. 3, pp.
261–267, March 1986.

[22] M. S. Piekarski, “Algebraic characterization of matrices whose mul-
tivariable characteristic polynomial is Hurwitzian,” inInternational
Symposium on Operator Theory of Networks and Systems, August 1977,
pp. 121–126.

[23] C. Xiao, P. Agathoklis, and D. J. Hill, “On the Positive Definite Solutions
to the 2-D Continuous-time Lyapunov Equation,”Multidimensional
Systems and Signal Processing, vol. 8, no. 3, pp. 315–333, 1997.

[24] P. Agathoklis, E. I. Jury, and M. Mansour, “Algebraic Necessary and
Sufficient Conditions for Stability of 2-D discrete Systems,”IEEE
Transactions on Circuits and Systems - II: Analog and Digital Signal
Processing, vol. 40, no. 4, pp. 251–258, April 1993.

[25] K. Galkowski, “LMI Based Stability Analysis for 2D Continuous
Systems,” in9th International Conference on Electronics, Circuits and
Systems, vol. 3, 2002, pp. 923–926.

[26] D. H. Owens and E. Rogers, “Stability Analysis for a Class of 2D
Continuous-Discrete Linear Systems with Dynamic BoundaryCondi-
tions,” Systems& Control Letters, vol. 37, no. 1, pp. 55–60, May 1999.

[27] S. E. Benton, E. Rogers, and D. H. Owens, “Stability Conditions
for a Class of 2D Continuous-Discrete Linear Systems with Dynamic
Boundary Conditions,”International Journal of Control, vol. 75, no. 1,
pp. 52–60, 2002.

[28] K. Galkowski, W. Paszke, E. Rogers, S. Xu, J. Lam, and D. H. Owens,
“Stability and Control of Differential Linear Repetitive Processes Using
an LMI Setting,”IEEE Transactions on Circuits and Systems - II: Analog
and Digital Signal Processing, vol. 50, no. 9, pp. 662–666, September
2003.

[29] E. Rogers and D. H. Owens,Stability Analysis for Linear Repetitive
Processes, ser. Lecture Notes in Control And Information Sciences
Series. Springer, 1992, vol. 175.

[30] S. Knorn, “A two-dimensional systems stability analysis of vehicle
platoons,” Ph.D. dissertation, National University of Ireland, Maynooth,
2013.

[31] E. Fornasini and M. Valcher, “Recent Developments in 2DPositive
Systems Theory,”Applied Mathematics and Computer Science, vol. 7,
no. 4, pp. 713–735, 1997.

[32] H. Logemann and E. P. Ryan, “Asymptotic Behaviour of Nonlinear
Systems,”The American Mathematical Monthly, vol. 111, no. 10, pp.
864–889, December 2004.

[33] S. Klinge, “Stability issues in distributed systems ofvehicle platoons,”
Master’s thesis, Otto-von-Guericke-University Magdeburg, 2008.

[34] C. Chien and P. A. Ioannou, “Automatic Vehicle Following,” in Pro-
ceedings of the American Control Conference, 1992, pp. 1748–1752.

[35] S. Klinge and R. H. Middleton, “Time Headway Requirements for String
Stability of Homogeneous Linear Unidirectionally Connected Systems,”
in Joint 48th IEEE Conference on Decision and Control and 28th
Chinese Control Conference, December 2009, pp. 1992–1997.

Steffi Knorn received her Dipl.Ing. in 2008 from the
University of Magdeburg, Germany, and her Ph.D.
from the Hamilton Institute at the National Univer-
sity of Ireland Maynooth in 2013. Since January
2013 she is a research academic at the University
of Newcastle in Australia.

Dr. Knorn’s research interests include stability
analysis and controller design for marginally stable
two-dimensional systems, port-Hamiltonian systems,
string stability and scalability of vehicle platoons
and distributed control.

Professor Richard H. Middleton completed his
B.Sc. (1983), B.Eng. (1984) and Ph.D. (1987) from
the University of Newcastle, Australia. He has had
visiting appointments at the University of Illinois
at Urbana-Champaign, the University of Michigan
and the Hamilton Institute (National University of
Ireland Maynooth). He was a Research Professor at
the Hamilton Institute, The National University of
Ireland, Maynooth from May 2007 till 2011 and is
currently Professor at the University of Newcastle
and Director of the Priority Research Centre for

Complex Dynamics Systems and Control.
Prof. Middleton was elected to the grade of Fellow of the IEEEstarting

1999, and has served as an associate editor and senior editorof the IEEE
Transactions on Automatic Control, the IEEE Transactions on Control System
Technology, and Automatica. In 2011, he was President of theIEEE Control
Systems Society. His research interests include a broad range of Control
Systems Theory and Applications, including Robotics, control of distributed
systems and Systems Biology with applications to Parkinsons Disease and
HIV Dynamics.


