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Abstract—This paper gives results on stability and asymptotic stalbity
of two-dimensional systems using linear matrix inequalites (LMIs).
Despite a long history of research in this area, systems witkingularities
on the stability boundary (SSB) have received limited attetion because
they cannot produce a sign definite solution to the required MI.
However, 2D systems describing some classes of models ofigkehplatoons
generically involve an SSB. Therefore, commonly used defitdns for
(asymptotic) stability and strict LMI conditions are not suitable to
discuss the stability of these systems. It is shown that thexistence of a
negative semidefinite solution together with simple additional conditions is
sufficient to guarantee asymptotic stability. Thus, the stabity conditions
discussed here can be used to study a wider range of dynamicsystems,
including systems with singularities on the stability bourdary (SSB),
which cannot be exponentially stable. A unified framework isused to
analyse continuous-continuous, continuous-discrete andiscrete-discrete
systems simultaneously.

Index Terms—Linear matrix inequalities (LMIs), stability analysis,
two-dimensional (2-D) systems

|. INTRODUCTION

In this paper stability of two-dimensional (2D) linear systs will
be examined. 2D refers to the fact that signals and variatdesnd
on two independent variables. Since both variables can héncmus
or discrete, most analyses distinguish between discretgjntious
and continuous-discrete 2D systems. The majority of thengasarch
focuses on discrete 2D systems due to the range of applisatiy
this case.

Early stability results on discrete 2D systems used 2D Zfaams,
involving functions of two complex variableg;, z. [1] analysed the
input-output systen¥(z,z) = numz,z)/deng,z) - W(z;,z,) and
claimed it is BIBO stable if and only if the characteristic polynorhia
deng,z), has no zeros in the closed unit bi-diEk:2 = {(z1,2) :

Note that it may not be straightforward to detect if an NSSK is
present. Also, it may be tempting to treat such cases asrisatel
irrelevant in practice. However, the existence of an NSSKnoa

always be avoided and might even be desirable or a structural

requirement. For example, the design of fan filters inhéyewguire
an NSSK on the stability boundary, [7]. Also, as we will shater,
some classes of models of vehicle platoons genericallyliavan
SSB.

It was shown in [8] that transfer functions with NSSK on the
stability boundary may be either BIBO stable or unstableusTh
the location of the poles of a 2D transfer function alone does
determine BIBO stability of the system. It was shown in [Sttthe
system is stable if the transfer function has finitely manySKSn
the stability boundary and can be continuously extendebeakosed
polydisc. [10] gave a necessary condition for stabilitymedy that
there should be no NSSK inside the open unit bi-disk.

Thus we see that the analysis of stability of marginally Istab
2D systems (that is those with an SSB) is a subtle issue tleatsne
careful examination. We next turn to discuss closely relatability
questions from the perspective of internal stability.

B. Internal Stability and 2D State Space Systems

Different state space models have been presented to describe

discrete 2D systems in the time domain. Two well known modets
Fornasini-Marchesini’s first model (FM1), [11], and secamddel
(FM2), [12]. Although FM2 has attracted the most attentien,
necessary condition for asymptotic stability for FM1 appen [13].

21| < 1,|z| < 1}. This led to diferent stability tests such as [2] andSLfﬁcient LMI conditions for asymptotic stability were deveémpin

[3], or for the continuous time case [4]. Necessary anfligant
conditions to guarantee a given polynomial is ‘very styi¢durwitz’
(for the continuous case) were published in (for examplé)ajd

[6].

A. Singularities on the Stability Boundary

An important special case is often neglected in discussibrzD
systems stability. This is the case when there exists a &irigguon
the Stability Boundary (SSB). In discrete time, this medrat there
exists a set of4,2), such thatz| = |z| = 1 and der#;,z) = 0.
In a 2D transfer function setting, and where the numerator

simultaneously zero (num(z) = 0), this is referred to as a Non-

essential Singularity of the Second Kind (NSSK) on the &tgbi
boundary.

[14] and necessary and fgient conditions in [15].

In [12] the authors proved asymptotic stability for FM2. Aasght
diagonal separation set or “contour” and its nQkR|| = sup,.z IX(r—
n,n)| are defined. In this line of work, asymptotic stability is defi
as||Xoll < co implies lim_, [|X;|| = 0. This is true if and only if the
characteristic polynomial is non-zero for arg,g) in U’. Note that
this, as with the other definitions of asymptotic stabiléiso implies
2D exponential stability. An extension can be found in [16jere the
authors prove asymptotic stability using a more generalaconThe
result uses a linear matrix inequality constraint reqgiran positive
Hefinite Hermitian solutiorP(w) for all real w.

Based on the necessary andfisient condition on the character-

istic polynomial to be devoid of zeros Ez, a suficient LMI based
condition for asymptotic stability was derived in [17] pidwng the
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suficient conditions with constant cfiients for asymptotic stability
were presented in [18].

Note that the definition of asymptotic stability used in theder-
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1The claim is correct except for some cases with singularitie the
stability boundary.

conditions, the states tend to zero as both independerthlesi tend

to infinity.

Another widely used state space description was presenged b



Roesser in [19]: controller uses local measurements to regulate the distémahe
sa(k+ 1) A Al xak) B, pre_decessor, or in the case of the lead vehicle, to followvangi
= + u(k,l (1) trajectory.
X2(k,| + l) As Ay Xz(k,l) B, . .
—_— —_—— Assume that the local state space variables of kite vehicle
A B (such as its positiox(f,k), velocity V(t,k) and controller states) are
Ykl = [Cl Cz] (Xl(ksl)) + Du(kl) (2) Summarised in the vecton(tk) € R™. Further, assume the position
Xz (k1) of the preceding vehicle(fk— 1), that is used as a reference for the
c kth vehicle, is set to be the scal&t,k— 1) = x,(t,k) € R. The overall
where x; (k) € R™, x,(kl) € R™ and the dimensions oA, B, C, 2D system can be described by
and D are c_hoser? appropriately. o _ *i(tK) | % X1 (t,K)
It was claimed in [20] that the characteristic polynomiahg z,) Axa(t.K)] T \Xa(tk + 1) — Xo(t,K)
fulfils Shanks’ stability criterion [1] if and only if therexésts a A A K
positive definite, symmetric matri® = P, & P,, where® denotes the = [AM ﬂ (Xl(t’k))' (3)
direct sum, i.eP; @ P, = diag{ P1,P,}, P, € R™™ and P, € R"2*", 2 —1]De(tk)
such thatAT PA— P = Q < 0. However, Andersoet al. later showed =A
that for discrete 2D systems, in general, the existencedf &P is  For further details on this model, refer to the examples ictise V.
suficient but not necessary for stability, [21]. The characteristic polynomial for the 2D system in (3) is:
A continuous analogue of the Roesser model is widely used
to describe linear continuous 2D systems. It was claimed2i] [ Pen(S2) = det( s 0 ]_ A). 4
that a continuous 2D system is stable (characteristic poiyal is 0 @1
very strictly Hurwitz) if and only if there exists a positivaefinite, Now suppose, as we normally require for platoon followirttatt

symmetric matrixP = P, @ P, such thatATP+ PA = Q < 0. Again in response to a unit stepy(t,0) = 1, that a steady state is reached
however, the existence of suchPais sufficient but not necessary for where all vehicles follow an identical reference with zeteasly
stability [21]. For continuous systems, necessary arfticgnt LMl  state error. The condition of identical steady state refeze means
conditions for the existence of suchPaappeared in [23]. lim_. %(t,k) = 1,Yk. Furthermore, from (3), for this to be an

Another necessary and fSgient LMI condition to ensure that equilibrium, there must exist ar, such thatA;;%; + A, = 0 and
the characteristic polynomial is very strict Hurwitz, thagquires A,X; = 1. This immediately implies thaf is singular. SinceA
the existence of a positive definite Hermitian solutiB(w) for all is singular, (4) implies immediately that we have an SSBgein
real w was given in [6]. Necessary andfBaient LMI conditions p.,(0,1) = def(A) = 0.
for asymptotic stability with constant matrices are préserin [24]. Hence, the presence of this SSB is a consequence of theuseruct
Piekarski's LMI condition AP + PA = Q < 0 was later found to of the vehicle platoon system. It can also be shown that a sy
be sificient to guarantee asymptotic stability for continuousgesys describing a vehicle platoon exhibits an SSBsat 0 andz = 1 for
with bounded initial conditions, [25]. more general settings witk, € R™ (see [30] for further details).

Alongside discrete repetitive processes (modelled asets@D Note that in a similar approach, [31, Example 2], a singleslah
systems) some researchers also studieffeidintial” repetitive pro- a motorway is modelled as a 2D positive system. The authoidedi
cesses leading to the study of continuous-discrete 2D regste the vehicles into groups depending on their speed and igegstthe
Stability theory for continuous-discrete 2D systems app&abe well number of vehicles of each group per time interval and direfche
developed. Dferent conditions for stability and asymptotic stabilityhighway. Here, however, we are interested in studying thetieur
of differential repetitive processes with dynamic boundary ¢mgi  of individual vehicles whose control actions explicitlypdsd on the
(depending on the pass profiles of the previous passes) e Ui behaviour of the preceding vehicles.

[26]. These results were extended to stability tests based one-
dimensional Lyapunov function in [27].

In [28] the authors discuss stability along the pass (simita ) ) ) )
asymptotic stability) for dferential repetitive processes modelled in Prévious LMI based results in the time domain exclude system
a form similar to the Roesser model. They claim that such &esys Wher_e A has an SSB since a sign defln_lte solution of the LMI is
is stable along the pass if there exist two positive defisiyeymetric réquired. However, as we will show later in Lemma 1, suchesyst
matricesP; and P, such thatAT(P; @ 0) + (P;®0)A+ AT(0® P,)A—  Never admit a sign definite sol.utlon to the reqqlrfed LMI. @ed it
(0@ P,) = Q < 0. The proof in [28] refers to [29] for details. While will be shown in Lgmma 2 that if the systgm ex.hlblts an SSB atOl .
this book covers extensive results in the area, a completedaged andz= 1 there exists no Lyapunov function with a negative definite
stability proof for the Roesser Model is not given. divergence.) Hence, all LMI based stability conditionsserged in

It should also be noted here that similar to the results dhe literature so far cannot be employed to study the stptiifi 2D
the Fornasini-Marchesini models the commonly used degimitiof SYyStems including an SSB. In particular, none of the pres/ibMl
asymptotic stability for the Roesser model require thatdioy set of based results are suitable for studying vehicle platoangsstability.

L. bounded initial or boundary conditions, the states tend ws0 ' NiS issue is closely related to the definitions used for gmytre
stability. Most common definitions for asymptotic stalilitequire

the states to tend to zero in the presence of any sét,obounded
initial conditions. As discussed above in Section I-C it ighty
desirable that applying a bounded initial condition (i.estep signal
To motivate consideration of 2D systems with an SSB, we give as a reference) in a vehicle platoon leads to convergenck sibtes
example of a class of problems where an SSB is generic. Gamsitb a nonzero equilibrium. Therefore, these previous défimt of
the situation of vehicle platooning. In order to achievéntigpacing asymptotic stability are uninformative in this context.
between vehicles travelling in a string (or “platoon”), pope the In this paper we fill this gap. We extend previous 2D LMI based
vehicles have an automatic controller for longitudinalipos. This stability results to the case of systems with SSB(s). We use a

D. Contribution

t1,t; — oco.

C. A Motivating Example



alternate notion of asymptotic stability that proves ukefu the

Moreover® denotes the direct sum of matrices, eRy= P1 @ P, =

context of our motivating example. We give results that permdiagP1,P,}, | and0 denote the identity matrix and the zero matrix,

asymptotic stability proofs for some systems with SSBsqisir?D
Lyapunov function with negative semi-definite divergence.

Our paper is structured as follows. After clarifying the atain in
Section Il we will discuss preliminary results in Sectioh(lhcluding
stability of 2D systems in Corollary 1). Our main result ogragtotic
stability is presented in Section IV. lllustrative resuttiee given in
Section V before concluding remarks and suggestions fahdur
work in Section VI.

1. N orarioN

We will study stability of 2D systems using a unified notation
describe the stability of the state variabi;,t,) where fori € {1,2}

R*:
IN:

tj continuous,
tj discrete.

ti e T that is ti e { (5)

We will use the generalised derivative operadgii € {1,2} to repre-
sent either a derivative (continuous) or forwardfelience (discrete)
with respect ta;. For example:

d% X(t1,t2)
X(ty + Ltz) = X(t1,t2)

t; continuous,
t; discrete.

S1X(ty,tp) = { (6)

The generalised integration operat®ris defined as regular integra-
tion in continuous time, or left Riemann summation in diseréme.
For example:

f: X(ta,tp)dty
2322’1 X(t1t2)

t; continuous,
t; discrete.

%X(tl,tz)dtl = { (7)

We will consider autonomous 2D systems of the following form

(Roesser model, [19])

(51X1(t1,t2)) _ A A (xl(tlaIZ))

92Xo(t1,t2) Azr A\ Xo(tr.tz)

—_——— —_—— —  —
Sx(ty.t2) A X(t1.t2)

where x; € R™, x, € R™, with the initial conditionsx;(0,t;) =

X10(t2) and x»(t1,0) = Xo(t1). The autonomous system (8) has a

solution that satisfies:
t
Xy (t1.t2) =E(A11)" Xao(tz) + ~§ E(A11)" AraXa(ty — I = 7tz)dr,  (9)
2
Xo(tr,t2) =E(A22)2X20(t1) + § E(A2)" AoiXa(ty,to — I, — 7)dr,  (10)

wherel] for i € {1,2} denotes the indicator function

0: t continuous
I = b ; (12)
1: t discrete,
and the generalised exponential
et t continuous,
E(A) := _ (12)
(1 + A)t: tdiscrete.

respectively, of appropriate dimensions and the imaginary is
denoted byj. Consider the 2D vector Lyapunov function

XT (to.to) 0 _(Valtuto)
ORI L TCRPE | L

with P, = P] >0, P, = PI >0, P= P; & P, and

V(tytp) =

divV(ts.tp) = 61Vi(teto) + 62Va(te.tr) = X'Qx (17)
with & Vi(ty,t;) = X"Qix and
Q=Q,+Q, where Q =A"P +PA+TLATPA (18)

for i € {1,2} with P, = (P, ®0) and P, = (0® P,).
Furtherg; for i € {1,2} is the Laplace variabls if t; is continuous
or the Z transform variable if t; is discrete.

Definition 1 (Singularity on the Stability Boundary (SSB)The 2D
Roesser Model has a singularity on the stability boundarthéfe
exits a set ofw; (i continuous) o®; (t; discrete) such that the matrix
(61 =Tl @ (&2 - Ip)l) — A is singular forg = jw; or & = €%,
respectively.

We will make use of the following dlierent definitions of initial
conditions.

Definition 2 (L, and L., Bounded Initial Conditions) We say the
initial conditions of a 2D Roesser Model are “Bounded” if yhare
in L, and L., that is there exist;,/; < oo such that for € {1,2}

IXio()Iz = Sixo(t)Pdt < ¢, and (19)

lIXi0(lleo = S;Uop|Xio(t)| <. (20)
Definition 3 (L, and L), Smooth Bounded Initial Conditions)we
say the initial conditions of a 2D Roesser Model are Smoothrigled
Initial Conditions if they arelL, and L., bounded according to
Definition 2, and in addition there exisf,{/,{" < co such that for
ie{l2}

l5Xio()Ilz = S1o%io(®)/ dt < ¢, (21)

19%0()ll = SUPIXio(®)] < &> and (22)
>

16%io( )l = SUPI&*Xio()] < & (23)
>

We will discuss the stability of 2D systems according to the
following definitions.

Definition 4 (Stability of 2D Roesser Model)The autonomous 2D
Roesser Model (8) is stable if for eadht > 0 there exists a set of
¢i(M),5i(M) > 0 such that if the initial conditions are i, and L.,
with boundsc; and ¢ for i € {1,2}, respectively, then

|X(t1,t2)| <M forall t1,to > 0. (24)

We say A is stable to mean eitheh is Hurwitz stable (continuous Definition 5 (Asymptotic Stability of 2D Roesser Model with
case) orl + A is Schur stable (discrete case). In either casé, i§ Smooth Bounded Initial Conditions)The autonomous two-dimen-
stable, then there exist > 0 (and in additionl < 1 in the discrete sional Roesser Model (8) is asymptotically stable, if foy &mooth
case) ank < oo such that Bounded Initial Conditions (according to Definition 3) it s$able,
and the following limit holds foii € {1,2}

[E(A)| < KE(=2)". (13)
Note that oim  Xi(tt) = 0. (25)
ey - LTECY) U _
SE(A)dr = ——— (14) Note that asymptotic stability requires the states to tenzero as
d for—1 stabl t; + t — oo. That includes the cases whéie— o, t, — o and the
and for—4 stable o . E(-A) double limit lim, ;,—... Wwheret, andt, tend to+co at the same time
SECA) dr = ——. (15)  put in any possible form and direction.



IIl. M ATHEMATICAL PRELIMINARIES Before we show stability we will first use some interestingger

. . - erties of 2D non-negative vector fields with non-positiveedgence.
Before presenting our results concerning the asymptotibilgy g P

of 2D systems we would like to show the connection betwedremma 3. Consider the 2D space of two variablesand & and
singularities on the stability boundary and the Lyapunanction. the 2D non-negative vector fieNT(ty,t)) = (Vi(ts,t),Va(lyt)). If
the divergence of the vector fieM(t;,t;) is non-positive for every
etmand b, then the generalised integral of,{¢;.t;) and \4(t,,t,) over
t, € [0,T;] and t € [0,T,], respectively, is bounded by the initial
conditions \{(0,t;) and \4(t;,0), that is for all T;,T, > O:

Lemma 1. Consider the autonomous 2D system (8). If the syst
has a singularity on the stability boundary (SSB), then foerg
symmetric choice ofP; and P,, there exists a vectov such that
vIQv = 0 whereQ is given in (18).

T T. T
Proof: The characteristic polynomial is equal to §v1(T1,t2)dt2 §§V1(O,t2)dt2 + §v2(t1,0)dt1 (28)
det(((61 - Il @ (&2 - T)1) = A).  Since the system has a TO T° T°
. . . i0: . . 1 2 1
singularity at& = jwi or & = €%, respectively, the matrix S Vy(ty, T2)dt; < S Vi(0,tz)dt + S Va(ty,0)dlt;. (29)
(&1 - Il @ (& — I)l) — A is singular forg = jw; or & = 0 0 0
respectively. Therefore, there exists a non-zero veeterC" such Proof: To prove this lemma we will simply consider the
that generalised surface integral of the divergenceVdf,,t;) over the
( (&1 —Iy)l 0 | A)v -0 (26) rectangular regioty € [0,T4], t, € [0,T2]:
0 (62 -T)l
ToT1
Using (26) we can rewrite"Qv = v*(Q, + Q,)v and see from (18) W(T1.To) 1= § S (01Va(tute) + 32Va(ta. o)) dtu itz (30)

that for instance it; is continuous and, is discrete
T - T . T Using the fundamental theorem of calculus or Gauss Divesyen
VIQu = VIATPV + VP ARV AR, + VP AV + VAT P, A Theorem for continuous variables and simple arithmeticdiscrete

iy (jwi + jwy) Py 0 variables (30) can be transformed into
= [ 0 (e -1re%-1+1-e i el 41) PZ]V N N
=0. (27) W(T1,T2) = 8 Va(Tu)dtz — S Vi(Otz)dt
T T
If t; is discrete ott, is continuous it can be shown in a similar way +81V2(t1,T2)dt1 - §v2(t1,0)dt1. (31)
that v'Qv = 0. ThusV'Qv = 0 independently oP. [ 0 0

Note therefore that, for a system including SSB it is not jideto  Since the divergence is non-positive for everyandt,, from (30)
find positive definite matrice®; and P, such thatQ is sign definite. we getW(T,,T,) < 0. Also, V(t3,t2) is a non-negative function of
Thus, there exists no quadratic 2D Lyapunov function witbatiee t; andt,. Therefore (31) implies (28). The bound on the integral of

definite divergence. Assuming that the system exhibits a&3B- 0 V,(i1,tz) in (29) follows equivalently. [ ]
andz = 1, we can further show that there exists no Lyapunov function We now consider the 2D Lyapunov function(t,,t,) introduced
of any form with a negative definite divergence. above, to show that under some assumptions the system efdteer

Lemma 2. Consider the autonomous 2D system (8). If the system stable according to Definition 4.

has a singularity on the stability boundary (SSB) at=Sjw; = 0 Corollary 1. Consider the autonomous 2D system in (8). If the
(in case tis continuous) and;z= €% = 1 (i.e. = 0 in case following conditions hold

t is discrete), then fgr every choice of a 2D Lyapun_ov function(i) Ay; and Ay, are stable, and
Vo= (Vl(xl) VZ(XZ)) there er'StS a sk # OandX; # O (i) there exist positive definite, symmetric matrid&sand P, such
such that for all scalary # O 51Y1(X1)l(nxﬂ:(mm) = 0 and that Q < 0, whereQ is given in (18),

62\/2()(2)|(X1s><2):(771-772) = 0 and thusdiv V|(x1,x2)=(7Y1,7Y2) =

i ] ) ) then the system is stable as per Definition 4.
Proof: Since the system has a singularity &t= jw; = 0 or

& = €% = 1, respectively, there exists a non-zero vesterC" such ~ Proof: SinceA; is stable, there exi$ < co and; > 0 (and4; <
that (26) is satisfied fog; = jo; = 0 or & = € = 1, respectively, 1 in the discrete case) such tHEE(AN)" || < KE(-4)". Therefore,
and thusAv = 0 and thusyAv = 0. ChoosingX; and X, such that USing (9) we have

X1\ .
V= (72) yields Ol sg)=omx = YAV = 0. IXa (ta.to)] <k E(=2)" [xao (&)
If . ty is continuoui, 1V1(X1)|x1 x0)=(r%1.7%2)
dvy dx1 _(dvq _ _
( ) (x XZ) X1, X} _ (dn) 61)(1 (X1.%2)=(/X1.7%2 =0 Ify is dis

ty
+ «og KiE(=A1)" | Aral [X2 (t1 = I = 7.1p)[ dr. (32)
dxq
A1Vi(X1) = Vi(Xg(ti + 1 tz)) Vi(X1(ti,t2)).  We chooseP; as in condition (i) and then define the Lyapunov func-

crete note thad

Setting 6<1,X2) = (7X1,7X2) implies xi(t + L) = xa(tat) = X1 tion candidateV; (tu.tz) = X] (tz.t2) P2X2 (tu.tz). Using the definition

and thus1Va (X1l xp)=gxvxs) = V1(yXa) — Va(yXi1) = 0. of Va(ty,tp) and the Cauchy-Schwarz inequality, (32) becomes
Hence, for systems that exhibit a SSBst= 0 or z = 1,

respectively, there exists no 2D Lyapunov function with ate@a X1 (teto)] <k X0 ()] + — izl Kal| Al :SE( ) Wat —Th - rh)dr

definite divergence. Vomin(P2) ©
Even though for systems including SSB can never be S|gn <kq X0 ()] + Kill Al
definite, the existence of a negative semi-defiritetogether with B Vo min(P2)
some additional assumptions @k might be stficient for stability. ty 12 gy 1/2
Furthermore, with some additional assumptions on theainon- (~§ E(—ﬂl)ZTdT) («sz (t.t) dT) . (33)

ditions we are able to guarantee asymptotic stability (veidinded
smooth initial conditions). With (14), Lemma 3 and the fact that the initial conditions arL,,



(33) becomes

Kell A2l 1-E(-1)™
X1 (t1,0)] <kq [X10 ()] +
X1 (t1,t2)] <Kq [X10 (t2)] (P 21, - 2L

to ty 1/2
. (%' V1(0,7)dr + %' Vz(T,O)dT)
kil Azzll VIIPaflcy + [[P2llc,

Vomin(P2) \[2/11 - /liﬂl

Note that since fot; discrete we havd; = 1 and 4 < 1 we find

that 24 — 22 > A;. Thus, ¥(24 — 22I;) < 1/4. Since the initial

conditions are also ih.,, we find that

Kull Avall VIIP4llcy + [IP2]Ic, (35)
V‘Tmin(PZ) \//l_l

for all t;,t; > 0. Note that the bound/; is scaled by thd., and

L., norms of the initial conditions, i. &;,¢;1,C;. A similar bound for

<k [X10 (t2)] + (34)

[X1 (t,t2)l < My = ks +

Taking the limit asT; — oo of (29) in Lemma 3 we see that the

generalised integral in (40) is bounded independentlis.cThus M,
exists. The existence ¥, follows similarly. [ ]

To facilitate the proof of asymptotic stability of 2D systenm
Section IV we also need results on the state derivatives dhdhew
that under suitable assumptions the first generalised alsg, i.e.
GiXk(ty,tp), i,k € {1,2}, are in bothL, [0,00) X [0,00) and L., [0,00) X
[0,00) and the second generalised derivatives, di@&X(t1,t2) for i,k
€ {1,2}, are inL,, [0,00) x [0,00).

Lemma 4. Consider the autonomous 2D System in (8). If the

following conditions hold

(i) the initial conditions are L and L), smooth bounded according
to Definition 3,
(i) A1 and A, are stable, and
(i) there exist positive definite, symmetric matriceg P, and R
such thatQ = —~ATRA < 0, whereQ is given in (18),

Xz (t1,t2) can be found in the same way. The system is therefore stadfen

(a) the first generalised derivatives xf(t1,t,) and X (ty,t2) are in L,

Under the same assumptions as in Corollary 1 we can further [0,00) x [0,00) and Ly [0,00) X [0,00), i.e. there exist M, My < o0

show that not only isx;(ty,t;) bounded (that is inL.) but also
the generalised integralSy’ |x,(ty,t)[2dt; and S [Xo(t1,t)|?dt, are
bounded. This will facilitate the proof of asymptotic stébilater in
Section IV.

Corollary 2. Consider the autonomous 2D System in (8). If the

following conditions hold

(i) the initial conditions are L and L, bounded according to

Definition 2,
(i) A1 and A,; are stable, and
(i) there exist positive definite, symmetric matrid®sand P, such
that Q < 0, whereQ is given in (18),
then there exisM;, M, < o independently of,tand t, respectively,
such that

Skl dy <My and Skl de <My (36)
Proof: From (32), note that

St )P oty < 26 S EC1)% o (1) oty
2

o [t
+2k§||A12||2«§ § E(=21)"IXo(ty — I; — 7,tp)ld7 | dity. (37)

The first term of the right hand side of (37) can be bounded lasife

29 2t 2 245
2k1«§ E(=A1)™ [X10 (t2)[7dt; < o (38)

With the Cauchy-Schwarz inequality the second term of tig@tri
hand side of (37) allows a bound to be calculated as

o [t 2
2k§||A12||2«§(«§ E(=22)"1Xa(ts — Iy — T,t2)|dT) dty

oo [t t
<2KZ|| Aal? «g («O§ E(—/ll)TdT) («5' E(—2)X(ts — Iy — 7tp)Pdr | dity

2k2|[ Aqro|2 ot
<2 S S ey oty - I - it (39)
1
Interchanging the order of integration in (39) yields
2k2|| Agg]|? =t
AGlAdE ¢ % E(=A0)571 7 xo(r,tp) Pdlrdlty
A1 00
2k2(| Aqo|2 o
L Al g g E(=12) " |xo(r,tp) Pty
A1 0 7+I;
2Kk7)| Agall? < 5
< T goS'|X2(T,t2)| dr. (40)

such that for jk € {1,2},

sup |0k Xi (tl,t2)| < Mik (41)
(t1.,t2)eT1xT2
f§f§|5kxi(tl,t2)|2dtldt2 <M. and (42)

(b) the second generalised derivatives>gft;,t;) and x,(t3,t;) are
in L, [0,00) X [0,00), i.e. there exist My < oo such that for
ikl € {1,2}

sup
(t1.t2)€T1xT2

|6k01 Xi (t1,t2)] < M. (43)

Proof: @: We will first prove thats; x; (t1,t2) (anddaxz(ta,t2)) is
in L, [0,00) x[0,00). Using the state space description @K, (t;,t2)
in (8) we have

[61X1(t1,t2)] < [|Agall - [Xe(te,t2)] + [[Agall - [X2(te.t2)]. (44)

Since x;(t3,ty) and x,(t1,t;) are stable (Corollary 1), there exist

M1,M; < oo such thatix;(t;,t;)] < M; for all ty,t; andi € {1,2}. Thus,
Mi1 = [|A1alIMy1 + [|Ar2l|M2 and Maz = [|Az1l|My + || Az2l|Ma.

To show thats,x;(t1,t) andd1xx(t1,t2) are inL., [0,00) X [0,00) as
well, we operate on (9) by, and obtain the bound

162X (t1.t2)] <kaE(=11)"162X10(t2)] + |l
ty
+killAsz § E(-121)"02%o(t1 — I — 7,tp)dr

Skl(:i + k1||A12||M22 =
A1
The boundedness @f x,(t;,t;) can be proven in the same way.
To show that the first generalised derivatives are aldgifD,c0) x
[0,00) we will use the Lyapunov function candidatét; ,t,) from (16).
Given the fact thak (t1,t,)Qx(t1.ty) is the divergence o¥/(ty,t;) we
can show with the fundamental theorem of calculus that

F1Xq(t1.t2)
F2Xa(t1,t2)

M. (45)

T2Ty
§ g(? [51X1—(t1,t2) 62X£(t1,t2)] R [ ] dtldtz

T T
< é Va(O.to)dt + évz(tl,O)ml (46)

Taking the limit of both sides of (46) @k, T, — « we see that
IP4llcy +[IPallc,

o0 oo , o
SS1o1xa(tuta)f dtadly < e R M,  (47)
0% Pillc Pallc —

SS |62X2(t1,t2)|2 dtldtz SM =: Mopo. (48)
00 omin(R)



To show the existence dfl,, we will transform the solution given

in (9) into
%%ldle(tl,tz)lzdtldtz
<22 S SE(-0)*10,X10(t) Pl lty + 2| Aol

t 2

f0§fo§ §E(-/ll)fl-ﬂl-fazxz(r,tz)dr dty . (49)

Since the initial conditions ark), smooth the first term on the right

side of (49) can be bounded by
2kéc)
L (50)

¢ *? fg E(—21)™|62X10(t2)Pdtsdt, <

Proof: Define the supremum of(t;,t;) and the supremum over
the maximum of both generalised derivatives in the compjatarant
as

T:= sup |f(tuty) and (56)
t1.tpeT1xTo
= sup  (max{lo: f (te.ta) 162 f (ta.t2) 1)) (57)
t1.tpeT1xTo
and the regiorR as
R :={[0,] + 1) x [LI + 1)} U{[L.I + 1) x [0,])}. (58)
Note then that
p —
P oo = lZ; SSIf(tt)Pdudty <o (59)

The second term can be transformed using the Cauchy Schwi#fere SSy -dt;dt, refers to the 2D integration over the regidh

inequality
2

o0 oo [t
2|1 ALl ~§ «09 ’«? E(-A)" T 8x0(nt)dr| dtidt,

w o [t t
<2KZ||Aall? ~§«§ («é' |5(—/11)Td‘r~0é E(—/ll)trhﬂ|52X2(T»t2)|2dT) dty dts.
(51)

We will now solve the first inner generalised integral andngeathe
order of (generalised) integration of the remaining patu§ (51)
becomes
2

dt,dt,

oo |ts
2k§||A12||2~09~§ «ogE(—ﬂl)tl_[l_r52X2(T,t2)dT

22| A2
alAd g s g E(=0)5717T|8,%0 (7,12 Pty drdlt,
A1 0 0 79+l

22| A =
AT S 6 xo(rt) Pty
/11 00
S2k§||'°2\12||2
/11

0 00

My, =: My2. (52)

Therefore,
||||'T\ %S |f(t1,t2)|pdt1dt2 =0. (60)
Let the supremum of within R be defined as
fii= sup [f(tut)l. (61)
(tut2)eR
Then if t; is continuous
d d —p1—
sup — |f(t1,t2)I° < sup (p|f(t1,t2)|p_1 Ef(tl,tZ)) < pflp fr.
(t1.t2)eR Y1 (tt2)eR 1
(62)
We will now bound the double generalised integral

SSg If(ty,t)|Pdt,dt, from below using the geometric form of
f(t1,t2) depending on the nature of andt,.

If both independent variables; and t, are continuous,
SSg If(t,1)|Pdt dt, is the double integral over an L-shaped surface.
It can be bounded from below by the smallest possible pyramitial
heightT,p, where the base is bounded bgé or the dimensions of
the regionR,. P

In case one variable is continuous and one is discrete (nuase)

(b): To complete the proof we will show that the second generdlis SSr |f (ti.t2)|Pdtadtz is @ summation ofl line integrals. It can be
derivatives are irL., [0,00) x [0,00). First the norm of the generalisedPounded from below by the smallest possible triangle witfglite

derivativess?x; (ti.tz) andd:d;xa(ts.tz) will be considered. Taking the fi. where the base is bounded %%‘ or the smallest possible length

generalised derivative of the first part of the state spasergsion
(8) with respect td; or t,, respectively yields

67xa(tr.t2) =An01Xa(t. 1) + Ard1Xa(ty,t2)
0102X1(t1,12) =A1162X1(t1,12) + A1202Xa(t1,t2)

(53)
(54)
Thus My11 = [|A12lIM11 + [[A12lIM12 and Myip = Miog = [|A11lIM12 +

[|A12]|M2,. TOo show that|5§x1(t1,t2)| is bounded, follow a similar
argument as in (45), so thai;,, becomes

k1||A12||M222

1

Mz = ki 7 + (59)

of any line fragment irR.
If both variables are discret8Sg |f(t1,t2)|Pdt.dt, is a summation
with 21 + 1 summands. Thus it can be bounded from below by a
. . - —p
single summand. (Here we will take the maximal summdnd

%S| f(ty,to)|Pdt, dt,

1P [T (T ). ~
5T min p—%,l + 1} mm{p—%,l} . t,t, continuous

> %Tf min p%l} : mixed case (63)
T t1.t, discrete

If both t; andt; are discrete the result follows immediately from (60).

The existence 0Mai1. Ma12, M221 and Mz, can be prooven in the | the continuous case we can transform (63) into

same manner. |

We will now prove a 2D version of Barbalat's Lemma, [32, Lemma SS | (tu,t)[Pdtait, >}T|P min{i (+ 1)5} min{i TI}
, 25 = 7

3.1], which will enable the proof of asymptotic stability @D
systems.

Lemma 5. Consider the 2D function fT; x T, — R. If f(ty.ty) is

—,=

R

both in L; [0,00)X[0,00) and L, [0,00)x[0,c0) and both its generalised Thys

derivatives s f(t1,t) and 6> f(ty,t2) are in L, [0,00) x [0,00), then

limg 1,0 f(t,t) = 0 and f(ty,t;) is uniformly convergent in both

directions, i.e. for alle > O there exists a Te) < o such that

Y(trtz) €{T1 x [T(€),00)} U{[T(€),00) x T} : [f(to.t2)| < €.

—p+2 = T =T
i <6 max{pf m} max{pf ,f}%s [ (ty,tp)[Pdlty it

s6(max{pf’,ﬂ)2%8|f(t1,t2)|pdt1dt2 (65)



As T/ and f are bounded, te_nds to zero abgrows without bound. bounds apply fort; or t, discrete because fdi discrete we have
Hence from the definition of; (61), f(ty,tp) for (t1,ty) € R tends to  for (t3,t;) € Q(I)
zero asl grows without bound. T T T

In case one variable is continuous and one is discrete aasimil 01 (Xl Plxl) X3 Puxy = (%1 = dua(D) P03 — dua()D)
argument can be made. ] <2dy1(NIIP4lIMy (76)

wherel is a vector of 1s of appropriate length.

To find a lower bound otJ(l) we will use a similar trick as in the
In this section we will present our theorem on asymptotiit®  proof of Lemma 5 above.

of 2D systems described by the Roesser model using inteateedi |f t, is continuous and the maximum ofi(t.t)) (Vi(l) =

IV. AsYMPTOTIC STABILITY

results presented in the previous section. maX, r)ean Vilta,tz) for i € {1,2}) along Q(l) occurs along the part

Theorem 1 (Asymptotic Stability of 2D Roesser ModelsThe ©f () where &.t;) € [0,]] x {I} we can bound the integral of
2D system (8) is asymptotically stable with smooth boundéali Vi(ti,tz) over Q(I) from below by a triangle with the base equal to
conditions according to Definition 5 if the following coridits hold m'n{vi(l)/(Zdil(l)”Pi”y'i)’ '} andVi(l) as the height of the triangle. In
(i) A and Ay, are stable, and caset; is discrete ani(l) occurs atig.tz) € {I}x[0, I] the summation
(ii) there exist positive definite, symmetric matrides P, and R Of Vi(tu.tz) alongt, for I > Vi(l)/2d.(I)IIPi[IM; can be bounded by
such thatQ = —ATRA, whereQ is given in (18).

|
Vi(tetz) 2Vi(l) + (Vi(1) — 2da (DIIPiIM;
Proof: Consider the 2D Lyapunov functiow(t,t;) given in (16) ;) (t1.t2) ()+( () ORIl )

and the integral o¥/;(ty,t2) + Va(t1,t;) along the lineQ(l) := (ty,tp) €
{[0,] x {IIu{{l} x[0,1]} for | € R* or | € IN, respectively, and > O
as:

u() = si%) (Va(ts,t2) + Va(ty.tz)) ds

+ (Vi) - 4da (IR M) ..
=+ DVi(l) - 2da()IPIIM Y 0 (77)
n=1
I I wherev = [Vi(l)/Zdil(l)HPiHMiJ. Resolving the summation on the
=S Vatu]) + Vot ) dta + S (Va(ltz) + Va(l)) dtz - (66)  right hand side of (77) yields

Using the results in Lemma 3 and Corollary 2 we see that thestse ' — v
aC such that for all: U(l) < C. Since the first generalised derivatives Z Vi(te,t2) 2(v + 1) (Vi () = 2da (NIIPilIM; §)
of X(t,,t) with respect tot; andt, are L., bounded (Lemma 4) we  *™°

can finddy1(1), dio(1), das(l) and dy(l) such that z@+1ﬁMD—Mdmmmmvﬂwm§WWMM)
dua(l) = sup o1 Xa(ta.)l, (67) v
O<ty<l 2 :(V + ]_)V'T(I)
do(l) := sup |52x1(1,t2)l, (68) —
O<tp< .
| () 78)
doy(l) := OS:Jpl [61%2(t1.1)l2 (69) T Ada (DIPiIM
<ty < —
toa(1) = sup 162%2(1, )1, - (70) For I < Vi(l)/2di.()||PilIM; the summation can be bounded by
O<ty<l . . | vl(|)|
Note thatd(l) < SuR,.old1Xa(ts.)l,. Making use of the version ZVi(tl,tz) 2 =" (79)
of Barbalat's Lemma in Lemma 5, we can conclude that the first =0

generalised derivatives tend to zerota — oo and are uniformly Thus, U(l) can be bounded
convergent in both directions. That allows us to intercleating order

—2 —2 —
of supremum and limit and thus we conclude that U(l) >min Vi) i Vi) . V(!
. . Adp(DIIP1IMy " 4di(DIIP4IM1 ™ 2
II|m dis(l) < II|m sup|o1 X (tg,)lp _2 — _
- T 420 . V,(l YA(
—wl%wxa|n +min 2 o) VOl (80)
_tlzf?l_"” 121,112 4d1 (IIP2lIM2 " 4do2 (DI P2 IM2 ™ 2
=0. (71)  sinceVi(l) < M| Pi|| this implies
It can be shown in a similar way that the limits dif(l), dz.(1), and —2 2M2|| Pyl
dhs(l) for | — oo are 0, e VI () <C max{ ads (DIPIIM 40201 PIM, =1 (81)

Thus forty,t, continuous we can bound the derivativesvia(ty,t,)

andV(twty) by Note that ad tends to infinity each component of the maximum in

(81) goes to zero and, hence, {jiL.« [Xi(t1,t2)] = 0. Note that the

Vi <1t %Vl(h,') <2d13(1)IIP4[IM4, (72) limits limy, e [Xi(t,t2)l = 0 and lim,_« |xi(ts,t2)| = O exist as we.ll.
1
d

Vi, <11 ——Vi(l,tz) <2dy2(1)I|P1lIM4, 73

2=l 1(1,t2) <2di2(N)IIP1lIMy (73) V. EXAMPLES

Vi < din(tlJ) <20,1(1)]| P2l Mo, (74) _To_illustrate our result on _asymptotic stabili?y of 2D sysewe
51 will discuss a simple platooning problem (Section I-C). Ascdssed

Vi, <1 d—Vz(Ltz) <20,,(1)I| P2l M, (75) ?n Section I-_C every such 2D system describing a vehicleophn_t
ity includes a singularity as = 0 andz = 1. Thus, there does not exist

where M; and M, are bounds orix;(t1,t2)] and [xx(t1,t2)| (as in- a matrix P such thatQ < 0. (Note that relaxing the restriction to
troduced in the proof of Lemma 4). Note that in fact the samguadratic Lyapunov functions does not alter this conclu$io



Examplel. We will use a simplified, linearised second order model
for each vehicle withP(s) = 1/s(s+2Cq4Vo) where the drag cdicient

is Cq = 7-10~*m 1. We choose a simple PID controller with = 1.66,

ki = 0.17,ky = 4.1 andT = 1/30 to minimize the local spacing error.
(A more detailed discussion of the system can be found ing33].)

It can be shown that using a fixed distance policy will leadtting
instability or the ‘slinky dfect’, where disturbances are attenuated
while traveling through the string, [33].

One possibility, [34], to avert string instability is to otduce a
time headwayh and maintain a velocity depending distance between
each vehicle and its predecessor rather than a fixed distemoeder
to maintain the same closed loop poles ofltttevehicle an additional

Error e(t,k)

pole at—# is added to each local controller. Thus the system can be Positionk 0o Time t
described as a 2D Roesser modebagd,.k) = Ax(t,k) with Figure 1: String stable system with= 2s: error &tk)
0 1 0 O 0 0
0 —2CqVo 1 0 O 0 10P9 FF k 5
ac| Tiler®) —(+®) -3 3 g i+ )
—k; —hk 0 O 0 0 *
-1 -h 0o 0 -1 0 R ]
= +
1 0 0O O 0 | -1 @) = .
&3 6).5, ++ 4

wheret; = t is continuous,t; = k is discrete,x;(t,k) is the state

= +
vector of thekth vehicle including its positiorx(f,k), velocity Vi(t,k), S +*++
and three controller states, (t,k) for i € {1,2,3} and x(t,k) is the 51013— +++++ i
position of the predecessor to vehidlat timet, X(t,k— 1). u *++++
It can be shown that choosing a time headay 1.18s the system ”+++++
is string stable, [35]. Fon = 2s the eigenvalues of the upper left part 1Pl : ‘ ‘ ++++++++—
of A are-25.1, -4.5, -0.5, —-0.25 and-0.18. ThusA;; is Hurwitz 0 10 20 30 40
stable.Ay, + | = 0 is Schur stable. Positionk
Matlab finds two symmetric, positive definite matrices: Figure 2: String stable system with= 2s: ||&(-,K)I|2
P, =
172-10° 0 0 505-10° 0 Example 2. Consider the same system structure as presented in
0 265-10° 209-10° -169-10° -127-1C° Example 1. However, choosing a time headwayhot 0.5s that
0 209-10° 592-10° -216-10° -365-1C° is clearly less than the infimal time headway required, veifid to a
505-10° -169-10* -2.16-10 177-10° 1.32.1¢° string unstable system.
0 -127.20° -365-10° 132-10° 225-10 Even thoughAy; and Ay + | are Hurwitz and Schur stable,

with eigenvalues at .26 107, 1(F, 1.78- 10%, 711 and B4 and respectively, it is not possible to find a symmetric, positdefinite
P, = 859 such that the eiger;valut’es @fare _45.10F _178.1¢¢ mMatrix P such thatQ < 0. To show that suppose that there exist

-4.48-10°, -587,-106 and 0. There exists a positive definite matrif -P2 > O such thatP = P, & P,. Without loss of generality we can
setP, = 1. We have

Ry = 0/o0
_ AT T
301.-1° -7.08-10° -115.10" 6.98-10° 7.08-1CF Q=A'P+PA+A 4’*0 1 ]A
_708-10° 296-10* 495.10 -295.10° 3.04-1C° .
AuPi+ PiAn + AL Ay PiA
~115-10' 4.95.-10' 864-10" -493.1C -531.10° =[ e, L 112] (83)
6.98-10 -295.1°F -493-1C° 296-10° 3.02-10 2

708-10F -3.04-10F -531-10°F 3.02-10 3.26-10° Using the Schur compliment we see tlfak 0 is equivalent to

andR, = 1 such thaQ = —ATRA. Thus the system is asymptotically A11P1 + P1Ay + AJ Ags + P1AR AP <0 (84)
stable in the 2D sense and hence string stable.

Simulation results are displayed in Fig. 1 and Fig. 2. In Rigve
see that the local error signeftk) tends to zero fot — oo. Thus A2 (sl = Au)t A < 1. (85)
every single subsystem is asymptotically stable. Also tleimum

-1 - .
of &(t,K) over time and the, norm with respect to time decreased\Ote thatl'(s) = As (sl — Au)™ Asp s the transfer function from
whenk grows. See Fig. 2 for details. the position of thekth vehicle to the position of thie + 1th vehicle.

. . . However, when choosing a time headway that is less than fimeah
After demonstrating anfirming example, where asymptotic Sta’headway hy = 118s we know that[[(jw)l. > 1. Therefore,

bility can be shoyyn using Theorem L W.e. W!” choose two”exampl generally, any string unstable system of this typE(jw)ll., > 1),
where one condition for asymptotic stability in Theorem tidated does not permit a solution wit® < 0

each time and the system is not asymptotically stable. bwtlay we
show that there is no trivial relaxation of the conditionsTheorem 1
that produces the same result.

Using the Bounded Real Lemma we see that this is equivalent to

In the simulation (displayed in Fig. 3) we observe that thetesy
is not stable in the 2D sense and thus not string stable becaus
small perturbation at the beginning of the string is amglifighile
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Figure 3: String unstable system wilth= 0.5s: error &t,k) Figure 5: String unstable system: general eggtt,K)
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Figure 4: String unstable system with= 0.5s: ||&(-,K)II> Figure 6: String unstable systert; norm of general erroey(t,k)

traveling through the string. The local erreft,k) goes to zero for Matrix R such that—AT_RA =Q o _
every fixedk ast — oo. However, the maximal error over time for SO, even thoughQ is negative semidefinite and there exists a
each subsystem grows wikrand the double limit lim.. &t,k) does suitableR the system is not asymptotically stable as the simulation
not exist. Also theL, norm of §t,k) with respect to time grows d@s in Fig. 5 and Fig. 6 demonstrate.

grows, Fig. 4.

Also when relaxing the first condition for asymptotic stéiin VI. ConcLusIONs
Theorem 1 and allowind\;; or Ay, not to be stable the system might

Here we have discussed stability of 2D systems with twEedgnt
not be asymptotically stable.

independent variables. Both continuous and discrete dwsasbeen
Example3. Consider the system described in (82) with the generatudied using LMIs and a 2D Lyapunov function.

error €,(t,k) (that is the general error of the predecessor plus theWe showed that a negative semidefinite solution of the Lyapun
local error) as an additional state ¥(t,k) (and h = 2s) such that function together with additional stability requiremeras the sys-

the system matriA is given by tems matrixA is suficient to guarantee stability and even asymptotic
stability under some extra technical conditions of thesecisp 2D
0 1 0O 0 © 0 0] systems.
0 —2CqVo 10 0 0 0 Since only a negative semidefinite solution is required #wmilts
_1 ka)  _ ka) _1 1 _ k|1 k) o R : : .
A (kp+ T) (kp+ T) - Tz | (kp+ T) presented in this paper are suitable to discuss the syabili?D
A= -k —hk 0 0 O ki 0 systems with singularities on the stability boundary.
-1 -h 0 0 -3 1 0 In the future we will be interested to relax the requirementghe
1 0 0O 0 O -1 0 systems matrixA and the initial conditions and extend the work to
-1 0 0 o 0 1 0 | non linear systems. Another interesting extension woulthbestudy
(86)  of suitable controller design techniques.

While A;; is still Hurwitz stable,A,, + | has one eigenvalue at 1.
Thus it is not Schur stable. The first part of the second cmmdit

is not violated as Matlab can find strictly positive matrideswith REFERENCES
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