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Abstract

In this paper, we show how heterogeneous bidirectionalclelstrings can be modelled as port-Hamiltonian systemalyais of stability

and string stability within this framework is straightfaawd and leads to a better understanding of the underlyinglgma Nonlinear

local control and additional integral action is introdudediesign a suitable control law guaranteeingtring stability of the system with
respect to bounded disturbances.
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1 Introduction effect e.g. in [3,6,18, 21]. A well known definition df,
string stability has been proposed in [19].

In the field of coordinated systems, formation control is one
of many control objectives. A group dfl vehicles (e.g.
platoon or string) is required to follow a given reference
trajectory while the vehicles keep a prescribed distance to
neighbouring vehicles. In its simplest form the vehicles in

the platoon are considered to move in a single straight line. " i . L . .
While many diferent solutions to this problem have been the position W'th'n the string, [8]; .('”) using the veloylt.
or the acceleration of the lead vehicle; or, (iv) propagatin

proposed, most researchers consider a decentralised co ; . AN
trol structure where each vehicle in the string uses a Iocalr}he reference velocity to each vehicle within the platoon,
e.g. [10,20] or [2], respectively.

controller with locally available measurements instead of
global, centralised controller.

Different approaches have been proposed to guarantee string
stability of unidirectional vehicle strings, where eachkdb
controller only considers information relating to a grodp o
vehicles in front. These approaches include: (i) introdgci

a time headway, [3]; (ii) local controllers that depend on

This paper studies heterogenous, bidirectional, nonlinea
strings of vehicles. (“Heterogeneous” refers to the faat th
the dynamics of each vehicle and local controller might dif-
fer between the vehicles; and bidirectional means that in-
formation propagates both upstream and downstream in the
string.) It was shown in [1,17] that similar to unidirectain
strings, linear, symmetric bidirectional strings with tive
tegrators in the open loop and constant spacing are always
string unstable. The definition used in [1,17] — even though
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In most cases it is straightforward to design a local colarol
to achieve stability of a string in the Lyapunov sense. How-
ever, it is well known that error signals can amplify when
travelling through the string resulting in growth of the dbc
error norm with the position in the string. Thiffect is re-
ferred to asstring instability e.g. in [10, 14, 17], oslinky
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with the leader position. In [2] a linear, bidirectionalisgy as port-Hamiltonian systems.
of N vehicles is approximated as a PDE. It is shown that

the least stable eigenvalue of the PDE approaches the ori-The paper is organised as follows: The problem of interest
gin with O(1/N?) if the string is symmetric an®(1/N) if in this paper (i. e. string stability of port-Hamiltonianssy
the string is asymmetric. However, knowledge of the steady tems describing vehicle platoons) is presented in Section 2
state/ reference velocity is needed. Both proposed solu- After introducing local control to a string of vehicles inSe
tions depend on either perfect communication between thetion 3, integral action will be added in Section 4. The paper
leading vehicle and the rest of the string or perfect knowl- ends with a numerical example in Section 5 and concluding

edge of the reference signal. Further, any reference signalremarks in Section 6. Some preliminary results have been
changes have to be communicated to every vehicle in thereported in [9].

string. In case dticiently fast and lossless communication

of the necessary information cannot be guaranteed, it might

not be possible to guarantee string stability. Thus, both co 2 Notation and Problem Formulation
trol structures sfiier from a serious risk if the number of
vehicles increases. Therefore, it is desirable to find radter 21 Notation
tives that do not depend on global communication or global ~

reference knowledge but local measurements and local com-

munication between a small number of direct neighbours. The L, vector norm is given byx, = [x| = VxTx and the

. . . ., Ly andL, vector function norms byx()ll. = +/ [+ Ix(t)|2dt
A different approach to ensure string stability was consid- 2 W)z fo X

ered in [5]. Modelling a symmetric bidirectional string as 2NdIX()lls = SUR.o IX(D)I, respectively. FTo_r a scalar func-
a mass-spring-damper system, it is shown that string stabil tion H(X) of a vectorx = [xi, X2,..., %] its gradient is

ity with constant spacing can be guaranteed if the damping defined asvH(x) = [ﬁaHX(X)’ ﬁaHX(X)’ L ﬁaH)fnx) T_ We denote the
1 2

codfficients or the inverse compliances of the springs be- siate, steady state and the disturbance vector by the column
tween the vehicles, respec_tlvely, grow W[th the_ string tang  yectors (generally denoted cokft) = col(x.(t), . ... xn (1)),

N. This also seems undesirable in practise. Since controllery | — co|(x, . ...,xy,) andd(t) = col(dy(t),....dn(t). The
parameters cannot be chosen infinitely high this implies tha ~qjumn veto:tor of (Z)nes is denoted byahd & is the ith

the string cannot be extended without bound. canonical vector of lengtiN. Similarly we denote the di-

_ _ _ _ agonal matrixA e RNN with diagonal entriesy, ... ay as
It is the aim of this paper toffer an alternative approach o _ diag@, ... an).

to this problem. First, the definition df, string stability

proposed in [19], although very useful for unidirectional

strings, seems uninformative and too restrictive for leidir 2.2 System Description

tional strings. Recall that it has been shown that string sta

bility cannot be achieved for linear, symmetric, bidirectl We consider a system o vehicles with massn where
strings with two integrators in the open loop, constantspac j = 12 ... N denotes the position within the string. The
ing and without global communication or reference signal motion equations of the system can be described using the

knowledge, [1,17], and the alternativesfen from undesir- ~ momentum and position of each vehicle, ig.and g, as
bale risks and limitations above. Thus, we first propose a fg|lows

definition ofl, string stability that is less restrictive than the

definition given in [19]. This definition proves to be useful pi =F; + i (1)
in guaranteeing an upper bound for the distances between S
the vehicles at all times. Details can be found in the fol- G =M pi (2)

lowing section. Second, a control algorithm is proposet tha

does not sfier from any of the above mentioned disadvan- WhereF; is the control force on the vehicle; is the dis-
tages. That is, the design does not require any global com-turbance, and the momentum satisfpes- mv;, wherev; is
munication or global knowledge of the reference informa- the velocity. The local position error between tttevehicle
tion. Further, it is possible to choose all control paramsete and its direct predecessor is denoted

in a defined bound without the need to limit the number of

vehicles. We also propose afgirent method to model such Ai = Q-1+ i — 0. 3
vehicle strings, that is to use port-Hamiltonian system the

ory, [11]. This approach fters significant advantages over Note thatl; is the desired safety distance between the vehi-
methods known in the string stability literature. The port- cles plus the length of vehicle 1 ori depending on whether
Hamiltonian systems description allows direct and easy to the position of the front or the rear of each vehicis used
follow stability and string stability proofs and thusfer a as positiorg;. As a minimal distance is usually required be-
better insight into the underlying problem. The method also tween vehicles for obvious safety reasons, we asdume@
allows an insight on limitations and advantages of similar for all i. The positionq is the reference position available
system designs presented in the literature such as in [2, 5].to the first vehicle in the string. The dynamics of the string
Further, both linear and nonlinear systems can be describedsystem described in momenta of the vehicles and separation



distance between the vehicles can be described by

T d

&1vo

p
A

+

E
VH(p,A) + , 4)

-S 0

whereA,p € RN are the displacement and momentum vec-
tors, i.e.A = col(Ay,...,An), p = col(py,...,pn), and the
control force vector i= = col(F4,...,Fn). The function
H(p,A) is given by

1.
H(p.A) = EpTM 'p. (5)

The matrixM e RN*N is the constant and positive definite
inertia matrixM = diag(m, ...,my). The matrixS has the
bidiagonal form

1 0 v .- 0
11
S=|0 -1 . 1 (6)
10
00 -11

2.3 Control Objectives

The local control objective for each vehicle is to bring its
local error to zero using local (distributed) control andyon
locally available data. The control fordg will be chosen
such that only data from a group of neighbours of ithe
vehicle (both preceding and following vehicles) are needed
The controller for the first vehicle in the string aims to éoll

a given trajectorygy and also minimise the local position
error towards a group of following vehicles. In the simplest

setting the reference signal is considered to be a ramp with

constant velocityv, i.e. o = Vot. Note that the vehicles
within the string (apart from a limited group at the begirgnin

61(€) > 0 anddz(e) > 0 (independent of N) such that
IX(0) - x| < 61(¢) and ld(")ll2 < 2(€) ()
implies

IX®) — X'l = SUPIX() = X'| <€ YN=1  (8)
t>0

3 Local Control

In this section, a local distributed controller for a bi-
directional vehicle string system is designed. The local
control structure is motivated by previous results in thielfie

of mechanical engineering. When choosing control actions
between the vehicles that can be modelled as virtual springs
and dampers between the vehicles, the overall system can
easily be written as a port-Hamiltonian system.

The control forces consist of the “spring forcds’, that de-
pend on the position errors, the “damper forcesF;, that
depend on the velocity fierences between two neighbour-
ing vehicles, and the “drag force§”id describing the fric-
tion of the vehicles towards the ground. Assume the spring
force between vehicle— 1 andi is given by the function
fS(Ai), whichis locally Lipschitz for all\; within the domain
of definition, strictly monotonic and satisfif§(Aj)A; > 0
and f3(A;) = 0 only for Aj = O for all i = 1,...,N. Thus,
Fs = STfS(A) wherefS(A) is the column vector with entries
f£S(A;). Also assume that the condomian or target sefof
covers the complete real axis betweer ande. Thus, the

function f2 is invertible andfis'1 is its inverse. The vector of
inverses is denoted bf? .

Remark 2 Note that nonlinear springs yield some signifi-
cant advantages over linear spring models: First, one could
use barrier functions on the potential energy to prevent col
lisions between the vehicles in the platoon. To do this, the
stiffness of the springs have to increase when the distances
between vehicles decrease. For instance a good choice is
to design the springs such that(A;) — —co asAj — ;.

of the string) do not have access to the reference signalty s in case the spatial error between the desired distance
and therefore have to adjust their position and momentum 5,4 the actual distance between the vehicles approaches

indirectly by forcing their local position error to zero.

The overall control objective is to achieve “string stalfli

or “scalability”, that is, the norm of the local states of the
complete string do not grow without bound Esincreases
for nonzero disturbances or initial conditions. Consideri
the general definition adf, string stability in [19] and [15],
we use the following definition of, string stability with
respect to disturbances:

Definition 1 Consider a system described By= g(x,d)
with states xe RN, g € RN satisfying ¢x*,0) = 0 and
disturbances d. The equilibriunt ¥s I, string stable with
respect to disturbanceqt), if given anye > 0, there exists

which corresponds to the distance between the vehicles ap-
proaching0, the spring gets infinitely gfito prevent a crash.
Second, contrary to the linear controllers, where the cointr
action is proportional to the error, nonlinear controlled-a
lows a large variety of possibilities to achieve the spedifie
behaviour. For example, nonlinear springs allow to bound
the control input when the position error is large, which is
impossible using linear controllers. Note that in cageid
not defined for all;, for instance for barrier functions, the
stability analysis should ensure that the initial conditio
are chosen such thai>fA;(0)) exists and that the trajecto-
ries of the system remain within the set of interest.

Assuming linear damping forces of the form| =



R(m™pi-1 - m*p) and linear drag forces of the form
Fid = binTl pi, the overall control force can be described as

F=-(B+RMp+e&Rvp+STA) (9)
with the constant matrices

R,+R, -R, 0 0 |
—Rz R2 + R3 —R3

R= 0 0 (10)
Rn-1 + Ry Ry
0O - 0 -Ry R

andB = diag(;, . . . ,bn) where the entries of matric&and
R are design parameters of the controller and R ,b; < oo
for all i.

We will show that the system is asymptotically stable with
respect to the equilibriump,A*). However, the values of

the integrand is positive fok; > A" which leads to the in-
tegral being positive. In cas < A the integrand is neg-
ative, which leads to the integral fromk to A being also
positive. Hence, the integral is non-negative and only Equa
to zero forA; = A;.

UsingH as a Lyapunov function candidate and computing
its time derivatives yields

Hcl(p’A) = VT Hel ( p,A)

-(B+R) ST
s 0 VHcI(p’A)

= =V Ha(p.A)(B + R)VpHai(p.A)
<0 (13)

This implies Lyapunov stability. Note also that this imglie
that the spatial deviation; remains in the definition set of
f5(A;) if the initial spatial deviatiom;(0), the equilibrium
stateA; and all values ofz; in between are in the domain
of definition of f3(A;) for all i. Asymptotic stability follows
by applying the Invariance principle, which ensures that th
trajectories of the states converge to the largest invesigin

the displacements in steady state are undesirable and grows, i-€. M p(t) = p* and lim_. A(t) = A" such that

with the string lengtiN in presence of a nonzero reference
velocity vp.

Lemma 3 Consider the string systerf) in closed loop
with the control law(9) and where the initial spatial devi-
ation A;(0), the equilibrium state\” and all values ofy; in
between are in the domain of definition ¢i4;) for all i.
Consider further that {(A;) is a strictly monotonically in-
creasing function satisfying®0) = 0. Then, the equilibrium
(p",A%) = (Mivo, 7 (STBwy)) is globally asymptotically
stable in the absence of disturbances, i.e: @.

PROOF. Given (9) and (4) the closed loop has the port-
Hamiltonian form

~(B+R) ST
-S

p
A

VHa(p.A) (11)

with the closed-loop Hamiltonian function

Hal(p.4) =2 (P~ M1v9) M (p — M1vo)
N Ai N
Yy f (fis(w) - Zbkvo] dw  (12)
i=1 VA& k=i

WhereZkN:i bkvo is theith entry of the vecto~"Blv,. Note
that the second right hand term in (12) is non-negative.
The nonlinear spring function§>(A;) are strictly mono-
tonically increasing and satisf§>(0) = 0. Also note that

fS(A*) = S7TBlvy. Adding the term- 3. byvo ensures that

Ha(p*,A%) = 0, (see e.g. [7]). 0

Note thatA] = fls'1 (2{2':1 bkvo). Thus, for positive parame-
tersb; the steady state values of the spatial separation be-
tween the vehicles is non-zero. Moreover, if a positive lowe
bound on the drag and compliance ffaéents exists, i.e.
min b > b > 0 and ming > ¢ > 0, the argument ofls_1
grows withN. Depending on the form of®, A* might grow
without bound at the beginning of the string. In any case,
A* is not a desired equilibrium point. Thidfect could be
avoided by choosing parametdxghat decrease fliciently

fast withi. Note that there are examples in the literature,
where string stability can be guaranteed if control param-
eters grow with the position. (Such as growiRgin [5].)
However, this implies that such a vehicle string might not
be scalable in practice and is therefore undesirable. Asmoth
option is to assume that each agent has perfect knowledge
of the reference signal (in its simplest case the reference
velocity as discussed in [2]) and to use this knowledge to
compensate the influence of the drag onto the steady state.
However, this requires the communication of any changes
in the reference signal to all agents.

4 Integral Action

Studying a bidirectional vehicle string in the previous-sec
tion showed that introducing local control based on a mass-
spring-damper system can guarantee stability of an equilib
rium point which is not the desired equilibrium. Thus, inte-
gral action will be introduced in this section to ensurengtri
stability of the desired equilibrium. Also, it will be shown
that using suitable integral action allows to reject conista



unknown disturbances. The following theorem studies such Thus, the closed loop dynamics have the port Hamiltonian
a controller with additional integral action. form
z| |-B+R+Ay) ST O

Theorem 4 Assume the disturbances d include a constant 2| = =S 0 S|VH.() (21)
component gdand a dynamical componen(t) such that 73 0 -STo

d = d; + dy(t) and there exists a constant Do satisfying
lda(-)ll2 < D. Consider the string syste) with a reference
signal with constant velocityydisturbance d in closed loop N
with a controller obtained by adding the control in Lemma 3 Hy(21,25,25) = EZIM’lzl N Z f 2 £S(w)dw

7 2 i J,
i=1

with the Hamiltonian function

and the additional dynamic control forcef i. e.

1
F=—-(B+RMIp+&Rv+STfA) +Fa  (14) +§(z3 - )"K(z - a). (22)
Fia = —AM™p+ MKST5(A) - (B+ R+ Ap)Kzs (15)
73 = — STFS(A). (16) Note that it can be shown in a similar way as below (12) that

H(2) is anon-negative function. As the spring functidifs
are strictly monotonically increasing and satidf(0) = 0

the integrand of the second right hand term in (22) is pasitiv
for z, > 0 and negative for, > 0. Hence, the integral is
non-negative and only equal to zero oy = 0. It can be
shown in a similar way as in the proof of Lemma 3 that the
system is asymptotically stable by using the Hamiltonian
as a Lyapunov function and considering tiat R+ A, is
positive definite.

where A is a constant diagonal matrix,A= diag@y,, . . .,ap,)
with 0 < a, < oo for all i, K € RNN is a constant diagonal
positive matrix K= diagk, .. .,ky) with 0 < ki < oo for
all'i. Then

(1) for dy(t) = O the desired equilibrium point

(p.4%2) tl . (2): Note that with constant disturbancésand additional
(M1vo,0K (B + R+ Ag)™ (de — (B + Ay) 1vo)) dynamic disturbanced(t) the system description changes
a7 to
is globally asymptotically stable (despite the presence 7 ~(B+R+Ay) ST 0 da(t)
of constant unknown disturbanceg,d _
(2) the system is passive with inpyt dutputy= V, H,(2) 2| = -S 0 S|VH9+| 0 |. (23)
and storage function Hz) and constant disturbances 7 0 -sT o 0

d. are rejected, and
(3) the systemis string stable with respect to the dynamic

disturbances glt). with H;(2) given in (22). UsingH;(2) as a Lyapunov func-

tion candidate, taking its derivative and setting V,, H,(2)
yields

Hz(2) < ~Amin(B + R+ Ag)ly? +y dg(t). (24)

As B+R+ A is positive definite, the system is passive, [12].
PROOF. (1): Consider the following change of coordinates

(3): Extending the argument in (24) leads to

2 =p—- M1y + MK(z - @), (18) -
=A 19 . min
” s +2R e 2Amm(BJlr R+ Ay ()"
with o = K-3(B+ R+ Ap)™ (de — (B+ Ay) 1vp). Hence, Aoin(B+ R+ Ay) 2
_ “min y— . dd(t)
'Zl =STfS(A)_RM—lp+é1R1VO_BM—lp+d_ApM—1p 12 /lmln(B+ R+ Ap)
+MKSTF5(4) - (B + R+ Ag)Kzs ~ MKST 5(4) (B R+ Ay %O (25)
= - (B+R+Ay)M™z + ST5(A) (20)
Hence,
and
Ho(2)) <H,(20)) + L jdOI2 (26)

7 =-SM(p-Mlv) = -SM 1z + SK(z - a). 2Amin(B+ R+ Ap)



Note that sinceR is positive semidefinite anB is positive N=10

“~
N

definite, it can be shown using Gershgorin’s Theorem that
Amin(B + R+ Ap) > minj(b; + ap). Thus, 335
33
-1 N ZZi (0) ,\325
Ha(0) < (2minm)) ©@F + ). [ fwaw =
' iz1 Vo0 2.3
max k; 2 e -1 5 Sats;
+— —1z(0) - al +(2 rr}m(b. +api)) Q] 2 |
-1 N s05)
< (2 min(m)) 2 (0)2 + > Lilz, (0)2 |
i = 30 e
max kK ) -1 205 w ‘ ‘ ‘
+ > |23(0) — a/|2 + (2 mim(bi + api)) ||d(-)||2 0 100 200, 300 400 500
(27)
Figure 1. Velocitiesv; over time for a string of 10 vehicles for
wherel, is the Lipschitz constant fdi*(w) for w € [0,2,(0)]. i=1(red) ...i = 10 (purple)
(Since f? is monotonically increasing, it is equivalent to
require that for everyv = w there exists a constantsuch 10 : : N =10 :

that f5(w) = cw.) Since the massy, the drag cogiicientb;

and the integral action control parametegsandk; for each
vehicle are positiveH,(2) is bounded for alN if |z(0) and
[I[d(")Il2 do not increase wittN. Given the terms including

andz in (22) are quadratic antf is strictly monotonically
increasing, an upper bound &h(2) implies that the states
are also bounded. Further, note that z, andp is a linear
combination ofzy and z; plus two constant fisets terms.
Hence,p andA are also bounded if an upper bound fty(2) T
exists. Therefore, the system is string stable. O |/

N » [l 00

DistanceA;(t)

—4 .
0 100

200 300 400 500
Time t

Note that the integral action introduces more design param_Figure 2. Displacements; over time for a string of 10 vehicles
. . . . fori=1 (red) ...i = 10 (purple)

eters in the controller by adding the matricgs andK in

the control law.

Remark 5 The procedure to design the integral action fol-
lows ideas proposed in [4,13,16]. The change of coordinates
(18)(19)is fundamental for this design. The procedure is as
follows: First, extend the state vector by adding new states . )
zs, and choose their dynamics to be driven by the displace- 1€ homogeneous strings of length= 10, 20, .. .,100 with
mentsA. This will result in integral action on the displace- local control and integral action contrahy(= 1, f3(A) =
ments. Second, choose the change of coordingdi@sto Ai +01A% by = 01,1 = 20 andK; = 100 for alli =
preserve the variables on which the additional integral ac- 1.2,... ,N) have been simulated. Nonzero initial conditions
tion is required. Third, compute the derivative with redpec for p andA have been used for the first vehicle in the string.
to time of (19), and replace the derivative of the states by Figures 1-4 show the evolution of the velocities and inter-
their state equations from the open loop system and desiredvehicle distances for a string of 10 and 100 vehicles. It
closed loop. Then solve this equation farta obtain the can be observed that the disturbance is not amplified when
change of coordinatél8). Finally, compute the time deriva- ~ traveling through the longer string. Instead, all deviasio
tive of (18), replace the derivative of the state by their cor- from the steady state values remain bounded independently
responding state equations, and solve the resulting egoati  Of the string size and the position within the string.

for the control law Fa. The block-matrices and functions of

the closed loog§21) have to be chosen to satisfy the limited In a second set of simulations, ten heterogeneous strings of
information available in each vehicle, to guarantee string lengthN = 10,20,...,100 with local control and integral
stability and to ensure that the control law does not depend action control have been simulated. The parameters were
on the unknown disturbance. chosenrandomly in the ranges € [0.8,1.2], f3(Aj) = GAi+

Example
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Figure 3. Velocitiesy; over time for a string of 100 vehicles for

i=1 (red) ...i = 100 (purple) Figure 6. Displacements; over time for a string of 100 vehicles

6 Conclusions

Modelling bidirectional, heterogeneous vehicle strings a
port-Hamiltonian systemsfters significant advantages over
traditional system descriptions involving ordinaryffdren-

8 1 tial equations. It was shown that this system descriptidn no
only incorporates both linear and nonlinear systems, Isat al
leads to an easy to follow and straightforward stability and

N = 100
10 ‘ ‘

%f af, | string stability analysis.

o |l

§ The local control law proposed in this paper consists of vir-
a tual nonlinear springs and dampers between the vehicles and

drag towards ground. Suitable integral action control was
added to guarantee string stability. The advantage of this a
proach is that it only relies on decentralised control ard lo
-4 ‘ ‘ ‘ ‘ cally measurable data of a set of direct neighbours. No ¢loba
200_. 300 400 500 . . . . .
Time t communication with the leading vehicle or global knowl-
edge of the reference signal are necessary and all control

Figure 4. Displacements; over time for a string of 100 vehicles ~ Parameters can be chosen in defined bounds independent of
fori =1 (red) ...i = 100 (purple) the string size.

It has been shown in [17] that the common strict form of
string stability (requiring the, of all states to be bounded
for anyl, bounded disturbance) cannot be achieved for sym-
metric homogeneous bidirectional strings with tight spgci
0.1A? with ¢ € [0.8,1.2], b € [0.080.12], r; € [18,22] and two poles in the open loop of each vehicle in the string.
foralli = 1,2,...,N. The maximal point wise norm of the  Thus, a diferent more informative definition has been used.
complete state vecta(t), i.e. max|z(t)|, for all string sizes The definition proves to be useful to guarantee point wise
is shown for the homogeneous strings in Figure 5 and for (in time) bounded states in bidirectional vehicle strings.
the heterogeneous strings in Figure 6. One can observe that
the maximal deviation from the steady state value does notSo far only nonlinear springs have been investigated in this
grow with string size but instead settles on a constant valuework. A more detailed analysis is necessary to study nonlin-
for N > 40 for the set of homogeneous strings. As the ear dampers, drag or more general nonlinear systems. At the
system parameters of the heterogeneous strings are choseturrent stage the port-Hamiltonian description basedistab
randomly in a range around the nominal value used in the ity analysis is only suitable to cover symmetric communi-
homogeneous setting, the values of mzA¥)| differ and do cation settings. If the virtual springs and dampers between
not settle on a constant value forfciently long strings. two agents are modified to allow for unbalanced forces at
However, it can be observed in Figure 6 that despite the their ends, an extension of the existing approach is needed.
variation in max|z(t)|, the values are around the same value
as for the set of homogeneous strings and remain boundedrhe local data such as the distances and velocifgrdinces
independently of the string sizé. towards neighbouring vehicles are assumed to be available



without noise, delay or other real world inaccuracies. Aenor
detailed analysis is needed to investigate fffiects of com-
munication or measurement limitations on string stability
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