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Abstract—This paper investigates an optimal energy alloca-
tion problem for multi sensor estimation of a random source
where sensors communicate their measurements to a remote
fusion centre (FC) over orthogonal fading wireless channels
using uncoded analog transmissions. The FC reconstructs the
source using the best linear unbiased estimator (BLUE). The
sensors have limited batteries but can harvest energy and also
transfer energy to other sensors in the network. A distortion
minimization problem over a finite-time horizon with causal
and non-causal centralized information is studied and the op-
timal energy allocation policy for transmission and sharing is
derived. Several structural necessary conditions for optimality
are presented for the two sensor problem with non-causal
information and a horizon of two time steps. A decentralized
energy allocation algorithm is also presented where each sensor
has causal information of its own channel gain and harvested
energy levels and has statistical information about the channel
gains and harvested energies of the remaining sensors. Various
other suboptimal energy allocation policies are also proposed for
reducing the computational complexity of dynamic programming
based solutions to the energy allocation problems with causal
information patterns. Numerical simulations are included to
illustrate the theoretical results. These illustrate that energy
sharing can reduce the distortion at the FC when sensors have
asymmetric fading channels and asymmetric energy harvesting
processes.

Index Terms—multi-sensor estimation, energy harvesting, en-
ergy sharing, energy allocation, fading channels

I. Introduction

Advances in the field of wireless communication have

enriched many practical applications. A key role in this

development is played by wireless sensors that measure a

signal of interest and transmit the measurements to a remote

estimator (“Fusion Centre” or FC). As wireless sensors have

become not only more powerful but also more affordable

and compact, they are increasingly being used in many areas

such as environmental data gathering [1], industrial process

monitoring [2], mobile robots and autonomous vehicles [3],

and for monitoring of smart electricity grids [4]. It is well

known that multi-sensor estimation may provide a significant

reduction in the reconstruction error, or distortion at the FC.

Sensors are often located in remote places and therefore

sometimes cannot be connected to reliable power sources.

Even if connecting sensors to the electricity grid is feasible,
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it can be beneficial not to do so to simplify the installation

process, facilitate changing the position of sensors or ensure

sensors are independent of the power grid. Thus, sensors are

often powered by batteries. Relying on battery power involves

another significant restriction: As changing batteries is usually

costly and undesirable, sensors have to be designed such that

the limited available energy in the battery is used in the most

efficient way, see [5]–[7] and the references therein.

One way to help to overcome the limitations outlined above

is to use energy harvesting. Often sensors are placed in

an environment where energy can be harvested using solar

panels, wind mills or other technical devices. The harvested

energy can then be used for immediate data transmission

or be stored in the battery for future use. Because of the

unreliable nature of most renewable energy sources, allocating

the available energy in an optimal fashion to ensure the best

possible performance of the network is a challenging task.

In recent years, a number of authors have addressed the

problem of optimal transmission energy allocation policy for

optimizing various metrics related to information transmission

when the transmitters are equipped with energy harvesting

capability. In [8], throughput optimal and mean delay optimal

energy allocation policies in a single sensor node are studied.

The optimal energy allocation policies that maximize the

mutual information of a wireless link were derived in [9]

under either causal or non-causal side information available at

the transmitters. In [10], the authors investigated an optimal

packet scheduling problem for a single-user energy harvest-

ing wireless communication system, where data packets and

energy packets arrive at the transmitter in a random manner.

They develop optimal off-line scheduling policies for min-

imizing the delivery time for all packets to the destination

in a deterministic setting where the energy harvesting times

and the amounts of energy harvested are all known before

transmission starts. While no finite battery capacity is assumed

in [10], optimal off-line transmission policies with batteries

with limited storage capacities are investigated in [11], where

a short-term (finite horizon) throughput maximization and the

related problem of minimization of the transmission com-

pletion time for a given amount of data are studied. These

results are further generalized in [12] where fading channels

and optimal online policies are considered.

In addition to energy harvesting, wireless energy transfer

technology is recently gaining traction as it becomes more

efficient and less costly. It has the potential to be used to

recharge batteries of future wireless sensors. It was success-

fully experimentally validated and reported in [13] that energy

can be efficiently transferred between two resonant objects

of the same resonant frequency. Efficiencies of over 50%



2

were achieved for distances up to 2 meters. By choosing

different resonant frequencies between each pair coupled by

an energy transfer link, it is hence possible to allow for

highly efficient energy transfer. See also [14] for similar

energy transfer. Another promising experiment conducted by

Mitsubishi Heavy Industries demonstrated effective wireless

energy transfer of 10kW over 500m, [15]. in Not surprisingly,

an increasing number of companies has shown an interest in

developing wireless energy transfer product, [16], [17]. Their

applications range from small devices such as cell phones in

coffee shops [18] to charging electric vehicles [19]. Appar-

ently a lot of the necessary technology is readily available

and it is merely a question of time when the application of

wireless energy transfer becomes feasible in a wider range

of technical areas [20]. Other researchers have investigated

how to optimally transmit energy and information through

wireless communication channels [21]–[25].In contrast to the

energy transfer techniques discussed in [13], [14], the energy

is assumed to be broadcast in all directions in [21]–[25].

Some researchers have already started to investigate the

potential benefits wireless energy transfer could bring to

wireless sensor systems. A wireless sensor network with a

fixed base station and a wireless charging vehicle driving from

sensor to sensor was considered in [26] and [27] referring to

energy transfer as discussed in [13].

As background for our current work, in [28], an optimal

power allocation policy is derived and multiple necessary

conditions for optimality are given for throughput maximiza-

tion at a two-hop relay channel with one-way energy transfer

from the source to the relay. In the same paper, throughput

maximization for a Gaussian two-way channel with one-way

energy transfer is investigated. It is shown that the optimal

energy allocation policy is a directional two-way water filling

algorithm, where one dimension relates to time while the

second dimension describes the relationship between users.

This paper investigates an energy harvesting wireless sensor

system (also known as a star-network) used to remotely

estimate an independent and identically distributed band-

limited Gaussian process. Sensor measurements are sent via

orthogonal fading wireless channels to the FC, which uses

the best linear unbiased estimator (BLUE), [29], to obtain an

estimate of the physical process. While many of the previously

mentioned works focused on throughput maximization or

delay minimization with energy harvesting transmitters, we

focus on distortion minimization over a finite horizon in

a multi-sensor estimation systems. This problem has been

recently addressed in [30], [31] where only energy harvesting

sensors are considered (see also [32], [33] for related work).

The novelty in the current paper lies in considering sensors

that can not only harvest energy from their environment, but

can also share energy between neighboring nodes. Another

important novelty of our work is to allow energy transfer

between an arbitrary number of sensors (instead of a simple

two sensor system) in both directions (instead of a one-

directional energy transfer as considered in [28]). As we

consider distortion minimization over a finite horizon over

a dynamic fading environment, allowing energy transfer in

both directions is shown to be beneficial especially when the

sensors have asymmetric channel gain and harvested energy

statistics. In particular, the following main contributions can

be destiled:

1) We study the optimal energy allocation policy for trans-

mission and sharing for a finite-horizon sum distortion

minimization assuming centralized (at the FC) non-

causal information and unlimited battery capacities using

standard convex optimization techniques. This leads to

several structural necessary conditions and interpretations

of the optimal energy allocation policy as a type of

two-dimensional directional water filling algorithm (Sec-

tion III).

2) We obtain structural results for a two-sensor system

considering non-causal information and a time-horizon of

2 (Section IV). This insight is used to design a heuristic

ad hoc energy allocation policy later in Section VII-B,

see also contribution (5).

3) We obtain optimal energy allocation policies with causal

centralized and also decentralied information at the FC

based on dynamic programming techniques in Section V

and Section VI, respectively.

4) We present some suboptimal, heuristic policies that have

significantly less computational complexity (Section VII)

than the dynamic programming based solutions and yet

provide a good performance.

5) A comprehensive set of numerical studies are presented

to illustrate the comparative performance of the various

energy allocation policies and the benefits of optimal

energy sharing (Section VIII).

The rest of the paper is organized as follows. The system

model is introduced in Section II. Section III presents the

optimal energy allocation policies for finite horizon distor-

tion minimization with non-causal information and unlimited

batteries, followed by some structural results for the simple

special case of a 2 sensor system with non-causal information

and a time-horizon of 2 in Section IV. Section V presents

the optimal energy allocation policy for the causal informa-

tion case, whereas Section VI presents the policies for the

decentralized information pattern. Some reduced-complexity

suboptimal schemes are presented in VII. Numerical examples

illustrating the performance of the various policies are given

in Section VIII, followed by some concluding remarks in

Section IX.

II. SystemModel

We consider a system with M sensors individually mea-

suring a random process of interest θ(k), k ∈ {1,2,3, . . . }. All

measurements are subject to measurement noise. The remote

sensors can transmit information to a fusion centre (FC). The

latter estimates θ(k) given the available measurements. The

transmitters adopt an analog amplify and forward uncoded

strategy subject to additive noise. Every sensor node has a

local battery whose energy can be used for data transmission

and an energy unit to harvest energy from its environment.

In addition each sensor is equipped with a unit to transmit

and receive energy from other sensors subject to individual

transmission losses. A scheme showing a simple system with

two sensors can be found in Fig. 1. The description of the

individual parts is given below.
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Figure 1: System model for two sensors

A. Source Model and Sensor Measurements

We consider the case where θ(k) is an independent and

identically distributed (i.i.d.) Gaussian process with zero mean

and variance σ2
θ . The measurements of sensor m, xm(k), are

subject to measurement noise, nm(k), such that

xm(k) = θ(k) + nm(k) (1)

for 1 ≤ m ≤ M and k ≥ 1. The measurement noise processes

nm(k) are assumed to be i.i.d. Gaussian, mutually independent

and independent of θ(k), have zero mean and variances σ2
m.

B. Energy Harvester, Energy Sharing and Battery Dynamics

Each sensor has access to an energy harvester that can

gather energy from the environment. The amount of energy

available to be harvested at sensor m at time slot k, denoted

by Hm(k), is described by an i.i.d. process. It is assumed that

the harvested energy, the process θ(k), the measurement noise

and the channel gains are mutually independent. The energy

harvested at time slot k is stored in the battery and can be

used for data transmission or also for energy sharing in the

following time slot k+1. Assume that transmitter m consumes

energy Em(k) from its battery to transmit data to the FC at time

k. (For more information on the transmission model see the

next subsection.) Note that Em(k) only describes the amount

of energy required to transmit the current sensor measurement

to the FC.

Each sensor is fitted with a unit to share energy with

neighboring nodes, that is, to transmit energy to neighboring

nodes and to receive energy from neighboring nodes. It is

assumed that the wireless energy transfer is realized in a

directed fashion. Possible technical realizations include energy

transfer between two resonant objects such as discussed in

[13] and similar results in [14], the use of laser beams, or

by the use of beamforming radiowaves. Hence, the amount of

energy transferred from one node to each neighboring node is

assumed to be independent. The set of neighboring nodes from

which sensor m can receive energy is denoted by NR,m and

the set of neighboring nodes to which sensor m can transmit

energy is denoted by NT,m. Transferring energy is subject to

losses. The efficiency of the energy transfer link from sensor

m to sensor n is given by ηm,n < 1. Thus, out of the energy

transferred from sensor m to sensor n at time slot k, denoted by

Tm,n(k), sensor n receives ηm,nTm,n(k), which is stored in sensor

n’s battery and can be used for data transmission or energy

sharing at time slot k+1. Note that in general, the efficiencies

ηm,n can be functions of time, i.e. ηm,n(k). Unless explicitly

mentioned we will assume time-invariant efficiencies in this

paper. As discussed later, some of our results can be extended

to the case of time-varying efficiencies.

Using the notation above, the dynamics of the battery level

of sensor m at time k + 1 is

Bm(k + 1) =min






Bm(k) + Hm(k) − Em(k) −
∑

n∈NT,m

Tm,n(k)

+
∑

n∈NR,m

ηn,mTn,m(k); B̂m






(2)

where B̂m denotes the maximal battery capacity of sensor m.

C. Transmission Model

Each sensor has a transmitter and all transmitters adopt an

analog amplify and forward uncoded strategy. This implies

that at each time instant k, the transmitted signal from sensor

m is the measurement xm(k) amplified by a factor of
√
αm(k).

Without loss of generality, we assume that each transmission

slot is of duration unity. The energy necessary to transmit this

signal is then given by

Em(k) = αm(k)
(

σ2
θ + σ

2
m

)

. (3)

The channel power gain of the m-th channel (between sensor

m and the FC), gm(k), is assumed to follow an i.i.d. block

fading process where within each block, the channel remains

constant and changes independently from block to block.

The duration of each fading block is assumed to be the

same as the duration of each transmission slot. The received

signal at the FC from sensor m at time k is thus given by

zm(k) =
√

αm(k)gm(k)xm(k) + ζm(k) where ζm(k) is assumed to

be i.i.d. additive white Gaussian noise with variance ξ2m. Note

that here we assume an orthogonal multiple access scheme

between the sensors and the FC which can be implemented

via techniques such as orthogonal frequency division multiple

access (OFDMA).

D. Information Patterns

In this paper, we will consider two different types of infor-

mation pattern available for computing the optimal transmis-

sion energy and energy transfer policies. In the first instance

(Section III), we will assume a non-causal information pattern

where the FC knows all sensors’ channel gains and harvested

energy levels (and hence battery levels) of all (including

past, present and future) time slots. This information pattern

is clearly impractical, but serves an important purpose of

providing a benchmark of the optimal distortion performance

attainable and can be used for comparing the performance of

various other algorithms.

The second information pattern considered in this paper

(Sections V and VI) is the causal information pattern where

only information of current and past channel gains and har-

vested energies is assumed. Under this scenario, we consider

two possible sub-cases: centralized and decentralized. In the
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centralized case, the FC has causal information of all the chan-

nel gains, and harvested energies (and hence battery levels)

of all sensors. This can be achieved in practice by the FC

transmitting periodic (at the beginning of each transmission

slot) pilot signals to the sensors, from which the sensors

estimate their channels and report back their channel gains

and harvested energies (from the previous slot) to the FC

via orthogonal control channels. In this case, the channels

between the sensors and the FC are assumed to be reciprocal,

such as in the time-division-duplex (TDD) framework. In both

the non-causal case and the causal centralized case, the FC

computes the optimal energy allocation policies and inform

the sensors at each slot.

In the decentralized scenario, we assume that each sensor

has causal information about its own instantaneous channel

gains (using similar pilot transmissions from the FC and

channel reciprocity) and harvested energies only. The sensors

also report the channel gains to the FC so that the FC can

compute the minimum mean square error (MMSE) estimate

of the source (or the best-linear unbiased estimate (BLUE)

if the Gaussianity assumptions are violated). In this case, the

sensors only have statistical (distributional) information about

the channel gains and harvested energy levels of the other

sensors. For more details on this scenario, see Section VI.

It should be noted that the communication overhead be-

tween the sensors to the FC for reporting channel gains and

battery levels also consumes energy at the sensors, which

is not taken into account in this work. Note however, that

if this energy consumption is constant for each transmission

slot, then it can be easily taken into account by subtracting

this energy from the maximum battery level and defining a

modified maximum battery level for each sensor. Of course,

it is assumed that the minimum battery level is large enough

to support this communication overhead.

E. Distortion Measure at the Fusion Center

At the FC the best linear unbiased estimator, [29], provides

the estimate θ̂(k) given the vector of received signals z(k):

θ̂(k) =
(

hT(k)R−1(k)h(k)
)−1

hT(k)R−1(k)z(k) (4)

where h(k) ∈ R
M×1 with entries hm(k) =

√

αm(k)gm(k),

R(k) ∈ R
M×M is a diagonal matrix where Rm,m(k) =

σ2
mαm(k)gm(k) + ξ2m and z(k) is the vector of received signals,

i. e. (z1(k),z2(k), . . . ,zM(k))T.1 Then, the distortion measure at

the FC is given by

Var
(

θ̂(k)
)

=
(

hT(k)R−1(k)h(k)
)−1
=





M∑

m=1

αm(k)gm(k)

σ2
mαm(k)gm(k) + ξ2m





−1

(5)

Denoting D(E(k),s(k)) := Var
(

θ̂(k)
)

, sm(k) :=
gm(k)

ξ2m(σ2
θ
+σ2

m)
and dm(Em(k),sm(k)) := Em (k)sm(k)

1+σ2
mEm (k)sm(k)

with Em(k) in (3), the

achieved distortion at the FC at time slot k is

D(E(k),s(k)) =






1
∑

m dm(Em (k),sm(k))
if

∑

m Em(k)gm(k) > 0

σ2
θ if

∑

m Em(k)gm(k) = 0
(6)

1It is assumed that the sensor noise parameters σm, and the channel noise
variances ξm are known at the FC.

where E(k) =
(

E1(k) E2(k) . . . EM(k)
)T

is

the vector of transmission energies Em(k), and

s(k) =
(

s1(k) s2(k) . . . sM(k)
)T

is the channel to

signal and noise ratio. In case no sensor is transmitting,

the optimal estimate is simply θ̂(k) = E[θ(k)] = 0 with

the distortion D(0,s(k)) = σ2
θ
. It is well known that the

distortion measure D(E(k),s(k)) is convex in E(k) > 0 with a

discontinuity at the boundary point E(k) = 0.

III. Finite-Time Horizon Energy Allocation with

Non-Causal Information and Unlimited Battery

Capacity

In this section we derive the optimal energy allocation pol-

icy for minimizing the sum distortion over a finite horizon K

and a priori knowledge of the channel gains and the harvested

energies (and hence the battery levels) for k = 1, . . .K of all

sensors, at the FC. It will also be assumed that each sensor has

an unlimited battery, such that the battery equation of sensor

m at time k + 1 can be written as (c.f. (2))

Bm(k + 1) =Bm(k) + Hm(k) − Em(k)

−
∑

n∈NT,m

Tm,n(k) +
∑

n∈NR,m

ηn,mTn,m(k). (7)

Define T(k) as the matrix with entries (T(k))m,n = Tm,n(k) for

n ∈ NT,m and (T(k))m,n = 0 otherwise. Our aim is to find

the optimal energy allocation {(E(k),T(k))} : k = 1, . . . ,K that

solves the following problem:

min
E(k),T(k):1≤k≤K

K∑

k=1

D(E(k), s(k)) (8)

s.t. Em(k),Tm,n(k) ≥ 0 and Em(k) +
∑

n∈NT,m

Tm,n(k) ≤ Bm(k)

a.s. for 1 ≤ m,n ≤ M and 1 ≤ k ≤ K, and Bm(k) satisfies (2). It

is obvious that due to the convexity of the objective function

and the linearity of the constraints, the optimization problem

(8) is convex.

A. Lagrangian Formulation

The Lagrangian formulation for this problem, given the

Lagrange multipliers λm,k ≥ 0,m = 1,2, . . . ,M, k = 1, 2, . . . ,K

is [34],

L (E,T,λ) =

K∑

k=1

[

D(E(k),s(k)) +

M∑

m=1

λm,k

( k∑

l=1

Em(l) −
k−1∑

l=1

Hm(l)

− Bm(1) +

k∑

l=1

∑

n∈NT,m

Tm,n(l) −
k−1∑

l=1

∑

n∈NR,m

ηn,mTn,m(l)

)]

. (9)

Eo
m, T o

m,n, and λo
m,k

are primal and dual optimal solutions to

(9) if and only if they satisfy the Karush-Kuhn-Tucker (KKT)

optimality conditions for all m and all k, i. e.,

Em(k) ≥0, Tm,n(k) ≥ 0, λm,k ≥ 0, (10)

k∑

l=1

Em(l) −
k−1∑

l=1

Hm(l) − Bm(1)

+

k∑

l=1

∑

n∈NT,m

Tm,n(l) −
k−1∑

l=1

∑

n∈NR,m

ηn,mTn,m(l) ≤ 0, (11)
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λm,k

( k∑

l=1

Em(l) −
k−1∑

l=1

Hm(l) − Bm(1)

+

k∑

l=1

∑

n∈NT,m

Tm,n(l) −
k−1∑

l=1

∑

n∈NR,m

ηn,mTn,m(l)

)

= 0, (12)

∂L
∂Em(k)

∣
∣
∣
∣
∣
Eo

m(k)






≥ 0 for Eo
m(k) = 0

= 0 for Eo
m(k) > 0

(13)

∂L
∂Tm,n(k)

∣
∣
∣
∣
∣
∣
T o

m,n(k)






≥ 0 for T o
m,n(k) = 0

= 0 for
∑

n∈NT,m
T o

m,n(k) > 0
(14)

B. Necessary Conditions for Energy Transfer

In this subsection, necessary conditions for energy transfer

between any two sensors will be derived. The conditions

depend on the inverted sum of future Lagrangian multipliers:

νm,k :=





K∑

l=k

λm,l





−1

(15)

As due to the KKT conditions λm,k ≥ 0 for all m and k, it

follows that νm,k ≤ νm,k+1 for all m and k < K.

Lemma 1. If it is optimal to transmit energy from sensor m to

sensor n at time k, that is T o
m,n(k) > 0, then νn,k+1 = ηm,nνm,k.

Proof. According to the KKT condition (14) it must be true

that ∂L
∂Tm,n(k)

∣
∣
∣
∣
T o

m,n(k)
= 0 for T o

m,n(k) > 0. Thus, evaluating the

derivative of the Lagrangian with respect to T o
m,n(k) yields

∂L
∂Tm,n(k)

∣
∣
∣
∣
∣
∣
T o

m,n(k)

=

K∑

l=k

λm,l − ηm,n

K∑

l=k+1

λn,l = 0. (16)

Then by using (15) we arrive at the necessary condition. �

It can further be shown that transferring energy between two

sensors in both directions at the same time is not optimal:

Corollary 1. It is not optimal to transmit energy between any

pair of neighboring nodes in both directions in the same time

step, that is one cannot have T o
m,n(k) > 0 and T o

n,m(k) > 0 for

all m, n and k.

Proof. The proof follows similar steps as in the proof of

Lemma 1. The necessary conditions for T o
m,n(k) > 0 and

T o
n,m(k) > 0 are then combined to derive the result. �

An alternative proof, which also holds for time-varying

efficiencies ηm,n(k), can be found below.

Proof. Assume there exists an optimal policy in which at

some time step k energy is transferred between the two

sensors “1” and “2” in both directions, that is T o
1,2(k) > 0 ≥

T o
2,1

(k) > 0. Assume that the policy is changed such that

T ∗2,1(k) = 0 and T ∗1,2(k) is reduced such that the overall energy

received by sensor 2 is as before. Hence, the battery level of

sensor 2 at the next time step is identical in both policies.

However, the energy balance for the first sensor is better in

the alternative policy. The saved energy when applying the

second policy can then be used in the following time step

to transmit data to the FC with higher energy leading to a

smaller distortion. Thus, the original policy is outperformed

by the second policy and hence cannot be optimal. �

Remark 1. There exists, however, one very special instance in

which any T o
n,m(k) ≥ 0 and T o

m,n(k) ≥ 0 is optimal. Consider the

case where the total harvested energy in all sensors together

with the sum of all initial battery levels is accumulated at

one node with the highest channel gain. Assume that setting

all energy transfer efficiencies to 1 the accumulated energy is

denoted by Esum. If the distortion achieved by using Esum with

the best channel gain of all sensors for all times is greater

than σ2
θ , then it is optimal not to transmit any data at any

time step. In this case, it does not matter what the available

energy is used for, apart from data transfer. Thus, any possible

choice of T o
n,m(k) ≥ 0 and T o

m,n(k) ≥ 0 does not change the best

achievable distortion and is thereby optimal. Note that this is

clearly an extreme and highly undesirable worst case scenario.

It follows from the discontinuity of the distortion function at

E = 0.

C. Energy Transfer via Relay Node

Our preceding analysis allows one to study whether it is

useful to use nodes for relaying energy.

Lemma 2. Consider a system with at least three nodes m,

n and p and energy transfer efficiencies ηm,n, ηn,p and ηm,p.

Then, transferring energy from sensor m to n at time step k and

from n to p at k or k+1 can only be optimal if ηm,p ≤ ηm,nηn,p.

Proof. The proof follows similar steps as in Lemma 1 and

Corollary 1. The necessary conditions for energy transfers

T o
m,n, T o

n,p and T o
m,p are combined to yield to result. �

Remark 2. Note that this conclusion holds true for all

T o
m,n(k) > 0 and T o

n,p(k) > 0 or T o
n,p(k + 1) > 0, that is even

if not all energy received at node n from m is transferred to

p or more energy than was received is transferred to p. Note

further that the condition only holds for the same time step

or two directly adjacent time steps and not any arbitrary time

slots. Thus, it might be optimal to transfer energy from m to

n at k and from n to p at a time step other than k or k + 1

even if ηm,p ≥ ηm,nηn,p.

Remark 3. Under some conditions this result can be extended

to systems with time varying efficiencies ηm,n(k). This depends

on the range of the efficiencies. Assume there exists a known

lower bound for the efficiency between nodes m and p such

that ηm,p(k),ηm,p(k + 1) ≥ η
m,p

. Assume further that the upper

bounds for the efficiencies between sensors m and n, and

between n and p are given by ηm,n(k),ηm,n(k + 1) ≤ η̄m,n and

ηn,p(k),ηn,p(k+1) ≤ η̄n,p. Then, a necessary condition for using

node n as a relay node instead of transferring energy directly

between sensors m and p can be found to be η
m,p
≤ η̄m,nη̄n,p.

D. Optimal Energy Allocation Policy

The optimal policy (computed at the FC) to determine

how much energy the sensors should use to transmit their

measurements to the FC at any time step is given by the

following theorem.

Theorem 1. Suppose that the FC has an unlimited battery ca-

pacity and access to non-causal information on the harvested
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energies and channel gains for all time steps and all sensors.

Then the optimal energy allocation at time k at sensor m is

Eo
m(k) =






0 if D(Ωo(k),s(k)) ≥ σ2
θ

Ωo
m(k) if D(Ωo(k),s(k)) < σ2

θ

(17)

where Ωo(k) is the vector of Ωo
m(k) for m = 1, . . .M, given by

Ωo
m(k) =






0 if Ωm(k) ≤ 0

Ωm(k) if 0 < Ωm(k) < B∗m(k)

B∗m(k) if Ωm(k) ≥ B∗m(k).

(18)

In (18),

Ωm(k) =
Dk
√
νm,k

σ2
m

√
sm(k)

− 1

σ2
m sm(k)

(19)

with the overall achieved distortion at time k denoted by Dk

and the largest possible energy for data transmission at sensor

m at time k

B∗m(k) =Bm(0) +

k−1∑

l=1

Hm(l) −
k−1∑

l=1

Em(l)

+

k−1∑

l=1

∑

n∈NR,m

ηn,mTn,m(l) −
k−1∑

l=1

∑

n∈NT,m

Tm,n(l). (20)

Proof. By using the continuous part of the distortion function

D, that is focusing on E(k) > 0, the KKT condition (13) for

Eo
m(k) > 0 yields

∂L
∂Em(k)

∣
∣
∣
∣
∣
Eo

m (k)

= −
D2

k
sm(k)

(

1 + σ2
mEo

m(k)sm(k)
)2
+

K∑

l=k

λm,l = 0. (21)

Setting νm,k =
(∑K

l=k λm,l

)−1
leads to (19). Whenever Ωm(k) is

within the achievable boundaries of 0 and the battery level

B∗m(k) we have Ωo
m(k) = Ωm(k). Otherwise Ωm(k) will be

saturated below at 0 and above at B∗m(k) to ensure the KKT

conditions are satisfied.

In case choosing the optimal energy allocation policy Ωo
m(k)

leads to an overall distortion that is greater or equal to σ2
θ , it

is optimal not to transmit any data, that is to set Eo
m(k) = 0,

and to save the available energy for a future time step. �

Remark 4. Note that this optimal policy also holds for the

general case with time-varying efficiencies. However, when

allowing time-varying efficiencies, the overall dynamics can

change. This leads for instance to changed KKT coefficients

λm,k (and hence different νm,k), which results in different Eo
m(k).

With suitably chosen pre-specified positive values of ǫ, δ

the optimal power allocation policy can be calculated by the

following algorithm:

Algorithm 1: computing the optimal energy allocation

policy (non-causal scenario with infinite battery capacity)

1: Initialize λm,l = λ
0
m,l
≥ 0 for all m ∈ {1,2, . . . ,M} and

l ∈ {1,2, . . . ,K}.
2: Initialize T o,0

m,n(k) = 0, ∀m, n ∈ {1,2, . . . ,M} (where m , n)

and k ∈ {1,2, . . . ,K}.
3: repeat

4: For i = 0,1, . . . (note that i is the iteration number)

1) Employing λi
m,k

, where m ∈ {1,2, . . . ,M} and k ∈
{1,2, . . . ,K}, use a nonlinear solver to obtain Ωm(k) in

(19), yielding the values of Ωo
m(k) in (18) and, hence,

the values of Eo
m(k) in (17). Denote these values by

E
o,i
m (k).

2) Compute T
o,i+1
m,n (k), λi+1

m,l
, ∀m,n, l, k (with n , m), accord-

ing to the following primal dual sub-gradient method:

T o,i+1
m,n (k) =



T
o,i
m,n(k) − ǫ

( K∑

l=k

λi
m,l − ηm,n

K∑

l=k+1

λi
n,l

)



+

(22)

λi+1
m,l =




λi

m,l + ǫ

( l∑

j=1

Em( j) −
l−1∑

j=1

Hm( j) − Bm(1)

+

l∑

j=1

∑

n∈NT,m

Tm,n( j) −
l−1∑

j=1

∑

n∈NR,m

ηn,mTn,m( j)

)




+

(23)

5: until Convergence: |λi+1
m,l
− λi

m,l
| ≤ δ, ∀m,l.

Note that in the above algorithm, ǫ denotes the step size

for the sub-gradient algorithm and should be chosen suffi-

ciently small to guarantee convergence, and δ denotes the

accuracy threshold. Also, [x]+ = max(x,0). Note that one

can use a time-varying decreasing threshold ǫi > 0 satisfying
∑∞

i=1 ǫi = ∞, and
∑∞

i=1 ǫ
2
i
< ∞ for improved convergence.

Finally, another alternative is to simply use a standard convex

optimization software such as CVX that uses interior point

methods.

E. Water Filling Algorithm Interpretation

The optimal energy allocation policy derived above can be

interpreted as a two-dimensional water filling algorithm where

water flows in one direction corresponding to the time from

k to k + 1 and in the second dimension between sensors.
Consider the optimal energy allocation formula for Ωm(k) in

Theorem 1. The first right hand term in (19) can be interpreted

as the water level for sensor m at time k. Note that the

water level changes over time and differs between sensors.

The height cannot be easily determined as it depends on the

inverted sum of the Lagrangian multipliers, as well as the

overall distortion. 2 The second right hand term in (19) can be

interpreted as the height of the flat bottom of the water basin

for sensor m at time k. The difference between the water level

and the height of the bottom corresponds to the optimal energy

used at sensor m at time k. This is illustrated in Figure 2. The

bottom areas drawn in grey illustrate the second right hand

term of (19) while the blue shaded areas above illustrate the

water in the tank, i.e. the optimal amount of energy used to

transfer data to the FC.
Note, that energy causality has to be considered. Hence,

only the energy stored in the battery can be used and energy

harvested at time step k is only available for transmitting data

at k+1 or later. Thus, the water filling algorithm is directional,

i.e. “water” can only flow from k to k + 1.
To understand the second dimension of the water filling

algorithm describing the water or energy flow between the

sensors, consider the optimal energy allocation for sensor n

2In case of constant channel gains, the algorithm is similar to the
directional or staircase water filling algorithm shown to be optimal for
wireless communications with energy harvesting constraints, full non-causal
information and infinite battery capacity in [9], see also [35].
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Figure 2: Illustration of water filling algorithm: The grey

shaded areas symbolize the tank bottoms and the blue shaded

areas illustrate the amount of water in each tank for all time

steps k for sensor 1 (left) and 2 (right).

at time k + 1. Assume the overall distortion at the next time

step is below σ2
θ

and En(k + 1) is between 0 and the battery

level of sensor n at time k+1. Assume further that it is optimal

to transmit energy from sensor m to n at time k. Then, it must

be true that ηm,nνm,k = νn,k+1. Substituting νn,k+1 in En(k + 1)

leads to the following ratio between the water levels at sensor

m at time k and sensor n at time k + 1

En(k + 1) + 1
σ2

n sn(k+1)

Em(k) + 1
σ2

m sm(k)

=
√
ηm,n

Dk+1
√
νm,k

σ2
n

√
sn(k+1)

Dk
√
νm,k

σ2
m

√
sm(k)

=
√
ηm,n

Dk+1

σ2
n

√
sn(k+1)

Dk

σ2
m

√
sm(k)

.

Thus, in case the necessary condition for T o
m,n(k) > 0 is

satisfied, energy is transmitted from sensor m to sensor n until

the above equation is satisfied, or until the battery at sensor

m is empty or the battery of n is full.

Remark 5. The above water filling algorithm is related to the

two-dimensional directional water filling algorithm presented

in [28]. However, in contrast to the algorithm in [28] the water

levels of the algorithm presented here do not only depend on

the inverted sum of Lagrangian multipliers, but also on the

distortion and the time-varying channel gains (assumed to be

fixed in [28]). Further, unlike our case, the heights of the water

basin bottoms are constant over time in [28]. Another main

difference lies in the fact that the two-dimensional directional

water filling algorithm presented in [28] allows only to share

energy in one direction, whereas the current setup allows for

bi-directional energy transfer between neighboring sensors.

The two-dimensional water-filling algorithm presented here

is a generalization of the directional algorithm presented in

[28]. First, the approach considered here considers more than

two sensors. Second, as energy can be transferred from sensor

m to all sensors in NT,m and received from all sensors in

NR,m, it is not uni-directional in the second dimension, that

is, between two sensors, as long as there exists a pair (m,n)

such that n ∈ NT,m and n ∈ NR,m.

IV. Two Sensor Horizon 2 Problem with Non-Causal

Information and Unlimited Battery Capacity

In Section III, we showed that there is a closed form

expression for the optimal energy allocation policy for the

finite horizon case with non-causal information. However, it

is difficult to fully understand the solution for any general K as

the solution has to be obtained by iteratively solving a system

of nonlinear equations. This section presents some structural

properties of the optimal solution of the energy allocation

problem of a simplified problem with two sensors, finite-time

horizon K = 2, non-causal information and unlimited battery.

Assume that both sensors can harvest energy from their

environment at time step k = 1, that is H1(1) and H2(1)

and have the initial battery levels B1(1) and B2(1). Both

sensors can use energy from their battery to transmit their

measurements to the FC through a wireless fading channel

with a priori known gains for sensor 1, that is g1(1) and g1(2),

and for sensor 2, that is g2(1) and g2(2). Both sensors have a

wireless energy transfer unit to transfer energy between each

other. The energy transfer efficiencies are η1,2 and η2,1.
The aim is to find the energy allocation policy, that con-

sists of the data transmission energies E1(1), E1(2), E2(1)

and E2(2), and the energy sharing quantities T1,2(1), T1,2(2),

T2,1(1) and T2,1(2), to minimize
2∑

k=1

D(E(k),s(k)) =

(

E1(1)s1(1)

1 + σ1E1(1)s1(1)
+

E2(1)s2(1)

1 + σ2E2(1)s2(1)

)−1

︸                                                  ︷︷                                                  ︸

=:D1

+

(

E1(2)s1(2)

1 + σ1E1(2)s1(2)
+

E2(2)s2(2)

1 + σ2E2(2)s2(2)

)−1

︸                                                  ︷︷                                                  ︸

=:D2

(24)

subject to Em(k) ≥ 0, Tn,m(k) ≥ 0, Em(k)+Tm,n(k) ≤ Bm(k) and

Bm(2) = Bm(1) + Hm(1) − Em(1) − Tm,n(1) + ηn,mTn,m(1) (25)

for m,n ∈ {1,2}, m , n and k ∈ {1,2}.
It is optimal to use all remaining energy in the battery at

the final time step k = 2 for data transmission to the FC. It is

also optimal not to transfer any energy between the sensors

at k = 2 as it could only be used in the third time slot. This

yields the simplifications T1,2(2) = 0 and T2,1(2) = 0 and

E1(2) =B1(1) + H1(1) − E1(1) − T1,2(1) + η2,1T2,1(1), (26)

E2(2) =B2(1) + H2(1) − E2(1) − T2,1(1) + η1,2T1,2(1). (27)

Hence, the notation can be simplified by dropping the time

index for the battery levels, B1(1) = B1 and B2(1) = B2, the

harvested energies, H1(1) = H1 and H2(1) = H2, the energies

used for data transfer, E1(1) = E1 and E2(1) = E2, and the

amount of energy shared, T1,2(1) = T1,2 and T2,1(1) = T2,1.

A. Lagrangian Formulation

Using the simplified notation discussed above, the cost

function in (24) and the energy constraints yield the associated

Lagrangian

L (

E1,E2,T1,2,T2,1,λ1,λ2
)

= D1 + D2

+ λ1
(

E1 + T1,2 − B1
)

+ λ2
(

E2 + T2,1 − B2
)

. (28)

In (28), Eo
1,E

o
2,T

o
1,2,T

o
2,1 and λo

1,λ
o
2 are primal and dual optimal

solutions if and only if they satisfy the KKT optimality

conditions for m,n ∈ {1,2} and m , n

Em ≥ 0, Tm,n ≥ 0, λm ≥ 0, (29)

Em + Tm,n − Bm ≤ 0, λm

(

Em + Tm,n − Bm

)

= 0, (30)

∂L
∂Em

∣
∣
∣
∣
∣
Eo

m






≥ 0 for Eo
m = 0

= 0 for Eo
m > 0

and (31)

∂L
∂Tm,n

∣
∣
∣
∣
∣
∣
T o

m,n






≥ 0 for T o
m,n = 0

= 0 for T o
m,n > 0

. (32)
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B. Necessary Conditions

For ease of exposition we will adopt the shorthand notation:

X1,1 :=
dD1

dE1
=

D2
1s1(1)

(

1 + σ1Eo
1
s1(1)

)2
,

X1,2 :=
dD2

dE1
=

D2
2s1(2)

(

1 + σ1(B1 + H1 − Eo
1
− T o

1,2
+ η2,1T o

2,1
)s1(2)

)2
,

X2,2 :=
dD2

dE2
=

D2
2s2(2)

(

1 + σ2(B2 + H2 − Eo
2
− T o

2,1
+ η1,2T o

1,2
)s2(2)

)2
.

Lemma 3. If it is optimal to transmit energy from sensor 1

to 2 at time 1, that is T o
1,2
> 0, then X1,2 ≤ η1,2X2,2. Similarly,

if it is optimal to transfer energy from sensor 2 to sensor 1,

then one must have X2,2 ≤ η2,1X1,2.

Proof. Note that ∂L
∂T1,2

∣
∣
∣
∣
T o

1,2

= λ1+X1,2−η1,2X2,2 where Xm,k can

be seen as the weighted channel gain of of sensor m at time

step k. Together with condition (32) this yields the necessary

condition for T o
1,2
> 0. The proof for energy transfer in the

other directions follows similarly. �

It also follows from the general M sensor case with non-

causal information pattern that it is not optimal to transmit

energy from sensor 1 to 2 and sensor 2 to 1 at the first time

slot. A necessary optimality condition for data transmission

to the FC can be obtained in a similar manner:

Lemma 4. If it is optimal to transfer data from sensor 1 to

the FC at time 1, that is Eo
1
> 0, then X1,2 ≤ X1,1.

Proof. The derivative ∂L
∂E1

∣
∣
∣
∣
Eo

1

yields ∂L
∂E1

∣
∣
∣
∣
Eo

1

= λ1 − X1,1 + X1,2.

Together with (31) this yields the necessary condition. �

Finally, a necessary optimality condition for energy storing

is simply λ1 = 0.

C. Alternative Lagrangian Formulations

Given a positive battery level at the beginning of time slot

1 in the battery of sensor 1, that is B1 > 0, there exist three

possible ways of using the available energy:

1) using the energy for data transmission, that is E1 > 0,

2) transferring energy to sensor 2, that is T1,2 > 0, and

3) storing energy for k = 2, that is B1 − E1 − T1,2 > 0.

If the quantities of two out of the three energy allocation

possibilities are known, the third follows immediately. Thus,

instead of minimizing the distortion by choosing the optimal

quantities to be used to transfer data to the FC and transfer

energy to sensor 2, minimizing the distortion by choosing the

optimal quantities to store in the battery for the next time slot,

that is F1 := B1 − E1 − T1,2, and to transfer energy to sensor

2 leads to the equivalent associated Lagrangian

L̃
(

F1,F2,T1,2,T2,1,λ̃1,λ̃2

)

=
1

(B1−F1−T1,2)s1(1)

1+σ1(B1−F1−T1,2)s1(1)
+

(B2−F2−T2,1)s2(1)

1+σ2(B2−F2−T2,1)s2(1)

+
1

(F1+H1+η2,1T2,1)s1(2)

1+σ1(F1+H1+η2,1T2,1)s1(2)
+

(F2+H2+η1,2T1,2)s2(2)

1+σ2(F2+H2+η1,2T1,2)s2(2)

+ λ̃1
(

F1 + T1,2 − B1
)

+ λ̃2
(

F2 + T2,1 − B2
)

(33)

Condition for From L From L̃ From L̂

Eo
1
> 0 X1,2 ≤ X1,1 λ̃1 = 0 η1,2X2,2 ≤ X1,1

T o
1,2
> 0 X1,2 ≤ η1,2X2,2 X1,1 ≤ η1,2X2,2 λ̂1 = 0

Fo
1
> 0 λ1 = 0 X1,1 ≤ X1,2 η1,2X2,2 ≤ X1,2

Table I: Summary of necessary conditions

with similar KKT conditions as discussed in Section IV-A.

A third possible model would be to use the energy that is

used to transfer data to the FC and the energy which is stored

in the batteries as variables (allowing to calculate the energy

transferred between the sensors by T1,2 = B1−E1−F1) leading

to the equivalent Lagrangian formulation

L̂
(

E1,E2,F1,F2,λ̂1,λ̂2

)

=
1

E1 s1(1)
1+σ1E1 s1(1)

+
E2 s2(1)

1+σ2 E2 s2(1)

+
1

(F1+H1+η2,1(B2−E2−F2))s1(2)

1+σ1(F1+H1+η2,1(B2−E2−F2))s1(2)
+

(F2+H2+η1,2(B1−E1−F1 ))s2(2)

1+σ2(F2+H2+η1,2(B1−E1−F1 ))s2(2)

+ λ̂1 (E1 + F1 − B1) + λ̂2 (E2 + F2 − B2) (34)

with again similar KKT conditions as in Section IV-A.

D. Necessary Conditions Derived from Alternative La-

grangian Formulations

Following similar steps as discussed in Sections IV-B it is

possible to derive additional necessary conditions for Eo
1
> 0,

T o
1,2 > 0 and Fo

1 > 0 from the two alternative Lagrangian

formulations given in Section IV-C. An overview of all

necessary conditions derived from the three Lagrangians is

given in Table I.

As all three Lagrangians describe the same optimization

problem, the result obtained from any of the three formula-

tions must be the same. Thus, for instance for Eo
1
> 0 all three

necessary conditions must be satisfied, that is X1,2 ≤ X1,1,

λ̃1 = 0 and η1,2X2,2 ≤ X1,1. In case it is optimal to use

energy to transfer data to the FC from sensor 1 while at the

same time transmitting energy to sensor 2, all corresponding

necessary conditions must be satisfied. This can only be true

if X1,2 ≤ X1,1 = η1,2X2,2, λ̃1 = 0 and λ̂1 = 0. Following the

same reasoning, it can be shown that, in case it is optimal

to simultaneously use energy to transfer data to the FC from

sensor 1, transmit energy to sensor 2 and store energy, it must

be true that X1,1 = X1,2 = η1,2X2,2, λ1 = 0, λ̃1 = 0 and λ̂1 = 0.

E. Graphical Interpretation of Necessary Conditions

Fig. 3 illustrates the interaction between the derived neces-

sary conditions and the resulting energy usage regions. In this

figure the set denoted E (or T or F ) includes all possible solu-

tions where the necessary conditions for Eo
1
> 0 (or T o

1,2
> 0

or Fo
1
> 0, respectively) are satisfied. The set E \ (T ∪ F )

includes all solutions for which the necessary conditions for

Eo
1
> 0 are satisfied, but the necessary conditions for T o

1,2
> 0

and Fo
1 > 0 are not. Thus, it must hold that Eo

1 = B1 which

is symbolized by a red pie chart; all available energy is used

to transfer data to the FC in that case. The intersections of

the different sets are marked by a mixture of the colors from

the corresponding sets. In case the necessary conditions for

Eo
1
> 0 and for T o

1,2
> 0 are satisfied, but those for Fo

1
> 0

are not, it must be true that X1,2 ≤ X1,1 = η1,2X2,2, λ̃1 = 0 and
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E: Eo
1 ≥ 0

X1,2 ≤ X1,1,

η1,2X2,2 ≤ X1,1,

λ̃1 = 0

T : T o
1,2 ≥ 0

X1,1 ≤ η1,2X2,2,

X1,2 ≤ η1,2X2,2,

λ̂1 = 0

F : Fo
1 ≥ 0

X1,1 ≤ X1,2,

η1,2X2,2 ≤ X1,2,

λ1 = 0

Legend:

Eo
1
≥ 0

To
1,2
≥ 0

Fo
1
≥ 0

Figure 3: Energy allocation sets

λ̂1 = 0. This corresponds to set (E ∩ T )\F illustrated by a

pie chart with red and green. Here, all the available energy is

used to transmit data to the FC and to transmit energy to the

second sensor.

Unfortunately, it is not straightforward to determine the

sizes of the different partitions of the sets and subsets shown

in Fig. 3. The sizes shown in the figure are completely

arbitrary and only to be interpreted as for illustration purposes.

However, these necessary conditions lead to further insights

of the underlying problem of optimal energy allocation and

will be used to develop a low-complexity heuristic energy

allocation policy in Section VII.

V. Finite-Time Horizon Optimal Transmission Energy and

Energy Sharing with Causal Information

In this section it will be discussed how to choose the

optimal transmission energy for information transmission to

the FC and the optimal energy for sharing between sensors

to minimize the expected finite-time horizon sum distortion at

the FC under the assumption that complete causal information

is available at the FC. Under this information pattern, all

sensors report their current battery levels and their estimated

channel gains (achieved via pilot transmissions from the FC

and channel reciprocity) to the FC via a control channel during

the beginning of a transmission slot. Thus, the information

available at the FC at k is Ik = {g(k),B(k),Ik−1} where g(k) =

(g1(k), g2(k), . . . , gM(k)) and B(k) = (B1(k), B2(k), . . . , BM(k))

are the complete vectors of all channel gains and battery levels

at time k, and I1 = {g(1),B(1)}.
An energy allocation policy is a set of functions to de-

termine {(Em(k),{Tm,n(k)}) : m ∈ M, and n ∈ NT,m}. It is

feasible if the energy constraints Em(k) ≥ 0, Tm,n(k) ≥ 0

and Em(k) +
∑

n∈NT,m
Tm,n(k) ≤ Bm(k) are almost surely (a.s.)

satisfied for all 1 ≤ m,n ≤ M and k ≥ 1. The admissible

control set is then the set of all possible energy allocation

policies which are based only on the causal information set

Ik and do not violate the energy constraints Em(k) ≥ 0,

Tm,n(k) ≥ 0 and Em(k) +
∑

n∈NT,m
Tm,n(k) ≤ Bm(k) ∀ m. Define

T(k) as the matrix with entries (T(k))m,n = Tm,n(k) for n ∈ NT,m

and (T(k))m,n = 0 otherwise. The finite-time horizon optimal

transmission energy and energy sharing allocation problem

which minimizes the expected sum distortion over a finite

horizon subject to energy harvesting constraints is given by

min
E(k),T(k):1≤k≤K

K∑

k=1

E [D(E(k), s(k))] (35)

s.t. Em(k),Tm,n(k) ≥ 0 and Em(k) +
∑

n∈NT,m

Tm,n(k) ≤ Bm(k)

a.s. for 1 ≤ m,n ≤ M and 1 ≤ k ≤ K, and Bm(k) satisfies (2).

A. Finite-Time Horizon Optimal Energy Allocation Policy

For the causal information case where the future unpre-

dictable wireless channel gains and energy harvesting infor-

mation are not a priori known to the sensors, the solution to

the stochastic control problem (35) is given by the following

theorem:

Theorem 2. Let the initial condition be I1 = {g(1),B(1)}.
Then the value of the finite-time horizon minimization problem

(35) with causal information is given by V1(g(1),B(1)), which

can be computed recursively from the backward Bellman

dynamic programming equation

Vk(g,B) = min
E(k),T(k)

{

D(E(k),s(k))

+ E
[

Vk+1(g(k + 1),B(k + 1))|E(k),T(k)
]}

(36)

for 1 ≤ k ≤ K−1 such that Em(k) ≥ 0, Tm,n(k) ≥ 0 and Em(k)+
∑

n∈NT,m
Tm,n(k) ≤ Bm(k) with the battery dynamic equation (2)

for all m. In (36), the expectation is computed over the random

variables g and H, and the terminal condition is

VK(g,B) = D(B(K),s(K)) (37)

where all remaining energy is used up for transmission in the

final time K.

Proof. The proof follows from the optimality equations for

finite-time horizon stochastic control problems, [34]. �

The solution to (35) is then given by

{Eo(k, g,B),To(k,g,B)} = argmin
E(k),T(k)

{

D(E(k),s(k))

+E
[
Vk+1(g(k + 1),B(k + 1))|E(k),T(k)

]}
(38)

for 1 ≤ k ≤ K − 1 such that Em(k) ≥ 0, Tm,n(k) ≥ 0 and

Em(k)+
∑

n∈NT,m
Tm,n(k) ≤ Bm(k) with battery dynamics (2) for

all m and Vk is the solution to the Bellman equation (36).

In general the solution to the dynamic programming equa-

tion (38) can only be obtained numerically as there is no

closed form solution. Since this numerical solution relies on

computing the optimal policy for a large number of discretized

channel gain and battery level values, we assume that this

computation is done off-line at the FC (which has access to

potentially unlimited energy and higher computational power)

and stored in a look-up table. In real-time, as the FC receives

the channel gains and battery level information of all sensors

at the beginning of each transmission phase, the FC looks up

the optimal energy allocation policies for the corresponding

nearest discretized values of the channel gains and battery



10

levels, and informs all the sensors via a feedback channel,

which is assumed to be delay-free and error-free. The sensors

subsequently use these optimal decisions for data transmission

and energy sharing.

VI. Decentralized Policies

The case studied in Section V assumes the availability of

causal centralized information, that is the current and past

channel gains and battery levels of all sensors at the FC. How-

ever, it is desirable in practice to reduce the communication

overhead required between each sensor and the FC. In this

scenario, it is assumed that each sensor has causal information

of its instantaneous harvested energies and channel gains

(estimated via pilot signals transmitted from the FC) and

only statistical (distributional) information of the remaining

sensors’ harvested energies and channel gains. For the generic

sensor m, the distortion measure is then given by

D̄m (E(k),gm(k),P(g−m))

=

∫ 



M∑

n=1

En(k)sn(k)

1 + σ2
nEn(k)sn(k)





−1

P(g−m)dg−m (39)

where P(g−m) is the probability density function of the vector

of channel gains excluding the channel gain of sensor m,

that is, g−m =
(

g1 g2 . . . gm−1 gm+1 . . . gM

)T
, sn(k) =

ḡn

ξ2n (σ2
θ
+σ2

n)
for n , m with the mean channel gain ḡn = E{gn(k)}

and sm(k) =
gm(k)

ξ2m(σ2
θ
+σ2

m)
. Note that, as before, it is assumed that

the channel gains are i.i.d. Thus, P(g−m) and ḡn for n , m are

not functions of time.
Since sensor m has no access to the battery level in-

formation of the remaining sensors, it has to estimate the

battery levels of the remaining sensors using the mean of the

harvested energy at sensor n, n , m, i.e., H̄n = E(Hn(k)).
The solution to the decentralized version of the stochastic

control problem (35) is given in the following theorem.

Theorem 3. Given any sensor m and the initial condition

I1,m = {gm(1),B(1)} the value of the finite-time horizon

minimization problem (35) with decentralized causal infor-

mation is given by V1,m(gm(1),B(1)), which can be computed

recursively from the backward Bellman dynamic programming

equation

Vk,m(gm(k),B̄(k)) = min
E(k),T(k)

{

D̄m (E(k),gm(k),P(g−m))

+E
[

Vk+1,m(gm(k + 1), B̄(k + 1))|E(k),T(k)
]}

(40)

for 1 ≤ k ≤ K − 1 such that Em(k) ≥ 0, Tm,n(k) ≥ 0 and

Em(k) +
∑

n∈NT,m
Tm,n(k) ≤ B̄m(k) with

B̄n(k + 1) =min






B̄n(k) + H̄n − En(k) −
∑

l∈NT,n

Tn,l(k)

+
∑

l∈NR,n

ηl,nTl,n(k); B̂n






. (41)

for n , m and B̄m(k) = Bm(k) given by the battery dynamics

equation (2). The expectation in (40) is computed over the

random variables g and H. The terminal condition to the

recursion (40) is

VK,m(gm(K),B̄(K)) = D̄m

(

B̄(K),gm(K),P(g−m)
)

(42)

where all available energy is used for transmission in the final

time K.

Proof. The proof follows from the optimality equations for

finite-time horizon stochastic control problems, [34]. �

The solution to the decentralized stochastic control problem

is then given by
{

Eo(k,gm(k),B̄(k)),To(k,gm(k),B̄(k))
}

= argmin
E(k),T(k)

{

D̄m (E(k),gm(k),P(g−m))

+E
[

Vk+1,m(gm(k + 1),B̄(k + 1))|E(k),T(k)
]}

(43)

for 1 ≤ k ≤ K − 1 such that En(k) ≥ 0, Tn,l(k) ≥ 0 and

En(k) +
∑

l∈N t
n

Tn,l(k) ≤ B̄n(k) with (41) and V is the solution

to the Bellman equation (40).

Note that, even though every sensor calculates the decen-

tralized energy allocation policy for all sensors, it only applies

its own policy. The remaining energy allocation policies for

the other sensors are solely used to estimate the battery

levels of the remaining sensor nodes using (41). Further note

that the above decentralized energy allocation policy does

not necessarily have to be computed at the sensors if their

computational resources are small. In fact, these policies can

be calculated offline at the FC and stored in individual look-

up tables for each sensor. These look-up tables then can be

communicated to the sensors offline as well. In real time, each

sensor can simply choose its energy allocation policy from this

look-up table based on its own channel gain and battery level.

VII. Heuristic Policies

A. Moving Limited Time Horizon Policies

The optimal policies introduced above require a consid-

erable computational effort to solve the backward Bellman

dynamic programming equations (36), (40). Hence, simpler

policies, which reduce the computational complexity and

thus the time necessary to calculate the energy allocation

policy are often desirable in practice. One way of reducing

complexity is to reduce the finite time horizon and use a

moving two step horizon. Such ideas can be used to reduce the

computational complexity of both the policy requiring causal

central information introduced in Section V as well as the

policy relying only on causal local information discussed in

Section VI.

B. Ad Hoc Policy

Another possibility is to use the known necessary optimality

conditions to derive a suitable ad hoc policy. Assume a simple

system with only two sensors where both agents can share

energy between each other and have access to full causal

information such as the maximal battery level, mean channel

gains and harvested energies, energy transfer efficiencies as

well as current channel gains and battery levels. Then, a

simple ad hoc policy could be derived based on the necessary

conditions derived in Section IV.
Since calculating the terms X11, X12 and X22 requires non-

causal information, the terms have to be greatly simplified. X11

is replaced by the corresponding actual channel gain of sensor

1. To simplify the calculations further and to ensure that only

causal information is required, X12 and X22 are replaced by
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the mean channel gain of sensor 1 and 2. Hence, the necessary

conditions for using energy for data transfer to the FC (E1(k) ≥
0), for storing energy in the battery for future use (F1(k) ≥ 0)

and for transferring energy to sensor 2 (T1,2(k) ≥ 0) are as

follows:

E1(k) ≥ 0 if g1(k) ≥ ḡ1 and g1(k) ≥ η1,2ḡ2 (44)

F1(k) ≥ 0 if ḡ1 ≥ g1(k) and ḡ1 ≥ η1,2ḡ2 (45)

T1,2(k) ≥ 0 if η1,2ḡ2 ≥ g1(k) and η1,2ḡ2 ≥ ḡ1 (46)

Hence, in case of unlimited battery capacity, these simple nec-

essary conditions could be used to allocate the energy at time

step k. However, since both batteries (at sensors 1 and 2) are

limited, storing all energy at time k or transferring all energy

from sensor 1 to sensor 2 at time k might be undesirable

despite the necessary conditions (45) or (46) being satisfied.

Storing all available energy in the battery or transferring all

energy to sensor 2 could lead to preventable battery overflow.

Thus, all three options (data transfer, storage, energy sharing)

are prioritized in a certain order and energy is then allocated

accordingly, (based on the necessary conditions), with the aim

of minimizing battery overflow and energy wastage.
This suggests the following basic rules:

1) Prioritise the three possible energy usage alternative, i.e.

data transfer E1(k), storage F1(k) and energy sharing

T1,2(k), by sorting g1(k), ḡ1 and η1,2ḡ2 from highest to

lowest.3 In case g1(k) = ḡ1 or g1(k) = η1,2ḡ2, using energy

for data transfer to the FC has the higher priority than

storing energy or transferring it to sensor 2, respectively.

In case ḡ1 = η1,2ḡ2 storing energy has the higher priority

than transferring it to sensor 2. Then allocate the available

energy for data transfer, storing and energy transfer to

sensor 2 according to their priorities.

2) If transferring data to the FC is the next highest priority,

use all remaining energy to transfer data to the FC.

(Hence, if data transfer has a higher priority than storage

or energy transfer to sensor 2, no energy is allocated to

storing or energy transfer to sensor 2, respectively.)

3) If storing energy has the next highest priority, all energy

should be stored but never more than necessary to fill

the battery to its maximal capacity minus twice the mean

harvested energy. That is

F1(k) = min
{

max
{

B̂1(k) − 2H̄1; 0
}

; B1(k)
}

.

In case there is more energy in the battery than should be

stored, the remaining energy should be used according to

the next following priority following the instructions in

(2) or (4).

4) If transferring energy to sensor 2 has the next highest

priority, transfer as much energy to sensor 2 to have its

battery full for the next time step but not more than the

battery capacity minus sensor twice its mean harvested

energy. Therefore, T1,2(k) is given by

min
{

max
{(

B̂2 − B2(k) + E2(k) − 2H̄2

)

/η1,2; 0
}

; B1(k)
}

.

In case there is more energy in the battery than should

be transferred, the remaining energy should be used

3For instance, if ḡ1 > g1(k) > η1,2ḡ2 , storing energy has the highest
priority followed by data transfer to the FC; and transferring energy to the
second sensor has the lowest priority.

according to the next following priority following the

instructions in (2) or (3).

Remark 6. It should be noted that this heuristic policy favors

transferring data to the FC if the current channel gain is

higher than the mean. This policy works well for cases where

the overall amount of energy available is low, i.e., due to

low harvested energies or small battery capacity. If only little

energy is available, it is beneficial to minimize the overall

distortion by transmitting data whenever the channel gain

is better than the mean. In contrast, if a lot of energy is

already available due to higher mean harvested energy or

higher battery capacity, increasing the energy for data transfer

further in case of high channel gains leads to diminishing

returns as far as distortion reduction is concerned. In these

cases it would be better to use more energy to transfer data at

time steps with less good channel gains. However, this simple

policy cannot determine between these two fundamentally

different scenarios. It is designed to work well for scenarios

with overall little energy availability but its performance may

not be as good when higher amounts of energy are available.

VIII. Examples and Numerical Results

Example 1. We first consider the horizon 2 problem of a

system with two sensors with unlimited battery capacity and

non-causal information as discussed in Section IV. Let σ2
θ
= 1

mW, σ2
1 = 0.01 mW and σ2

2 = 0.1 mW. Assume that the first

sensor harvests H1 = 1 mW during the first time step, while

the second sensor does not harvest energy. Consider that the

following non-causal channel SNRs (in absolute scale) are

known to both sensors: c1(1) = 1, c2(1) = 1, c2(2) = 2 and

c1(2) varies between 0 and 2, where ci(k) =
gi(k)

ξ2
i

, i = 1, 2,

k = 1, 2. Energy can be transferred between sensors and the

efficiencies of the energy transfer links are η2,1 = 0.5 and η1,2

varies between 0 and 1.

In the first scenario, assume that the initial battery levels

of the two sensors are given by B1 = 0.5 mW and B2 = 1

mW. As shown in Fig. 4, Eo
1
, Eo

2
and T o

2,1
are all zero for

all c1(2) and η1,2 in the given ranges. Hence, no energy is

used to send any data to the FC at the first time step and no

energy is transferred from sensor 2 to 1. It is optimal to send

all available energy from sensor 1 to 2 or not to transfer any

energy depending on the ratio of the energy efficiency η1,2

and the channel SNR c1(2). Hence, it is not optimal to store

or transfer only a portion of the available energy. This could

be characterized by the “desperate scenario”: there is so little

overall energy in the system that it is optimal to concentrate all

available energy to send data to the FC at the second time step

or even concentrate all energy to send data from the second

sensor in case the channel gain of the first sensor is too poor

and the energy transfer efficiency is sufficiently high.

In scenario 2, the initial battery level of sensor 1 is increased

to B1 = 1.5 mW. As illustrated in Fig. 5, it is not optimal

to transfer any energy between the sensors (apart from the

special case η1,2 = 1). Instead, all energy at the first sensor is

used to send data to the FC. The energy used by sensor 2 to

send data to the FC grows with the channel SNR c1(2). This

could be characterized by the “greedy scenario”: The overall

available energy in the system is still low. Thus, each sensor
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Figure 4: Example 1, Scenario 1: B1 = 0.5mW
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Figure 5: Example 1, Scenario 2: B1 = 1.5mW

accumulates its available energy in an optimal fashion locally

but cannot afford to transfer any energy.

The initial battery level is further increased to B1 = 4 mw

in scenario 3. In contrast to the previous scenarios with less

available energy in the system, both transferring energy from

sensor 1 to 2 and sending data from sensor 1 to the FC is

optimal for some values of η1,2 and c1(2). In case no energy

is transferred, sending data while also storing some energy

in the battery for the next time step is optimal. See Fig. 6.

This could be characterized by the “generous scenario”: The

overall available energy is so high, that it is optimal to send

data from sensor 1 to the FC at time step 1 while also being

able to afford to share some of the energy or store it.

The example reveals that the optimal policies are far from

trivial. Even for the most simple example with two sensors and

two time steps the optimal policy cannot be easily deduced.

Example 2 (Double Sensor, Finite Horizon Problem with Vary-

ing Limited Battery Capacity). A system with two sensors and

a finite horizon of K = 5 is simulated where η1,2 = η2,1 = 0.8,

the channel SNRs c1, c2, and the harvested energies H1 and

H2 are chosen randomly using an exponential distribution with

µg = E[ci]/ξ
2
i
= 4, i = 1, 2, and µH = 4mW each respectively.

E
o 1

(m
W

)

c1(2) η1,2
0

0.5
1

0

1

2
0

4

E
o 2

(m
W

)

c1(2) η1,2
0

0.5
1

0

1

2
0

1

T
o 1
,2

(m
W

)

c1(2) η1,2
0

0.5
1

0

1

2
0

4

T
o 2
,1

(m
W

)

c1(2) η1,2
0

0.5
1

0

1

2
0

1

Figure 6: Example 1, Scenario 3: B1 = 4mW

To facilitate the implementation of the algorithms based on

dynamic programming and causal information, the range of

possible channel gains had to be divided into 10 discrete bins.

Additionally the space for the battery levels and the space for

energy allocation for data transfer or energy transfer to the

neighboring sensor were discretized uniformly as multiples of

0.2 mW between 0 and B̂m, to facilitate the implementation

of all three DP algorithms. Despite these discretizations,

the dynamic programming based algorithms can be time-

consuming for calculating the optimal energy allocation look-

up tables, due to the well known curse of dimensionality.

Unfortunately, the discretization of the channel gains and the

decision variables leads to numerical inaccuracies which can

be minimized by averaging over several simulations. This

example was simulated twelve times using independent ran-

domly generated numbers for the channel gains and harvested

energies with the distributions described above. The average

distortion and the average energy usages for these twelve

simulations are illustrated in Fig. 7 and Fig. 8.

It is evident that increasing the battery capacities leads

to an overall reduced distortion. As expected, the average

distortion is the smallest for the algorithm using non-causal

information (solid black line) while the optimal algorithm us-

ing centralized, causal information (solid blue line) performs

almost as well as the algorithm with non-causal information.

The algorithm using instantaneous local and statistical non-

local information (red solid line) performs the worst of the

three algorithms based on dynamic programming. The two

heuristic algorithms using a moving two step time horizon

(blue and red dashed lines) lead to a comparable performance

as their full time horizon counterparts (blue and red solid

lines). The heuristic ad hoc algorithm (green dashed line)

performs better than the algorithms using local information

for almost all battery capacity levels. Hence, it seems that

given a low battery capacity, having access to centralized

information (such as the battery levels of the neighboring

nodes) is more effective in reducing the overall distortion than

using dynamic programming to solve the backward Bellman

equation. However, it can be expected that the performance

of the ad hoc heuristic policy (green dashed line) worsens if
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Figure 7: Example 2: average distortion vs. battery capacity
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Figure 8: Example 2: average energy usage for data transfer,

i.e. (Eo
1
+ Eo

2
)/2, (left), and average energy shared, i.e. (T o

1,2
+

T o
2,1

)/2, (right); for the non-causal case (black), the causal,

optimal case (blue) and the causal, decentralized case (red)

the battery capacity is increased. (For details see Remark 6.)

It appears that, the large computational effort of using

dynamic programming only gives a significant advantage if

centralized information or a sufficiently large battery capacity

are available. It should be noted that all, but the non-causal

policy, depend on statistical information. Hence, the range

of possible channel gains is divided into bins to numerically

solve the dynamic programming equations. The simulation

results thus can be affected by numerical inaccuracies, which

perhaps explains why, in some cases, the policies using

dynamic programming using a time horizon of K = 5 perform

marginally worse than their heuristic counterparts.

Example 3 (Double Sensor, Finite Horizon Problem with

Limited Battery Capacity and Varying Energy Transfer Ef-

ficiency). A similar system as in the previous example with

a finite horizon of K = 5 is simulated. The channel SNRs

of and the harvested energy processes for the two sensors

are chosen randomly using an exponential distribution with

identical means µg = 4 and µH = 1 mW, respectively. The

battery capacity is fixed at 3 mW, whereas the energy transfer

efficiency varies between 0.2 and 0.8.

This example was simulated twelve times using indepen-

dent randomly generated numbers for the channel gains and

harvested energies. The average distortion and the average

energy usages for these twelve simulations are illustrated in

Fig. 9. The simulation results show that upon increasing the

energy transfer efficiency, the average distortion decreases

slightly in the non-causal and the causal, optimal (centralized)
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Figure 9: Example 3: average distortion (black), Eo
1

(red), Eo
2

(blue), T o
1,2

(magenta) and T o
2,1

(light blue); for the non-causal

case (straight lines), the causal, optimal case (dashed lines)

and the causal, decentralized case (dash-dotted lines, ‘x’)

case (straight and dashed line respectively). However, in the

causal, decentralized case, it seems increasing the efficiency

does not have a favorable impact. The small increase observed

in the average distortion in the decentralized case can be

attributed to numerical effects of discretization of the battery

levels and channel SNRs of the other agents while implement-

ing the dynamic programming based solutions. We expect the

average distortion to decrease for higher transfer efficiencies

even under the decentralized policy. However, this effect is

marginal in the scenario where the two sensors have balanced

energy harvesting and channel statistics. Keeping in mind

that the number of discretization levels for the channel gains

and battery levels play a key role in the reported distortion

performance, it is likely that many more time-consuming

simulations with increased number of discretization levels

(due to the well known curse of dimensionality in dynamic

programming) would be required to validate that. But given

the insignificant positive effects even in the case of central-

ized or non-causal information, we draw the conclusion that

increasing energy transfer efficiency has little influence on the

distortion in a balanced scenario.

Example 4 (Double Sensor, Finite Horizon Problem with Lim-

ited Battery Capacity, Varying Energy Transfer Efficiency and

Asymmetric Average Channel Gains and Harvested Energies).

A similar system as in the previous example with a finite

horizon of K = 5 is simulated. In contrast to Example 3 the

channel SNRs and harvested energies at the two sensors have

exponential distributions with different means. In particular,

the mean values of c1 and c2 are µ1
g = 4, and µ2

g = 1

respectively, whereas H1,H2 have means and µ1
H
= 1mW and

µ2
H
= 4mW, respectively. Hence, one agent harvests on average

more energy but has on average a worse channel compared to

the second sensor. The battery capacity is fixed at 3mW and

the energy transfer efficiency varies from 0.2 to 0.8.

This example was simulated twelve times using indepen-

dent randomly generated numbers for the channel gains and

harvested energies according to the distributions described

above. The average distortion and the average energy usages

for these twelve simulations are illustrated in Fig. 10. In

contrast to the symmetric case in Example 3, the average

distortion decreases in all three cases (non-causal (straight

line), causal centralized (dashed line) and causal decentralized

case (dash-dotted line)) when the efficiency increases. This

indicates that an increased energy transfer efficiency leads
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Figure 10: Example 4: average distortion (black), Eo
1

(red), Eo
2

(blue), T o
1,2

(magenta) and T o
2,1

(light blue); for the non-causal

case (straight lines), the causal, optimal case (dashed lines)

and the causal, decentralized case (dash-dotted lines, ‘x’)

to a more pronounced performance improvement in case of

unbalanced scenarios where the average harvested energies

and channel gains differ between the agents.

IX. Conclusions

In this paper, we studied the optimal energy allocation

problem for minimizing a finite horizon sum distortion in a

multiple sensor system where all sensors measure a random

process and send the measurements to the FC over fading

channels using an analog amplify and forward uncoded strat-

egy. The sensors have a limited battery capacity and can

harvest energy from their environment to be used for data

transmission or stored in the battery. The sensors can also

receive energy from or transfer energy to neighboring sensors.

The optimal policy for transmission energy allocation and

energy to be transferred between sensors with unlimited

battery capacity and non-causal information was derived first.

Additionally, some necessary optimality conditions for energy

transfer between neighboring agents were given. The optimal

energy allocation policy for the causal case is derived by

solving a backward Bellman dynamic programming equation.

Several necessary optimality conditions were also derived for

the double sensor case with a finite-time horizon of 2 and

unlimited battery capacities to gain more insight.

Several suboptimal policies were also derived. Some of

these policies are decentralized in that they rely only on local

information (and statistical information of neighboring nodes)

to reduce the communication overhead of acquiring central-

ized information. Other suboptimal policies were proposed

based on a moving 2-horizon reduced-complexity dynamic

programming approach or heuristics based on insights ob-

tained from the 2-sensor 2-horizon non-causal case.

Numerical simulations illustrate the technical results. It is

shown that upon increasing the battery capacity the average

distortion decreases in the non-causal and the causal case.

When increasing the energy transfer efficiency, the average

distortion also decreases. However, this effect is more pro-

nounced in an unbalanced scenario, when one sensor on

average harvests significantly more energy but has a signifi-

cantly worse channel. Suboptimal policies can lead to good

performance, depending on the system parameters.

Future extensions of this work will focus on long-term

average distortion minimization over an infinite horizon with

energy harvesting processes and fading channels that are

temporally and spatially correlated, and also where the sensors

measure a random field that is spatially correlated. Another

interesting and challenging future direction is to develop

algorithms that can be used in systems with time-varying

infrastructure due to adding or removing sensors.
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