Session index (50min each)	Title	Intended Learning Outcomes	Teaching Material and Learning Activities
1	Project introduction	 overview of the purpose of the project overview of what one is expected to do and learn overview of what is going to happen and the timeline expliciting why what is being taught by this course has societal relevance 	slidesdemonstration with the robot
2	Introduction about feedback, control and modelling	 understanding through examples of what control, feedback and modelling mean expliciting their usefulness in this project 	 slides examples from the paper from Daniel Abramovitch at Agilent
3	Building the robot	building the robot by following the instructions	instruction manual
4	Testing the robot and learning its hardware components	 connecting the robot to the development interface doing simple tests to check that everything works learning what is what and why these parts are useful 	instruction manualinformal assessment
5	Mathematical model of robot dynamics, part 1	 understanding what a dynamical model is and what is its purpose recalling which mathematics will be used to model our robot (thus recalling trigonometry and basic physics) 	• slides • instruction manual
6	Mathematical model of robot dynamics, part 2	 inspecting the model to get physical intuitions discussion around its properties and usefulness 	• slides • exercises
7	Control systems examples	 analyzing the use-cases and associated challenges in the reality around us examples about artificial pancreas, rockets, and telecommunications 	 slides examples from the paper from Daniel Abramovitch at Agilent
8	What it means to control a segway robot	 understanding what equilibria are understanding what it means to control an inverted pendulum 	• slides • exercises
9	Loading the code and the libraries on a computer	 performing the basic operations that are needed to implement a controller inspecting the various parts of the code and what they do, their usefulness and purpose 	slidesexercisesinstruction manual
10	Testing and debugging the sensors	 testing the system collecting data from the sensors, and understand what they mean checking if there are problems with the hardware tuning the sensors understanding why the sensors are a bottleneck in every control system 	 exercises instruction manual demonstration with the robot
11	Introduction to PID controllers	 getting intuitions of what is a PID is through getting what are the physical meanings of the various parts getting intuitions about what are the effects of changing the weights on the closed loop getting intuitions about how to tune a PID 	 slides exercises instruction manual
12	PID control of the simulated robot, part 1	 testing a PID using the simulator inspecting the code in the simulator understanding how the code of the simulator corresponds to the code in the hardware platform 	• exercises • instruction manual • simulator
13	PID control of the simulated robot, part 2	fiddling with the parameters of the PIDlearning how to do tuning by experimenting on the virtual platform	 exercises instruction manual simulator
14	Balancing robots tournament - race 0	 competing one against the other so to push to find the fastest configuration possible in simulation discussing the results all together 	 instruction manual demonstration with the robot
15	Implementation of the PID code in the hardware platform	writing the code in the hardwaretesting that there are no bugs	instruction manualdemonstration with the robot
16	Testing and tuning the PID controller in the real world	 finding a configuration that makes the robot balance finding a configuration that makes the robot the fastest possible without falling 	instruction manualdemonstration with the robot

17	Balancing robots tournament - race 1	 competing one against the other so to push to find the fastest configuration possible discussing the results all together 	demonstration with the robot
18	Towards trajectory tracking: extending the mathematical model of the robot	 completing the mathematical model of the robot so to include also the possibility of rotating 	slidesexercisessimulator
19	Trajectory tracking using the simulator, part 1 (understanding)	 understanding how to make the robot rotate using differential driving planning which controller (P, PI, PID) one may use to control this rotation 	• slides • simulator
20	Trajectory tracking using the simulator, part 2 (coding and testing)	 implementing the rotation controller in the simulator, and testing the strategy verifying that there may be some stability issue if one is too aggressive in the rotation part 	• slides • simulator
21	Trajectory tracking in the real life: the need for feedforward control	 verifying, using the platform, that the sensors may not give reliable information introducing the concept of feedforward 	slidesexercisessimulator
22	Trajectory tracking using the simulator, part 3 (feedback vs feedforward)	 implementing and comparing feedforward against feedback in the simulator understanding the usefulness of the different parts 	slidesexercisessimulator
23	Implementation of the feedforward component in the hardware platform	 translating the results obtained in the previous modules into the real platform, and testing them 	 slides instruction material demonstration with the robot
24	Testing and optimizing	 trying different strategies and tuning finding the best possible combination to follow a given specific trajectory 	slidesdemonstration with the robot
25	Balancing robots tournament - race 2	 competing one against the other so to push to find the fastest configuration possible discussing the results all together 	demonstration with the robot
26	How to write scientific documents	 inspecting and understanding the structure of scientific documents getting intuitions about how each session should be written and why 	• slides
27	How to create presentations	 learning effective presentation techniques, and the associated lists of "dos" and "dont's" 	• slides
28	Preparation of the material that shall be presented	preparing the material that shall be presented to the other peers	
29	Presentation of results	3 minutes presentations in front of the public	
30	Evaluation and reflections	discussing what has been learned, what has been liked, what has been useful, what has not been positive	