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Abstract

In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a

wireless sensor network where the sensor nodes are powered by harvested energy from the environment. The

underlying random process being monitored by the sensors is subject to change in its distribution at an unknown

but deterministic time point, and the sensors take samples (sensing) periodically, compute the likelihood ratio

based on the distributions before and after the change, quantize it and send it to a remote fusion centre (FC) over

fading channels for performing a sequential test to detect the change. Due to the unpredictable and intermittent

nature of harvested energy arrivals, the sensors need to decide whether they want to sense, and at what rate

they want to quantize their information before sending them to the FC, since higher quantization rates result

in higher accuracy and better detection performance, at the cost of higher energy consumption. We formulate

an optimal sensing and quantization rate allocation problem (in order to minimize the expected detection delay

subject to false alarm rate constraint) based on the availability (at the FC) of non-causal and causal information of

sensors’ energy state information, and channel state information between the sensors and the FC. Motivated by the

asymptotically inverse relationship between the expected detection delay (under a vanishingly small probability of

false alarm) and the Kullback-Leibler (KL) divergence measure at the FC, we maximize an expected sum of the

KL divergence measure over a finite horizon to obtain the optimal sensing and quantization rate allocation policy,

subject to energy causality constraints at each sensor. The optimal solution is obtained using a typical dynamic

programming based technique, and based on the optimal quantization rate, the optimal quantization thresholds are

found by maximizing the KL information measure per slot. We also provide suboptimal threshold design policies

using uniform quantization and an asymptotically optimal quantization policy for higher number of quantization

bits. We provide an asymptotic approximation for the loss due to quantization of the KL measure, and also

consider an alternative optimization problem with minimizing the expected sum of the inverse the KL divergence

measure as the cost per time slot. Numerical results are provided comparing the various optimal and suboptimal

quantization strategies for both optimization problem formulations, illustrating the comparative performance of

these strategies at different regimes of quantization rates.

I. INTRODUCTION

WIreless sensor networks (WSN) has become an enabling technology in diverse fields of appli-

cations such as industrial process monitoring [1], mobile robots and autonomous vehicles [2],

smart grid monitoring [3] and environmental data gathering [4]. In many such applications, the sensors
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are placed in remote or hazardous locations. Periodic replacement of batteries for such sensors can be

difficult, and often expensive in other applications such as smart homes. In order to mitigate this issue, the

possibility of harvesting renewable energy from the environment in order to power the sensors has been

investigated in the literature. In this paradigm, the sensors are equipped with a finite sized rechargeable

battery or an energy storage device, and they are capable of harvesting energy from ambient sources

like temperature gradients, vibrations, wind and solar energy and storing it in the battery for future use

in sensing, processing, communication and decision making. The downside of such an arrangement is

the inherent random and unpredictable nature of energy harvesting processes. Coupled with the fact that

each sensor has access to limited energy storage, the problem of finding optimal energy allocation for

sensing, processing and information transmission poses significant challenges in practice.

Substantial amounts of research have been directed toward communication systems capable of har-

vesting energy from the renewable sources recently [5]. The channel capacity for such systems has been

analyzed for both unlimited and limited battery scenarios [6], [7]. These results have been further extended

to multiuser communication systems as well. The capacity region and optimal power scheduling problems

in multiple access channels [8], interference channels [9] and relay channels [10] has been studied in the

domain of multiuser networks. Simultaneous Wireless Information and power transfer in such networks

has also been studied recently [11].

Energy harvesting wireless sensor networks have also received considerable attention from the research

community, e.g., in the form of optimal energy management policies [12], power allocation policies [13],

and energy efficient transmission policies [14]. Significant research has also been devoted to the domain

of wireless powered crowd sensing, which focuses on joint power transfer, sensing, compression and

transmission process [15]. Furthermore, the problem of optimal node deployment and energy provisioning

has been studied in [16]. One important task of WSNs deployed in structural health monitoring or

surveillance applications for example, is to detect changes in the underlying distribution of the observation

signal. In a parametric setting (where modelling assumptions regarding the distribution before and after

the change can be made), this can be accomplished either by different classical detection techniques [17]

or sequential detection techniques, e.g., quickest change detection [18]. The quickest change detection

method has been applied to detect anomalies or predicting failures in diverse application domains, e.g.,

seismic event detection, health monitoring, and detecting vacant radio spectrum. This detection technique

can either be applied by the individual sensors locally or by the fusion centre (FC) after collecting
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information from the sensors [19]. In a parallel line of investigation, there has been recent research

works investigating the change detection problem in a non-parametric and online streaming settings

[20], [21]. In the current paper, however, we focus on a quickest sequential change detection problem

with multiple energy harvesting sensors in a parametric setting, where the sensors send quantized log-

likelihood information to the fusion centre for decision making under the assumption that the distributions

before and after the change are known.

The quickest change detection problem focuses on detecting sudden changes in the distribution of the

probability density function of a stochastic process while minimizing the detection delay, subject to a

constraint on the false alarm rate. Here detection delay is defined as the amount of time required to detect

the change point after the actual occurrence of such an event. In classical literature, there exists two ways

of analyzing such events. The first one is the Bayesian formulation, which assumes the unknown change

point to be drawn from a specific probability distribution [22]. The other formulation is non-Bayesian,

which instead typically assumes that the change point is unknown but deterministic in nature [23],

[24]. Assuming that Xk denotes the vector of sensor observations at the kth time instant, the standard

non-Bayesian formulation consists of a sequence of such observations {Xk, k = 1, 2, . . .} with a change

point λ. This implies that the sequence of observations before the change point i.e. X1,X2, . . . ,Xλ−1 is

generated from the distribution f0 whereas after the change the corresponding sequence Xλ,Xλ+1, . . . is

generated from the distribution f1.

In standard settings over a slotted time interval, the sensors in a wireless sensor network are able to

observe the signal of interest during every time slot in the quickest change detection framework. But

this is not guaranteed in the harvesting based scenario under consideration, due to the fact that each

sensor is powered by ambient energy harvested from its surroundings and the stochastic nature of energy

availability. The quickest change detection problem with energy constraints has been studied for both

the non-Bayesian [25] and the Bayesian [26] framework in centralized settings. Decentralized quickest

change detection has been studied without energy constraints in [27], [28]. To the best of our knowledge,

there has not been any research in the domain of non-Bayesian quickest change detection with energy

harvesting in a decentralized setting where individual sensors quantize their observation/likelihood ratio

and forward this information to an FC for making a global decision. The importance of such a problem

lies in the fact that at every time instant, each sensor has to make a decision regarding sensing the

observation signal and sending its quantized observation to the FC for performing the quickest change
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detection based on the available energy in its battery. In this decentralized setting, finding an optimal

quantization strategy (including rate allocation and selection of quantization thresholds) at each individual

sensor is essential because the performance of the detection process is sensitive to the accuracy of the

information collated at the FC. Higher number of quantization bits ensures that the information sent to

the FC is more accurate, but also consumes more energy. Furthermore, each sensor’s participation in the

sensing process is limited by the available energy in its battery (denoted as the energy state information

(ESI)) at the start of each time slot.

In this paper, we consider the problem of designing an optimal quantization and sensing policy for

a decentralized quickest change detection setup where the sensors quantize their log-likelihood ratios

corresponding to the distributions after and before the change, respectively, and transmit this quantized

information to the FC over fading channels. The corresponding channel state information (CSI) (assumed

to be known at the FC) determines the amount of energy required to transmit each quantized observation to

the FC with a certain probability of error. Thus, at every time instant all sensors have to decide whether to

sense the observation signal and how to quantize it, for sending it to the FC based on the amount of energy

the sensors have at their disposal and the corresponding channel gain. Upon reception of the quantized

measurements, the FC employs a Cumulative Sum (CUSUM) based change detection algorithm, where

the cumulative sum of the total log-likelihood ratio of the quantized measurements received at the FC is

compared against a threshold to detect a change. It is well known that when the probability distributions

of the sensed random variables before and after the change are known (parametric setting), CUSUM

based on monotone likelihood ratio quantizers (MLRQ) at the sensors achieves asymptotic optimality,

in that, it minimizes the worst case average detection delay subject to a false alarm probability that

approaches zero [19]. In fact, the expected detection delay is asymptotically (as the false alarm rate goes

to zero) inversely proportional to the Kullback-Leibler (KL) divergence measure available at the FC,

which motivates us to obtain an optimal sensing and quantization policy at the sensors, by maximizing

the expected sum of an appropriate KL divergence measure over a finite horizon, subject to energy

causality constraints at all sensors, given either non-causal or causal information about the available

energy state information at the batteries and the sensors’ channel gains.

The main contributions of our paper are as follows:

1) The problem of minimizing the average detection delay is formulated for the non-Bayesian decen-

tralized quickest change detection in a fading WSN over a finite time horizon where each sensor
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is capable of harvesting energy from the surroundings, where the energy harvesting model is far

more general than a binary model used in [25]. The strategy is to maximize an expected sum of

the KL divergence measure at the FC over a finite horizon for both non-causal and causal CSI and

ESI.

2) The optimal policies regarding sensing decision and number of quantization bits are determined

using a dynamic programming (DP) algorithm for both the non-causal and causal cases.

3) A system of nonlinear equations is formulated for deriving the optimal quantization thresholds,

when the number of quantization bits are obtained from DP.

4) In the case of a large number of quantization bits, an asymptotically optimal policy is obtained by

simplifying the above mentioned system of equations using the Mean Value Theorem (MVT).

5) Using asymptotic quantization theory for non-quadratic distortion measures, an asymptotic ap-

proximation is obtained for the difference between the quantized and unquantized KL divergence

measure. The performances of the optimal, a heuristic uniform and the MVT based asymptotic

quantizers are compared with respect to this theoretically obtained asymptotic expression.

6) The optimal and heuristic uniform quantization strategies are compared by their average detection

delay for both the non-causal and causal scenario via numerical simulation results. They indicate

that the optimal strategy significantly outperforms its uniform counterpart when the number of

quantization bits is low. The uniform quantization policy performs closer to the optimal policy

when the number of quantization bits becomes higher.

7) An alternative optimization problem is proposed for minimizing the detection delay for the same

framework, by minimizing the average sum of the inverse of the KL divergence measure over a

finite horizon.

8) Finally, the solutions to the two optimization problems are compared by their performance in terms

of detection delay. The corresponding plots show that the alternative optimization problem performs

better compared to its original counterpart, but only at the expense of an unfavourable property

regarding the probability of false alarm rates.

It should be noted that some of these results stated above were partially presented in our conference paper

[29]. The additional contributions of the current work compared to [29] consist of the asymptotic analysis

for quantization of KL divergence measure, and the development of the asymptotic quantization policy

based on MVT, the formulation of the alternative optimization problem and its performance comparison,
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Fig. 1. Quickest change detection with distributed sensors

along with additional numerical results.

The rest of the paper is organized as follows. We describe the System Model in Section II. The

expected sum of KL divergence based optimization problem is formulated in Section III. We derive the

system of nonlinear equations for determining the optimal quantization thresholds in Section IV. We

also introduce the MVT based asymptotic optimal quantizer and uniform quantizer in the same section.

In Section V, we derive the asymptotic analytic bounds for the KL divergence measure for the optimal

quantization strategy. In Section VI, we focus on finding the optimal sensing decision and quantization

strategy for both non-causal and causal CSI scenario using DP. An alternative optimization problem for

minimizing the detection delay is also proposed in same section. Simulation results are presented in the

Section VII, followed by conclusions and future extensions in Section VIII.

II. SYSTEM MODEL

As shown in Fig.1, the system model consists of N wireless sensors and a FC for centralized decision

making. We assume that each sensor is equipped with a re-chargeable battery/energy storage device of

finite capacity and they are capable of harvesting energy from the surroundings. We also assume that the

time is slotted and the observation signal is monitored by each sensor for M time slots. During the kth

time slot, the ith sensor decides to either sense or abstain from sensing based on the available energy in

its battery. The corresponding binary sensing decision parameter is denoted by νi,k for 1 ≤ i ≤ N, 1 ≤

k ≤M ,where νi,k ∈ {0, 1}, and 1 (or 0) represents the decision to sense (or not), respectively.

If the ith sensor senses during the kth time slot i.e., νi,k = 1, it obtains the sample Xi,k of the
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observation signal. For the system model under investigation, it is assumed that the observation signal is

drawn from one of the two probability distribution functions f0 or f1, depending on whether it is received

before or after the change point λ, respectively. As per usual, we assume that the observations signals

{Xi,k} are independent and identically distributed (i.i.d.) over time and across all the sensors, both before

and after the change. Thus, we formulate the following hypothesis testing problem:

H0 : Xi,k ∼ f0(x), if k < λ,

H1 : Xi,k ∼ f1(x), if k ≥ λ.

After sampling the observation signal Xi,k, during the kth time slot, the ith sensor Si calculates the

log-likelihood ratio (LLR) Zi,k = log
f1(Xi,k)

f0(Xi,k)
. The LLR is then quantized to qi,k bits, forming a quantized

message Ui,k, which is sent to the FC. This is accomplished by comparing the LLR with 2qi,k − 1

quantization thresholds. Without loss of generality, we assume that the quantized message Ui,k takes

values in the set {0, 1, . . . , 2qi,k − 1}, corresponding to the 2qi,k quantization bins. At every time slot, the

FC receives these quantized messages from the sensors which have enough energy for transmitting them

successfully, and performs the cumulative sum (CUSUM) test for detecting a change in the distribution

of the observation signal using a Cumulative Sum (CUSUM) based sequential detection algorithm as

discussed in [19].

During each time slot, the fading channel gains between the sensors and the FC, denoted by {hi,k}, 1 ≤

i ≤ N, 1 ≤ k ≤M , are assumed to remain constant, but change from one time slot to another. We assume

that these fading channel gains are statistically independent and identically distributed across time slots,

as well as across the sensors. In this paper, we consider the case where each sensor decides to sense

the observation signal, only if it has enough energy in the battery for sensing and sending its quantized

information to the FC. Thus, νi,k is determined by the following rule:

νi,k =


1, if Bi,k ≥ Es + qi,kE

b
i,k,

0, otherwise

where Es is the amount of energy required for sensing during each time slot and the battery state, the

energy required for sending each quantized bits and the number of quantized bits at the ith sensor during

the kth time slot are represented by Bi,k, E
b
i,k and qi,k, respectively. The amount of energy spent by the

i-th sensor during that time slot, denoted by Ei,k, is then:

Ei,k = νi,k(Es + qi,kE
b
i,k). (1)
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Remark 1. It should be noted that we can also add an energy cost of processing the sample at the

sensor including the energy required for computing the log-likelihood ratio and quantizing this ratio,

to the sensing energy Es. As long as this cost is constant across all time slots, the subsequent problem

formulation remains unaltered, and essentially the maximum battery capacity can be thought of the

original battery capacity minus the energy cost of signal processing at the sensor, or alternatively, Es

can be thought of energy cost due to both sensing and signal processing.

If the maximum battery capacity of all sensors is assumed to be Bmax and Hi,k represents the amount

of harvested energy of the ith sensor during the kth time slot (assuming that it can be stored and only

used in the following time slot), then the battery dynamics can be expressed as follows:

Bi,k+1 = min {Bmax, Bi,k +Hi,k − Ei,k} . (2)

We also assume that Hi,k are i.i.d across the sensors and time slots.

Remark 2. It should be noted that the i.i.d. assumption for the channel gains and the harvested energies

are only for convenience, and more general models such as finite state Markov chain models for both the

channel gains and harvested energies can be considered with spatial correlation across the sensors. This

will only affect the computations of the optimal policy for the causal case using the dynamic programming

methodology, but not the development of the subsequent analysis.

If either a binary phase shift keying (BPSK) or a quadrature phase shift keying (QPSK) modulation

technique is employed at the sensors, assuming fixed receiver noise power spectral density N0 at the FC,

the probability of error Pe can be derived from the following expression [31] as a function of the energy

required for transmitting each quantized bit Eb
i,k:

Pe =
1

2
erfc


√
hi,k

Eb
i,k

N0


where erfc denotes the complementary error function.

Thus for a fixed required probability of error Pe, the energy required for transmitting each quantized

bit can be written as:

Eb
i,k =

N0

hi,k

{
erfc−1(2Pe)

}2
, (3)

We assume that the channel power gain hi,k and in turn the transmission energy for each quantized

bit Eb
i,k are computed at the FC by sending pilot symbols (from the FC to the sensors) and assuming
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channel reciprocity between the sensors and the FC. Thus, during the kth time slot, the battery state

information Bk = {B1,k, B2,k . . . , BN,k}, and the channel gains between the sensors and the FC, hk =

{h1,k, h2,k, . . . , hN,k}, are available to the FC via feedback from the sensors via control channels.

A. Quickest Change Detection at the FC

In order to simplify the problem under investigation, we assume that the probability of error Pe for

the transmission of the quantized messages from the sensors to the FC is sufficiently small, so that the

data sent by the active sensors are received at the FC with high probability and we ignore the effect

of erroneous transmissions. As we will see shortly in the subsequent analysis, this amounts to scaling

the received sum of the quantized LLR at the FC by (1 − Pe) when all sensors are required to satisfy

identical Pe for information transmission.

As the quantized message Ui,k is discrete valued, we assume that gji denotes its the probability mass

function (pmf), if the observations are drawn from the hypothesis Hj . In order to quantize Zi,k to qi,k

bits, we need to determine 2qi,k − 1 number of thresholds. Denoting the lth quantization threshold for

the ith sensor as til, the corresponding pmfs can then be expressed as follows:

g1
i (l) = F1(til+1)− F1(til), (4)

g0
i (l) = F0(til+1)− F0(til), (5)

where F1 and F0 are the corresponding cumulative distribution functions for the probability distribution

functions (pdf) f1 and f0, respectively. They can be determined as follows:

F1(x) =

∫ x

−∞
f1(x)dx,

F0(x) =

∫ x

−∞
f0(x)dx.

Remark 3. For the special case when the pdfs are Gaussian distributed with varying mean but the same

variance, the hypothesis testing problem becomes:

H0 : Xi,k ∼ N (0, σ2), if k < λ (6)

H1 : Xi,k ∼ N (µ, σ2), if k ≥ λ (7)

where µ is the mean of the observation signal Xi,k under the alternative hypothesis H1 and σ2 is the

variance of Xi,k under both hypothesis H0 and H1. The corresponding LLR, Zi,k, can be determined by

the following expression [19]:

Zi,k = log
f1(Xi,k)

f0(Xi,k)
=
µXi,k

σ2
− µ2

2σ2
. (8)
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The pmfs after quantization become:

g1
i (l) = Φ

{
til+1 − µ

σ

}
− Φ

{
til − µ
σ

}
(9)

g0
i (l) = Φ

{
til+1

σ

}
− Φ

{
til
σ

}
(10)

where Φ is the cumulative distribution function corresponding to the standard normal random variable.

After receiving the quantized message Ui,k from the individual sensors, the FC computes the quantized

LLR between hypotheses H1 and H0 as follows:

Zq(k) =
N∑
i=1

log
g1
i (Ui,k)

g0
i (Ui,k)

. (11)

We should note that this quantized LLR Zq(k) is different from Zi,k which is the LLR computed at the

individual sensors, and is used for computing the CUSUM test statistic at the FC. We denote T as the

stopping time, i.e., the time instant when the quickest change detection algorithm declares that a change

has been detected in the distribution of the observation signal. We define the sensing strategy as ν =

{νi,k; i = 1, . . . , N ; k = 1, . . . ,M}, and quantization function as q = {qi,k; i = 1, . . . , N ; k = 1, . . . ,M}.

The stopping time T along with these parameters form the policy φ = (ν,q, T ).

The non-Bayesian quickest change detection focuses on detecting the change point as soon as possible

after its actual occurrence. Thus the goal of this algorithm is to find the joint sensing and quantization

policy φ, that minimizes the average worst case detection delay (SADD) [24], which is defined as follows:

SADD(φ) = sup
1≤λ≤∞

Eλ(T − λ|T ≥ λ), (12)

where Eλ denotes the expectation if the change occurs at time instant λ.

The purpose of this paper is to find an optimal sensing decision by ν? and optimal quantization

function by q?, where we define the corresponding policy tuple as φ̃ = (ν?,q?, T ). The optimal stopping

time is then determined by the minimax change point detection procedure can be expressed as:

T ? = min
T
SADD(φ̃),

s.t. E∞[T ] > γ; γ > 1. (13)

In the above optimization problem E∞[T ] denotes the expected stopping time decided by the algorithm

when the change never occurs, i.e., λ =∞. This quantity is termed as average run length to false alarm

in the literature, because it represents the inverse of the rate of false alarm, which is lower bounded by

the inverse of a low constant false alarm rate, i.e., the minimum expected duration to false alarm γ > 1,
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where typically γ is chosen to be large.

As mentioned earlier, it is well known that it is asymptotically (as the false alarm rate goes to zero)

optimal [19] for the sensors to quantize their individual LLR to maximize their invididual Kullback-

Leibler divergence measure between the distributions after and before the change, when the FC employs

a CUSUM based sequential change detection algorithm utilizing the total LLR based on quantized

information received (at the FC) from all sensors. Therefore, the corresponding CUSUM test statistic at

the FC is defined by the following recursion:

W q(k) = max {0,W q(k − 1) + Zq(k)} , W q(0) = 0. (14)

Furthermore, the optimal stopping time for the CUSUM test can be obtained as:

T ? = min {k ≥ 1 : W q(k) ≥ r} , r = log γ (15)

For easier readability we have summarized the relevant parameters for our subsequent problem for-

mulation in Table I.

III. OPTIMIZATION PROBLEM FORMULATION

The asymptotic performance (as γ → ∞) of the optimal decentralized detection scheme using a

CUSUM test operating with the total LLR at the FC for a fixed quantization strategy, when the nodes

are sensing periodically at each sampling period [19] is as follows:

SADD(T ) ∼ log γ

Iqtot
as γ →∞, (16)

where Iqtot is the total Kullback Leibler (KL) information number between the hypothesis H1 and H0,

based on quantized information obtained from all the sensors. This performance limit is can be treated as

a fundamental limit in decentralized detection in much the same way as the Cramer-Rao Bound is viewed

as a fundamental limit in parameter estimation (see p. 386 in [30]). Thus in a model-based setting, no

other change detection algorithm (parametric or non-parametric) can achieve a smaller SADD subject to

a vanishingly small probability of false alarm.

In the case of energy harvesting sensors, it is clear that for every given time slot, the number of

active sensors depends on the corresponding battery states of the sensor, and is therefore random. An

expression for Iqtot can be determined for each time slot by summing the KL information measures for
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TABLE I

SYSTEM PARAMETERS

Xk Observation signal for ith sensor during kth time slot

νi,k Sensing decision parameter for ith sensor during kth time slot

Zi,k Log-likelihood ratio (LLR) for ith sensor during kth time slot

qi,k Number of quantized bits sent to the FC from ith sensor during kth time slot

Ui,k Quantized message sent to FC from ith sensor during kth time slot

hi,k Channel gain between ith sensor and the FC during kth time slot

Bi,k Battery state at the ith sensor during the kth time slot

Es Energy required for sensing

Eb
i,k Energy required for transmitting one quantized bits from the ith sensor during the kth time slot

Bmax Battery capacity

Hi,k Amount of energy harvested by the ith sensor during kth time slot

Ei,k Energy usage by the ith sensor during kth time slot

N0 Noise power spectral density at the FC

Pe Probability of bit error at the FC

gji Probability mass function, if the observation is drawn from hypothesis Hj

til lth quantization threshold for ith sensor

µ Mean of Xi,k under hypothesis H1

σ2 Variance of Xi,k under hypothesis H0 and H1

λ Change point of the distribution

Rqi,k The difference between KL divergence of unquantized and quantized distribution with qi,k quantization bits

Zq(k) Sum of quantized LLRs received at FC from all the transmitting sensors

individual sensors over a given number of active sensors, assuming error-free transmission between the

active sensors and the FC. As remarked earlier, we assume the probability of erroneous transmission,

Pe, is sufficiently small so that we ignore its effect as essentially once Pe is fixed and identical for all

sensors, the total KL divergence measure at the FC is simply scaled by (1 − Pe) when transmission

errors are taken into account. We denote the number of active users in the kth time slot by nk, which is

a random variable dependent on the channel state information and harvested energy, for a given sensing

and quantization strategy (which in turn determines the battery state at the sensors). In that case, Iqtot

(for the k-th time slot) can be expressed as :

Iqtot =

nk∑
i=1

I(g1
i , g

0
i ) =

nk∑
i=1

2
qi,k−1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

(17)
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where I(g1
i , g

0
i ) denotes the KL divergence between the probability mass functions g1

i and g0
i of ith sensor

Si.

Minimizing the asymptotic average worst case detection delay is equivalent to the problem of max-

imizing Iqtot, when the number of active sensors nk, the channel gain hk and the battery state Bk are

deterministic and identical for all time slots. But the obvious limitation of such an approach is that

it does not work when nk,hk,Bk are varying randomly from one time slot to another. Thus, we are

interested in optimizing the sensing and quantization policy over a finite time horizon by taking into

account the effects of varying number of active sensors, channel gains and energy harvesting in different

sensors on the quickest change detection process. Note that this optimization problem formulation also

allows a more general energy harvesting and expenditure model than the binary model studied in [25].

For a stationary and ergodic energy harvesting and channel gain process, the corresponding objective

function 1
M

∑M
k=1 I

q
tot can be interpreted as the expected KL information measure when the number of

time slots (horizon length) M → ∞. It should be noted that while the asymptotic upper bound on the

average detection delay is not exactly inversely proportional to the average KL measure, the inverse of

the average KL measure still provides a lower bound on the asymptotic average detection delay from

Jensen’s inequality. Additionally, the problem of maximizing the average KL measure can provide further

insight into the optimal sensing and quantization strategies for minimizing the average detection delay

in the asymptotic case when the probability of false alarm goes to zero. Thus, the optimization problem

is formulated as follows:

max
νi,k,qi,k

M∑
k=1

Enk

{
nk∑
i=1

{
νi,k

2
qi,k−1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

}}
(18)

s.t. νi,k ∈ {0, 1} ; ∀i, k, (19)

qi,k ∈ {1, . . . , Qmax} ; ∀i, k, (20)

Ei,k ≤ Bi,k; ∀i, k. (21)

Remark 4. In the optimization problem mentioned above, Qmax denotes the maximum number of

quantization bits per sample available to each sensor, whereas equations (19), (20) and (21) refer to the

binary choice of sensing decision νi,k, the feasible set of number of quantization bits qi,k and the energy

causality constraint, respectively.

For the sake of completeness, we analyze an alternative optimization problem in Section VII, which

focuses on minimizing the average inverse KL measure over a finite horizon rather than maximizing the



14

average KL measure itself. This alternative optimization provides a better lower bound on the asymptotic

detection delay compared to maximizing the average KL measure.

IV. NON-CAUSAL OPTIMIZATION WITH FINITE BATTERY

In this section, we analyze the optimization problem under the assumption that the channel gains

between the sensors and the FC and the battery state information are non-causally available. For most

practical applications, this assumption does not hold. However, this provides a benchmark of performance

for the more practical scenario, when the information is causally available. It should be noted that in

this optimization problem, both optimization variables νi,k and qi,k are discrete valued. In order to tackle

the combinatorial nature of this problem, it is solved by DP similar to the causal scenario, which will

be discussed in Section VI.

Remark 5. It should be noted that for a fixed sensing and quantization policy and non-causal knowledge

about {Bk,hk}, where k = 1, . . . ,M , the objective function in the above optimization problem becomes

deterministic and thus the expectation operator in (18) can be removed.

At the kth time slot, when the CSI and ESI are non-causally available, the corresponding sensing policy

νi,k, and number of quantization bits qi,k for i = 1, 2, . . . , N , is determined offline using the DP algorithm.

Once νi,k and qi,k are determined, one needs to find the optimal positions of the quantization thresholds for

quantizing the LLR, Zi, kfor the i-th sensor. Lets assume that ψ∗i,k represents the quantization function

that optimizes the problem (18) - (21). Hence, we are interested in finding the 2qi,k − 1 thresholds

t0, t1, . . . , t2qi,k−1 as follows:

ψ∗i,k(Xi,k) = bi,k only if tbi,k < Zi,k ≤ tbi,k+1.

where bi,k ∈ {0, 1, . . . , 2qi,k − 1}.

From the optimization problem (18)-(21), it is evident that the optimal policy entails finding the

sensing decision, number of quantization bits and the corresponding thresholds jointly using the DP.

This is prohibitively complex because of the exponential computational complexity of the DP algorithm

in the state and action space. In order to keep the computations tractable, we obtain the thresholds non-

adaptively, i.e., first finding the optimal sensing decision and the number of quantization bits by DP, while

applying a set of quantization thresholds pre-computed corresponding to the number of quantization bits

found by DP. These quantization thresholds are designed for each value of the number of quantization bits

qi,k ∈ {1, 2, . . . , Qmax} by simply maximizing the KL divergence measure for a given time slot, rather
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than by considering all the time slots in the finite horizon. In the next three subsections, we will describe

three policies for obtaining the thresholds, (i) the optimal threshold quantization (which maximized the

KL Divergence measure at each time slot), (ii) a mean value theorem (MVT) based asymptotically

optimal threshold (when the number of quantization levels goes to infinity, i.e. Qmax →∞), and (iii) a

simple uniform quantization policy, respectively.

A. Optimal Threshold Quantization

The KL divergence for the k-th slot based on the quantized LLR from nk active sensors can be

expressed as follows:

F({til : l ∈ {0, . . . , 2qi,k − 1}}) =

nk∑
i=1

2
qi,k−1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

, (22)

under the constraints that νi,k and qi,k satisfy (19), (20) and (21).

As the KLD contribution from each sensor is only dependent on its own quantization thresholds, we can

consider maximizing the KLD sensor separately with respect to its own quantization thresholds. Therefore

the optimal solution for the thresholds for the i-th sensor can be found by solving for ∂Fi
∂t(i)l

= 0, where

Fi =
∑2

qi,k−1
l=0 g1

i (l) log
g1i (l)

g0i (l)
. Furthermore, in the interest of simplifying notations, we drop the sensor

index i from the threshold notation til. It should be noted that only two consecutive summands in the above

sum are functions of tl as mentioned in (9) and (10), i.e., for a given sensor only g1(l), g0(l), g1(l − 1)

and g0(l − 1) depend on tl. Hence, the gradient expression can be written as:

∂Fi
∂tl

=
∂

∂tl

{
F1
i + F2

i

}
, (23)

where F1
i = g1(l − 1) log g1(l−1)

g0(l−1)
and F2

i = g1(l) log g1(l)
g0(l)

, and the individual gradients can be simplified

as follows:
∂F1

i

∂tl
=
∂g1(l − 1)

∂tl
log

g1(l − 1)

g0(l − 1)
+ g0(l − 1)

∂

∂tl

{
g1(l − 1)

g0(l − 1)

}
, (24)

∂F2
i

∂tl
=
∂g1(l)

∂tl
log

g1(l)

g0(l)
+ g0(l)

∂

∂tl

{
g1(l)

g0(l)

}
. (25)

Thus the optimal thresholds can be found by solving the following equations:

∂F1
i

∂tl
+
∂F2

i

∂tl
= 0, l = 0, 1, . . . , 2qi,k − 1 (26)

Remark 6. If the pdfs under the hypothesis testing problem are Gaussian distributed as mentioned in

Remark 1 of Section II, these two gradients can be further simplified by replacing the individual gradients

of the cumulative distribution functions as follows:

∂g1(l − 1)

∂tl
= −∂g

1(l)

∂tl
=

1

σ
√

2π
e−

1
2{ tl−µσ }

2

, (27)



16

∂g0(l − 1)

∂tl
= −∂g

0(l)

∂tl
=

1

σ
√

2π
e−

1
2{ tlσ }

2

. (28)

With some algebraic manipulations, (26) reduces to:

∂g1(l − 1)

∂tl

{
log

{ g1(l−1)
g0(l−1)

g1(l)
g0(l)

}}
=

∂g0(l − 1)

∂tl

{
g1(l − 1)

g0(l − 1)
− g1(l)

g0(l)

}
. (29)

Using the results of (27) and (28) in (29), we obtain the following set of simultaneous nonlinear equations:

e−
1

2σ2
(µ2−2µtl) =


g1(l−1)
g0(l−1)

− g1(l)
g0(l)

log

{
g1(l−1)

g0(l−1)

g1(l)

g0(l)

}
 , l = 1, 2, . . . , 2qi,k . (30)

As mentioned earlier, the non-adaptive optimal thresholds can be obtained by solving the above

mentioned equation by a nonlinear solver once we have determined the optimal number of quantization

bits by DP.

B. MVT based Asymptotically Optimal Threshold Quantizer

If sufficient bandwidth and harvested energies are available at the sensors, they may use larger numbers

of quantization bits. In this case, a suitable approximation can be achieved by assuming qi,k →∞, such

that tl− tl−1 → 0. In order to find that approximation, first we apply the mean value theorem (MVT) as

in [32] to both the numerator and the denominator of (30).

We introduce the function r(tl)
∆
= g1(l)

g0(l)
. Then, the numerator of (30) can be written as:

g1(l − 1)

g0(l − 1)
− g1(l)

g0(l)
= r(tl−1)− r(tl).

With the assumption of tl − tl−1 → 0 and using the MVT we can write:

r(tl−1)− r(tl) ≈ r′(tl−1)(tl−1 − tl), (31)

where r′(tl) denotes the first order derivative of r(tl) with respect to tl.

Similarly, we introduce the function s(tl)
∆
= log r(tl) = log g1(l)

g0(l)
. Thus, the denominator of (30) can

be written as:

log

{ g1(l−1)
g0(l−1)

g1(l)
g0(l)

}
= s(tl−1)− s(tl).

Applying the MVT on the above expression gives:

s(tl−1)− s(tl) ≈ s′(tl−1)(tl−1 − tl). (32)
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Finally, (30) can be simplified by using (31) and (32) to obtain the approximate relationship

e−
1

2σ2
(µ2−2µtl) =

r′(tl−1)

s′(tl−1)
, l = 1, 2, . . . , 2qi,k . (33)

The set of nonlinear equations (33) can be used for determining the quantization thresholds for the MVT

based asymptotically optimal scenario.

Remark 7. When the pdfs are Gaussian distributed as mentioned in Section II, the expression for s′(tl−1)

and r′(tl−1) are related as:

s′(tl−1) = r′(tl−1)
Φ
{
tl
σ

}
− Φ

{ tl−1

σ

}
Φ
{
tl−µ
σ

}
− Φ

{ tl−1−µ
σ

} . (34)

Replacing s′(tl−1) from (33) to (34) we obtain the following set of nonlinear equations:

e−
1

2σ2
(µ2−2µtl) =

Φ
{
tl−µ
σ

}
− Φ

{ tl−1−µ
σ

}
Φ
{
tl
σ

}
− Φ

{ tl−1

σ

} . (35)

The advantage of the above set of equations is that starting from the largest threshold, one can recur-

sively compute the entire sequence of thresholds going backwards and thus simplifying the computations

involved in obtaining the optimal thresholds.

C. Uniform Threshold Quantizer

For this quantization policy, we first choose an interval of significance in the distribution of Xi,k, where

most of the probability mass is concentrated, and ignore any value of Xi,k outside that interval, such as

mean plus or minus three times the standard deviation for a given Gaussian distribution. Supposing the

upper and lower bounds for this interval are represented by vx and ux, respectively, and the observation

signal is quantized with qi,k number of bits, then the corresponding number of quantization bins and

thresholds are 2qi,k and 2qi,k−1, respectively. The length of each quantization bin for this uniform policy

in such a scenario is:

∆ =
vx − ux

2qi,k
,

and the corresponding jth threshold is located at:

tj = ux + ∆j.

It should be noted that the choice of upper and lower bound for the interval of significance in this

uniform quantization strategy influences the performance of the corresponding detection policy. Thus,

additional performance gains may be obtained reasonable by optimizing the KLD with respect to these

two aforementioned limits. However, numerical results show that the performance benefits obtained are
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marginal and therefore we use a fixed choice for ux, vx, e.g. mean plus minus 3 times the standard

deviation for a Gaussian distribution.

It should be noted that the optimal, asymptotically optimal and uniform threshold quantization policies

can be used for the scenario involving both the non-causal and the causal CSI scenario to be described

in Section VI.

V. ASYMPTOTIC QUANTIZATION ANALYSIS

In this section we will provide an asymptotic characterization of the difference between the unquantized

and the quantized KL divergence for the optimal quantizer, as the number of quantization intervals goes

to infinity. This analysis provides us with a lower bound on the gap between the KLD performance with

the optimal threshold quantization policy and the true unquantized KLD per time slot. This, in turn,

helps provide a benchmark for choosing practical quantization policies and the maximum number of

quantization bits that are sufficient in real applications. For the analysis in this section, since we are only

considering the KLD in a given time slot, we assume that the number of active sensors participating in

sequential detection process is fixed. This analysis is based on asymptotic quantization theory originally

pursued for quadratic distortion measures in [33], and later extended to non-distortion type measures

such as the KL divergence in [34]. As the following discussion largely mirrors the analysis in [34], we

simply provide a summary of the intermediate steps in arriving at the final lower bound expression.

A. Asymptotic Optimal Threshold Quantization Bound

Note that before quantization, the distribution functions of the observation signal are f1(x) and f0(x)

under the hypothesis H1 and H0, respectively. After quantization, the probability mass functions are

denoted by g1 and g0, respectively. Similar to the previous section, we drop the index i in til for readability.

For asymptotic quantization, i.e., when the number of quantization bits qi,k → ∞, we are interested in

finding an asymptotic expression for the distortion function, i.e., the difference between the unquantized

and the quantized divergence is given by:

Rqi,k = D(f1||f0)−Dqi,k(g1||g0), (36)

where the unquantized KL divergence D(f1||f0) is defined as:

D(f1||f0) =

∫ ∞
−∞

f1(x) log
f1(x)

f0(x)
dx, (37)
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and the quantized KL divergence DL(g1||g0) is defined as:

Dqi,k =
2
qi,k−1∑
l=0

g1(l) log
g1(l)

g0(l)
. (38)

For the analysis in this section, we divide the observation region into 2qi,k quantization bins. We

denote the scalar quantization operation by Q = (S ,C ), which consists of the quantization points

C = {c1, . . . , c2
qi,k} and quantization intervals S = {S1, . . . , S2qi.k}. The quantization operation can be

expressed as:

Q(x) = cl, for x ∈ Sl.

For the quantizer Q, let Vl =
∫
Sl

dx denote the volume of the lth quantization bin. The specific point

density [35] of Q is defined as:

ζ(x) =
1

2qi,kVl
, for x ∈ Sl.

The corresponding specific inertial profile function m(x) is defined as [33]:

m(x) =

∫
Sl
||y − cl||2dy

V 3
l

, for x ∈ Sl,

whereas, the log-likelihood ratio (LLR) is defined as:

Z(x) = log
f1(x)

f0(x)
. (39)

Given these details, the asymptotic bound on the distortion measure between the unquantized and the

quantized divergence from the results in [34], can be summarized as follows:

lim
qi,k→∞

22qi,kRqi,k =
1

2

∫
f1(x)F(x)

ζ2(x)
dx, (40)

where

F(x) = ∇Z(x)Tm(x)∇Z(x), (41)

which is called the Fisher covariation profile. In order to find the corresponding bound for Rqi,k

corresponding to the optimal quantizer, we use the discrimination-optimal point density function [35] as

follows:

ζd(x) =
[f1(x)F(x)]

1
3∫

[f1(y)F(y)]
1
3 dy

. (42)

The asymptotic distortion function with the optimal point density can be expressed as:

Rqi,k ≈
1

22qi,k+1

(∫
[f1(x)F(x)]

1
3 dx

)3

. (43)
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Remark 8. For the scenario, when the observations are generated from the Gaussian distribution as

mentioned in (6), the expression for the log-likelihood ratio Z(x) is as follows:

Z(x) = log
f1(x)

f0(x)
=

(2x− µ)µ

2σ2
. (44)

Thus, the corresponding gradient of the log-likelihood ratio can be simplified to:

∇Z(x) =
µ

σ2
. (45)

For the scalar quantizer, when the quantization point cl is represented by the midpoint of the quantization

bin Sl, the value of the specific inertial profile function [35] is m(x) = 1
12

. Thus, the corresponding Fisher

covariation profile function can be simplified to:

F(x) = {∇Z(x)}2m(x) =
1

12

µ2

σ4
. (46)

Using the discrimination-optimal point density, we obtain the following asymptotic distortion function

as in (43):

Rqi,k ≈
1

22qi,k+1

(∫
f

1
3

1 (x)F
1
3 (x)dx

)3

, (47)

which is further simplified to:

Rqi,k ≈
1

12

µ2

σ4

1

22qi,k+1

(∫ (
1

σ
√

2π

) 1
3

e−
(x−µ)2

6σ2 dx

)3

. (48)

By substitution, the expression can be reduced to:

Rqi,k ≈
1

12

µ2

σ4

1

22qi,k+1

1

σ
√

2π

(
σ
√

6

∫ ∞
−∞

e−z
2

dz

)3

. (49)

Utilizing the standard integral
∫∞
−∞ e

−ax2dx =
√

π
a
, for a > 0, the asymptotic distortion function is

evaluated to be:

Rqi,k ≈
√

3πµ2

4σ2

1

22qi,k
. (50)

VI. CAUSAL OPTIMIZATION WITH FINITE BATTERY

In this section, we consider the scenario involving causal channel and energy state information. For

most practical applications, this is the more realistic scenario compared to its non-causal counterpart.

The optimization problem in such a scenario can be formulated as a stochastic control problem which

is usually solved using the dynamic programming (DP) algorithm.
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A. Information Pattern

As described in the System Model section, the causal channel and energy state information is collected

by the FC using channel estimation involving pilot symbols, and feedback from the sensors via control

channels at the beginning of each slot. The information during the kth time slot is recursively represented

by Jk = {hk,Bk,Jk−1}. It should be noted that for the purpose of simulation, we have ignored the amount

of energy required for the above mentioned channel estimation/feedback process. If the energy required

for this process is non negligible but fixed during each time slot, then the algorithm presented in the

following section can be simply modified by subtracting that fixed amount of energy from the available

energy in the battery and apply the DP algorithm with modified energy state information.

B. Dynamic Programming Algorithm

The stochastic control problem with causal information for optimizing the sensing decision and the

number of quantization bits is analyzed in this subsection with the assumption that all sensors are capable

of harvesting energy and storing it in a finite sized battery. The instantaneous KL divergence measure

for the kth time slot can be expressed as follows:

D(νk,qk) =
N∑
i=1

{
νi,k

2
qi,k−1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

}
(51)

where νk = {ν1,k, ν2,k, . . . , νN,k}T and qk = {q1,k, q2,k, . . . , qN,k}T denote the vector of sensing param-

eters νi,k and number of quantization bits qi,k, respectively. For the optimization problem under considera-

tion, we define the feasible set of optimization variables as S = {(νk,qk) : νk,qk satisfy (19), (20), (21)}.

With the objective of maximizing the expected sum of the KL divergence measure over a finite horizon,

the following theorem presents the solution to the optimal sequences of decision to sense and number

of quantization bits ( {νi,k}, {qi,k}) using a DP algorithm:

Theorem 1. The value function of the finite horizon optimization problem for the finite battery scenario

with initial causal information J1 = {h1,B1}, V1(h1,B1) can be computed by the backward Bellman

dynamic programming equation as follows:

Vk(hk,Bk) = max
(νk,qk)∈S

{
D(νk,qk) + E {Vk+1(hk+1,Bk+1|hk,Bk,νk,qk)}

}
, (52)

for 1 ≤ k ≤ M − 1. It should be noted that the expectation is computed over the random variables h

and B and the terminal condition for the algorithm is given by:

VM(hM ,BM) = max
νM ,qM∈S

D(νM ,qM).
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Proof. The proof is standard and follows from the principle of optimality for finite horizon stochastic

control problems [36].

The optimal values ν?k,q
?
k can be computed numerically by searching over the discretized values of

optimization variables in the feasible set S as follows:

{ν?k,q?k} = argmax
(νk,qk)∈S

{
D(νk,qk) + E {Vk+1(hk+1,Bk+1|hk,Bk,νk,qk)}

}
It should be noted that the above mentioned procedure is performed purely offline based on the statistical

information available to the FC about the channel gain and the battery states at individual sensors. Based

on this information, the FC creates a look up table for the optimal sensing decision ν?i,k and the number

of quantization bits q?i,k corresponding to the discretized values of channel gain and battery state. In

practice, the FC receives the causal energy and channel state information in real time and finds the

optimal values of the above mentioned optimization variables from the look up table corresponding to

the closest discretized level of channel gain and battery state. Furthermore, these optimal values are

subsequently shared with the individual sensors through an error free broadcast feedback channel.

We have summarized the above mentioned optimization procedure in an algorithmic form (see Algo-

rithm 1 below) for computing the optimal sequences of sensing decision parameters {νk} and number

of quantization bits {qk}.

Algorithm 1 Dynamic Programming algorithm for calculation of optimal parameters
1: Initialization: The initial KL divergence M th time slot D(νM ,qM) is determined by (51).

2: Feasible Set is defined as S = {(νk,qk) : νk,qk satisfy (19), (20), (21)}.

3: Value function for the M th time slot VM(hM ,BM) = maxνM ,qM∈S D(νM ,qM).

4: for k = M − 1 to 0 do

5: Value function for kth time slot:

Vk(hk,Bk) = max
(νk,qk)∈S

{
D(νk,qk) + E {Vk+1(hk+1,Bk+1|hk,Bk,νk,qk)}

}
,

where the inner expectation is computed numerically.

6: Optimal νk and qk can be computed by solving the following equation:

{ν?k,q?k} = argmax
(νk,qk)∈S

{
D(νk,qk) + E {Vk+1(hk+1,Bk+1|hk,Bk,νk,qk)}

}
7: end for
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C. Alternative Optimization Problem

In this subsection, we propose an alternative objective function for minimizing the average detection

delay over a finite horizon of M time slots. As mentioned in Section III, instead of maximizing

1
M

∑M
k=1 E {I

q
tot}, we choose to minimize the objective function 1

M

∑M
k=1 E

{
1
Iqtot

}
in this scenario. We

can justify this choice by using Jensen’s inequality, which says that for a convex function f(x), the

following inequality holds:

E(f(x)) ≥ f(E(x)).

Since f(x) = x−1, where x > 0, is convex, we can apply Jensen’s inequality to obtain:

E
{

1

x

}
≥ 1

E(x)

Applying the above to the KL divergence based cost D(νk,qk), we have

E
{

1

D(νk,qk)

}
≥ 1

E(D(νk,qk))
(53)

Finally, applying Jensen’s inequality again, we can show that

1

M

M∑
k=1

E
{

1

D(νk,qk)

}
≥ 1

M

M∑
k=1

1

E(D(νk,qk))
≥ 1

1
M

∑M
k=1 E(D(νk,qk))

This illustrates that in the optimization setting of the previous section (both causal and non-causal), we

were minimizing a lower bound (by maximizing the denominator on the right hand side of the second

inequality above) on the asymptotic expected detection delay, which is actually given by the left hand side

of the first inequality above. Thus we consider the following optimization problem, which is expressed

as:

min
νi,k,qi,k

M∑
k=1

Enk

{
1∑nk

i=1 νi,k
∑2

qi,k−1
l=0 g1

i (l) log
g1i (l)

g0i (l)

}
,

s.t. νi,k ∈ {0, 1} ; ∀i, k, (54)

qi,k ∈ {1, . . . , Qmax} ; ∀i, k, (55)

Ei,k ≤ Bi,k; ∀i, k. (56)

Similar to the previous optimization problem, the optimal sensing policy and number of quantization

bits for both non-causal and causal CSI are determined using the dynamic programming algorithm. Once

the optimal number of quantization bits is known, the quantization thresholds are found using the same

set of nonlinear equations as (30). This is due to the fact that, the threshold computation in Section IV-A,

focuses on each individual sensor during each time slot in a decentralized fashion. Thus, maximization

of I(g1, g0) is equivalent to the problem of minimizing 1
I(g1,g0)

.
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VII. SIMULATION RESULTS

In this section, we present a set of simulation results for both non-causal and causal information

scenarios with finite battery capacity for both optimal and uniform quantization policies. The power

gain for the channel between the ith sensor Si and the FC for the kth time slot, hi,k, is modelled as

an exponentially distributed random variable with unity mean. The amount of harvested energy, Hi,k,

for the sensor Si during the k-th time slot is also assumed to be an exponentially distributed random

variable with a mean of 1 µ J. For the following simulations, we have assumed that the observations are

generated from a Gaussian distribution as shown in (6) and the mean and the variance of the Gaussian

distribution under hypothesis H1 are µ = 1.5 and σ2 = 1, respectively. The probability of bit error for

the quantized observation transmission to the FC is Pe = 0.005. The noise power spectral density is

assumed to be N0 = 0.02µW/Hz. The amount of energy required for sensing the observation signal

is assumed to be Es = 0.1µ J. The number of sensors are taken to be N = 2. The maximum number

of quantization bits is taken to be Qmax = 5. The choice of the value of Qmax is motivated by Fig.2,

which clearly shows that the KL divergence measure corresponding to both the optimal and uniform

quantization policies and the unquantized case become virtually equal when qi,k ≥ 5. The initial battery

level for all sensors are assumed to be 0.4µJ . For the DP algorithm implementation, the channel power

gain hi,k and the battery state Bi,k are both quantized to 4 discrete levels. The average of detection delay

of change point is computed over 104 of Monte-Carlo iterations for Fig.3-Fig.7.

For the plots in Fig.3-Fig.6, two policies of uniform and optimal quantization are taken into consid-

eration. It is noteworthy that we have also proposed an MVT based asymptotically optimal quantizer

in Section VI-B. For the sake of comparison, we include the one slot KL information number for all

three quantization strategies in Table II, where we only filled the KL information values for the MVT

based asymptotically optimal quantizer, when the number of quantization bits is significantly high. This

is due to the fact that for the above mentioned quantizer, the asymptotic assumption of tl − tl−1 → 0

does not hold when the number of quantization bits is small, which results in significant inaccuracy in

determining the thresholds. Thus, it performs poorly compared to its other two counterparts, especially

when the number of quantization bits is small. However, when we increase the number of quantization

bits significantly, then the MVT based asymptotically optimal quantization strategy performs similar to

the other two policies.

Fig.2 shows the comparative performance of the KL information number for the single sensor and one
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qi,k MVT Optimal Uniform Optimal

3 - 1.0732 1.0861

4 - 1.112 1.1143

5 - 1.1213 1.1222

6 - 1.1239 1.1245

7 0.3146 1.1245 1.1247

8 0.6831 1.1247 1.1248

9 1.0834 1.1248 1.1248
TABLE II

KL INFORMATION NUMBER COMPARISON

qi,k Optimal Asymptotic Analytic Bound

1 0.4073 -

2 0.1320 -

3 0.0389 -

4 0.0107 0.0136

5 0.0028 0.0032

6 0.0005 0.0008

7 0.0003 0.0002

8 0.0002 4.7× 10−5

9 0.0002 1.1× 10−5

TABLE III

KL INFORMATION NUMBER DIFFERENCE

time slot case. We have plotted the KL information number for the unquantized observation, optimal, and

uniform quantization policies with respect to varying number of quantization bits. The KL information

number of the unquantized observation case can be easily shown to be µ2

2σ2 . This signifies an upper

bound for the quantized observation scenarios. As expected, Fig.2 shows that the optimal quantization

policy is superior to its uniform counterpart. It is also noticeable that the KL information number for all

three policies become comparable as the number of quantization bits increases. In Table III we illustrate

the difference of the KL information number of the unquantized observation scenario and the optimal

quantization strategy. In Table III, the aforementioned difference obtained by the simulation is compared

with the asymptotic analytic bound introduced in Section V. Similar to Table II, it is expected that the

asymptotic approximation does not hold when the number of quantization bits is low. Thus, we have only

included the aforementioned difference in the asymptotic analytic bound column, when the number of

quantization bits is sufficiently high, which is in clear agreement with the numerically evaluated results
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Fig. 2. Single slot single user KL information number for optimal, uniform quantization and unquantized policy as a function of number

of quantization bits qi,k
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Fig. 3. Probability of false alarm Pfa vs false alarm rate bound γ for non-causal CSI with optimal quantization policy for Horizon length

M = 6, 8, 10

for the optimal quantization case.

Fig.3 shows the probability of false alarm Pfa with respect to varying levels of the false alarm rate

lower bound parameter γ for the non-causal CSI scenario and horizon length M = 6, 8, 10 for the optimal

quantization policy. We notice that the probability of false alarm increases with increasing horizon length

for small values of γ. This is due to the fact that average detection delay decreases with increasing horizon

length, which in turn effectively decreases the expected time to false alarm, thus resulting in an increase

of the false alarm probability. For the remaining plots, we have fixed the probability of false alarm to

be Pfa = 0.01. The corresponding values of γ are extracted from Fig.3 and utilized for the simulations

involving this specific scenario. Although not explicitly shown here, we have also used similar plots for
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Fig. 4. Average detection delay (Time slots) vs mean channel gain µh for non-causal CSI with optimal and uniform quantization policy

for horizon length M = 6, 8, 10
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Fig. 5. Average detection delay (Time slots) vs Battery capacity Bmax for non-causal CSI with optimal and uniform quantization policy

for horizon length M = 6, 8, 10

the simulations involving uniform quantization for the non-causal CSI scenario and both optimal and

uniform quantization for the causal CSI scenario.

In Fig.4, we have plotted the average detection delay with respect to the average channel power gain

parameter µh, keeping the battery capacity fixed at Bmax = 0.8µJ for the non-causal CSI scenario. We

note that the average detection delay in the optimal quantization case decays faster than the corresponding

uniform ones. Fig.5 shows the plot of average detection delay with respect to the battery capacity Bmax

where the average channel gain µh = 1 for non-causal information. As for numerical comparison, we

notice from Fig.5 that for M = 10 and Bmax = 0.7µJ , the average detection delay corresponding to
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Fig. 6. Average detection delay (Time slots) vs Battery capacity Bmax for non-causal and causal CSI with optimal and uniform quantization

policy for horizon length M = 8, and µh = 1
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Fig. 7. Average detection delay (Time slots) vs Battery capacity Bmax for non-causal and causal CSI for optimal quantization policy two

different objective functions for horizon length M = 8, and µh = 1

the uniform quantization policy is 5.9 percent higher as compared to its optimal counterpart. It should

also be noted that the average detection delay decreases with increasing horizon length. This intuitively

makes sense for the non-causal scenario, where an increase in horizon length signifies availability of

more information before the transmission process and it helps the sensors to plan its quantization and

sensing strategy and in turn their energy usage in a better way.

Fig.6 is a comparative plot demonstrating the average detection delay with respect to the battery

capacity Bmax while keeping the mean channel gain µh = 1 for both the optimal and the uniform

quantization with non-causal and causal CSI where the horizon length is taken to be M = 8. As for the

numerical comparison, it can be seen that for Bmax = 0.7µJ , the average detection delay corresponding
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Fig. 8. Average detection delay (Time slots) vs mean channel gain µh for non-causal CSI for alternative optimal quantization policy with

horizon length M = 6, 8, 10
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Fig. 9. Probability of false alarm Pfa vs false alarm rate bound γ for non-causal CSI with Optimal (expected KL maximizing) and

Alternative optimal quantization (expected inverse KL minimizing) policy for Horizon length M = 6, 8, 10

to the optimal quantization policy for the causal CSI scenario is 15.3 percent higher as compared to its

non-causal counterpart.

In Fig.7, we have plotted the average detection delay with respect to the battery capacity Bmax for

horizon length M = 8 and the mean channel gain µh = 1. The figure includes the plots for both the

causal and the non-causal scenario with the optimal quantizer determined by two different objective

functions corresponding to maximizing average sum of KL divergence measure and minimizing the

average sum of the inverse of the KL divergence measure. Out of the two objective functions and

corresponding optimization problems, the simulation shows that minimization of the inverse KL measure

performs better than the maximization of the KL measure. As a numerical comparison, we see that for

Bmax = 0.7µJ , the average detection delay corresponding to the optimal quantizer, which maximizes
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the expected sum KL measure, is 22 percent higher compared to the optimal quantizer which minimizes

the expected sum of the inverse of KL measure for the causal CSI scenario. In Fig.8, we have plotted

the average detection delay with respect to the average channel gain for optimal quantization policy that

minimizes the inverse of KL measure. The average detection delays are plotted for the horizon length

M = 6, 8, 10 in the non-causal CSI scenario while keeping the battery capacity fixed at Bmax = 0.8µJ .

Similar to Fig.4, we notice from Fig.8, that the average detection delay decreases with increasing average

channel gain and increasing horizon length.

As mentioned earlier, we notice from Fig.7 and comparing Fig.4 with Fig.8, that the alternate optimal

quantization policy performs better (in terms of the average detection delay) than the optimal quantization

policy which maximizes the expected sum of the KL measure. However, from Fig.9, where we compare

the probability of false alarm rates for the two optimization problems, we notice that the performance

improvement of the alternate optimal quantization policy comes at the expense of a higher probability

of false alarm Pfa. We also notice from Fig.4 and Fig.8, that the decrease in the average detection delay

due to increase in horizon length is more prominent for the first optimal quantization policy as compared

to its alternate counterpart. As a numerical comparison, for a mean channel gain µh = 1, the average

detection delay for horizon length M = 8 is 6.6 percent less compared to the scenario involving M = 6,

whereas for the alternative optimal quantization policy the corresponding decrease in average detection

delay is 4 percent.

VIII. CONCLUSIONS AND FUTURE WORK

This paper investigated the problem of minimizing the average detection delay of a quickest change

detection framework for the decentralised multi-sensor scenario where each sensor is capable of harvesting

energies from its surroundings. Using the asymptotic result that expected detection delay is inversely

proportional to the KL divergence measure between the densities of the observations after and before the

change, we derived an optimal sensing and quantization strategy for such a problem by maximizing the

expected sum of the KL divergence measure over a finite horizon, employing DP algorithms for both

non-causal and causal scenarios. The non-causal CSI scenario provides a benchmark of average detection

delay for the more realistic causal counterpart. We also derived closed form expression for the optimal

thresholds for a fixed number quantization bits by maximizing the KL divergence measure for each time

slot. This closed form expression is further simplified for the scenario when the number quantization

bits is really high. We have also proposed a uniform quantization strategy as a heuristic policy. We have
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provided an analysis for the difference between the KL information measure for the unquantized and the

quantized observation for the optimal strategy in the asymptotic case using asymptotic quantization theory.

Simulation results indicate that the optimal quantizer significantly outperforms its uniform counterpart

when the number of quantization bits is low. This performance benefit becomes marginal as the number of

quantization bits increases. Future extensions of this work include formulation of optimization problems

for the scenario when individual sensors perform the quickest change detection themselves and send

local decisions to the FC, rather than sending quantized log-likelihood ratios. Other possible extensions

of the work could be to the Bayesian framework, where the unknown change point is assumed to

be a random process with a certain known probability distribution, or to quickest change detection of

Generalized Likelihood Ratio (GLR) test, where the parameters of the distribution after the change are

unknown. Extensions to change detection in non-parametric settings as considered in [20], [21] can also

be formulated with energy harvesting sensors with window based sampling techniques, although there

are non-trivial challenges concering a suitable optimization problem formulation due to the absence of

analytical expressions or bounds for the worst case average detection delay for such algorithms. Such

extensions will thus be considered in future work.
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