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Characterization of the Dynamic Behavior of a
Stirred Liquid–Liquid System for Process Control

The dynamic behavior of a toluene/NaOH solution system was studied in a batch
stirred tank. Characterization by step response experiments showed that the drop
size response to stirrer speed steps behaves as a first-order system, whereas the stir-
rer speed responds as a second-order system. The respective time constants differed
by at least one order of magnitude, suggesting effective control of the drop size is
feasible by adjusting the stirrer speed. Based on experimental data, simple, linear
systemmodels were derived for the mean drop diameter and the interfacial area us-
ing the stirrer speed as input variable. Validation experiments showed good model
qualities of about 70% and the design of test trajectories proved themodel’s usability
in an open-loop control.
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1 Introduction

1.1 State of the Art

Continuous mixer-settler systems are widely applied in liquid–
liquid extraction processes. The two unit operations have differ-
ent tasks and require opposing conditions with respect to drop
sizes that make it challenging to operate the total process. Al-
though tiny droplets with a large specific interfacial area are
preferable for the mass transfer in the extraction step inside the
stirred vessel, larger drops are beneficial for the following settling
step in the separator. The drop size distribution (DSD) is deter-
mined by the applied stirrer speed and the corresponding power
input in the stirred tank.

Even when industrial apparatuses are equipped with stirrer
speed control, the speed is typically maintained at a constant
value, primarily based on practical experience rather than on
closed-loop feedback control. Only biogas reactors sometimes
workwith intermittent stirring as it can either enhance the biogas
production or save a significant amount of energy with constant
biogas production compared to continuous stirring [1]. However,
even here, the stirring intervals are set based on practical knowl-
edge and adjusted through trial-and-error methods rather than
by systematic feedback control. Usually, operation parameters
might only be changed if the overall process efficiency is affected,
e.g., when concentrations of by-products exceed a certain limit
or if the product yield is too low. It is somewhat surprising that
the flexibility to operate the stirred tank by controlling the stirrer
speed over a wide range is seldom exploited. One reason for that
might often be missing in situ measurements and, in the case of
drop sizes, the lack of real-time data that is crucial for process
control.

Even in academic research, the benefits of speed control are
rarely used and closely investigated. The application of unsteady

mixing instead of standard mixing was recommended by differ-
ent authors for the laminar single-phase mixing of high viscous
fluids [2–4]. They observed enhanced mixing efficiency using
unsteady stirring conditions (e.g., ramps, step, or sinusoidal
functions) and explained the more homogeneous mixing with
the creation of chaotic flow that reduces segregated regions, so
called isolated mixing regions.

Some scientific effort was put on batch and fed-batch aerobic
fermentations in bioreactors with controlled stirrer speed. Be-
sides dissolved oxygen (DO) as one significant parameter in the
cultivation process, also the shear sensitivity of microorganisms
must be considered. Although DO concentrations can be mea-
sured online and in real time, the DO control is challenging due
to the process dynamics and the complex nonlinear behavior.
Some groups developed DO control strategies by adapting the
stirrer speed and either aeration rate or temperature [5–8]. But
in general, tuning difficulties were reported when conventional
PI controllers with fixed parameters were used for DO control.
A control strategy based on PID control and gain scheduling
of the stirrer speed was suggested to account for the process
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variations [9]. Furthermore, more advanced DO control ap-
proaches like a Model Reference Adaptive Control scheme using
the stirrer speed as a control signal were presented [10].

In liquid–liquid systems, the variation of stirrer speed for pro-
cess control has been less frequently documented. For instance,
in the suspension polymerization of styrene, it was reported that
particle size could be changed widely with a high degree of uni-
formity by changing the stirrer speed using a double impeller [11]
or employing the co-reverse rotational method with a periodic
time interval [12]. In contrast, in batch precipitation of silica
in stirred tanks, particle size distributions (PSDs) produced
were found to be independent of stirrer speed mode—whether
fixed or variable. This suggests that energy consumption can
be reduced without compromising product quality [13]. How-
ever, for liquid–liquid dispersions, the proposed use of a linear
quadratic regulator (LQR) based on simulations using popu-
lation balance equations (PBEs) indicated that further analysis
of the problem, i.e., the model identification, is necessary as
no influence of the LQR on the DSDs in simulations could be
found [14].

Despite existing technical capabilities for controlling stirrer
speeds in industrial applications, no examples are published.
This does not necessarily mean that such concepts are not
used at all, but it does suggest that such approaches are not
yet considered standard practice. In some industrial scenarios,
such as batch or fed-batch processes, the stirrer speed is varied,
particularly in polymerizations where the stirrer speed must
be reduced due to the increasing viscosity as the reaction pro-
gresses. Similarly, in some industrial batch extraction processes,
the stirrer speed is reduced at the end of themass transfer process
before the stirrer is completely switched off to reduce the time
for the following settling process. These adjustments are typi-
cally based on empirical experience rather than on systematic
control.

Because there are great improvements in the computational
handling of big data (e.g., MLmethods) and the progress in real-
time acquisition of process parameters such as drop sizes, the
potential of adaptive stirring speed by closed-loop control can
also be used in continuous industrial processes soon. An illus-
trative example for such a closed-loop control was demonstrated
for a small lab-scale stirred DN32 liquid–liquid extraction col-
umn [15]. The authors implemented a control strategy for the
fluid dynamics based on convolutional neural networks (CNNs).
Optical drop size determination via the CNN was used as input
for feedback control to adjust the stirrer speed and volume flow
rate, aiming for stable operation conditions. Only three classes of
drop sizes (small, medium, and large) were determined, rather
than a complete DSD. However, the comprehensive understand-
ing of the DSD, combined with concentration measurements, is
crucial for accurately assessing and controlling the mass transfer
performance.

This research project focuses on a liquid–liquid mixer-settler
system, with the goal of optimizing the process via closed-loop
control of drop sizes using the stirrer speed as the feedback input.
The primary challenge is to establish optimal stirrer speed con-
trol trajectories that balance effective mass transfer—facilitated
by smaller drops and a larger interfacial area—and efficient phase
separation in the settler, where larger drops expedite settling
time. To address this, the development of control trajectories

must be based on a process model that can accurately describe
the dynamic system behavior.

To build such a process model, only the mixer unit, i.e., a
stirred tank reactor (STR) in batch operation, is considered in
the process chain at the initial stage of investigation. In this
article, the dynamic behavior of a selected liquid–liquid system
(here without mass transfer) in the batch STR is investigated.
Stirring experiments are conducted to determine the DSDs
of the material system under varying stirrer speeds and step
functions. These experimental results, along with standard
test signals, are utilized to identify and validate a dynamic
model of the DSD where the stirrer speed acts as a key input
variable. As a result, the validated model is used to design
test control trajectories for the current open-loop process
control.

Optimization of the overall process requires a closed-loop
control. Therefore, the integration of a real-time DSD determi-
nation using neural network particle detection is currently in
progress. Once the closed-loop control is established, the STR
will be operated in continuous mode, and at a later stage, the
settler unit will also be added to the process chain to study and
optimize the complete system operation.

1.2 Description of Liquid–Liquid Dispersions

The Sauter mean diameter d32 is the most commonly used
parameter for describing the DSD in liquid–liquid systems.
It represents the diameter of a drop whose volume/surface
area ratio equals the mean volume/surface area ratio of the
distribution and is directly related to the dispersed phase frac-
tion ϕd and the total interfacial area per total volume a in the
system d32 = 6ϕd/a.

Additionally, the Weber number (We), which is a dimension-
less number relating the kinetic energy of a droplet to its surface
energy, often correlates with d32. For systems with higher dis-
persed phase fractions ϕd > 5 vol %, where both breakage and
coalescence are significant, the literature typically suggests the
form:
d32
dst

= C1 (1 +C2ϕd )We−C3 (1)

where C1 depends on the stirrer type, and C2 quantifies the in-
fluence of coalescence. In the literature, the exponent of We C3
is commonly reported to be 0.6 for breakage-dominated dis-
persions and 0.375 for coalescence-dominated dispersions [16].
There are several extensions and further developed We correla-
tions available in the literature [17, 18]. Besides the accompanying
huge variety of reported correlation constants, exponents, and
fitting parameters, these correlations have another major lim-
itation as they are based on the analysis of steady-state drop
diameters. In steady state, breakage and coalescence processes
are in equilibrium, and the drop size is constant over time. In
most industrial applications, such as solvent extraction, poly-
merization, and biocatalytic processes, transientDSDs occur that
cannot be described by such correlations.

For describing the time evolution of a DSD, the PBE is
predominantly applied. This modular framework separates the
processes of drop breakage and coalescence in a drop swarm,
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describing changes in the number density function f(dp,t), which
represents the distribution of drops with diameter dp within a
certain volume over time. The PBE incorporates birth and death
terms for each drop based on submodels that handle breakage
and coalescence events independently. A wide range of mod-
eling approaches for these submodels with different levels of
detail is available in the literature. There are extensive reviews
of submodels for drop breakage [19–22], drop coalescence [21,
23–25], and also approaches for gravity settlers [26, 27]. The prin-
cipal advantage of using PBE is the possibility to calculate not
only the complete DSD and the corresponding moments of the
distribution in steady state but, more important also under tran-
sient conditions. However, due to the vast array of submodels,
each designed to incorporate a large number of influencing fac-
tors, it is difficult to select the appropriate model for a specific
problem ormaterial system [28]. The complexity required for ac-
curacy must be balanced against the solvability of the models to
ensure computational efficiency. Especially in the case of coales-
cence, developed submodels are based on diverse assumptions
and simplifications that result in different and partly contra-
dictory dependencies on influencing factors [29]. Moreover, a
vast variety of fit parameters for the implemented submodels
is available, and the determination of these interdependent fit
parameters is crucial for the performance and accuracy of the
simulations [30].

Unfortunately, most models for the description of DSD suffer
from significant shortcomings when it comes to using them
for control. Specifically, models based on We lead only to static
instead of dynamic equations, whereas models based on PBEs
usually contain a great number of parameters, making experi-
mental identification challenging. To circumvent such difficult
to parameterize models, linear models of higher degree for inter-
facial area, based on calculations using the Sauter mean diameter
and the average droplet size directly from the experimentally
measured distributions, are identified. For this purpose, a
data-driven black-box approach using AutoRegressive with
eXogenous input (ARX) models was chosen. This approach
offers the advantage of being easier to parameterize and quicker
to perform, using established methods and implementations
via Matlab. Although an error-free model description cannot
be expected from such an approach, it is still anticipated that
characteristic system behavior can be sufficiently well described
by such a model. This should allow for qualitative improve-
ments in system behavior through dynamical open-loop control
based on such a model, in contrast to classic static open-loop
control [31].

2 Materials and Methods

2.1 Material System

In this study, the investigated liquid–liquid system consisted of
toluene (1.08325.6025, Merck KGaA) as dispersed phase and an
aqueous NaOH solution with a concentration of cc = 0.1 mol L−1

(1.09956.0001, Merck KGaA) as continuous phase. The volume
phase fraction of the dispersed phase was set at ϕd = 10 vol %.
Toluene has a density of ρd = 870 kg m−3 and a dynamic vis-
cosity of ηd = 0.54 mPa s, whereas the continuous phase has

Figure 1. Schematic flow sheet of the experimental setup.

ρc = 1000 kg m−3 and ηc = 0.89 mPa s, with all properties mea-
sured at 20 °C. Due to CO2 absorption, the pH of the continuous
phase, which was always determined at the beginning of each
experiment, was found to be pH = 12.69 ± 0.2. The interfacial
tension between the phases was experimentally determined to
be γ = 28 mNm−1 at 20 °C.

2.2 Experimental Setup

The experiments were carried out in a double-walled glass re-
actor with a hemispherical bottom. The inner diameter was
D = 150 mm, and a chosen filling height H/D = 1. An over-
head stirrer (Eurostar 60 control, IKA GmbH) capable of speeds
up to 2000 min−1 was employed. A radial-flow Rushton turbine,
with a diameter of dst = 50 mm, served as agitator (Neturb = 3.8).
The stirrer off-bottom clearance, defined as the distance between
the centerline of the turbine disk and the tank bottom, was set
at hst = 0.33 D. Four equally spaced stainless-steel baffles with
a width Bb = 10 mm and immersed length Hb = 102 mm pre-
vented vortex formation, thereby enhancing secondary flow and
improving the overall mixing efficiency. The system temperature
was maintained at a constant 20 °C, controlled via an external
thermostat. A schematic flow sheet of the setup is depicted in
Fig. 1.

The control of the stirrer speed was managed using a baseline
real-time target machine, the Speedgoat Type Baseline S (Speed-
goat GmbH). The connection between Speedgoat and stirrer
was established via serial communication, utilizing the respective
ports of both machines. This setup allowed for a minimal sam-
ple time of 0.1 s, ensuring error-free communication. The control
program used to trigger the stirrer was initialized via Matlab,
built in Simulink, and finally loaded onto the Speedgoat using
the Simulink Real-Time workflow.

For the batch experiments, the range of stirrer speeds investi-
gated wasN= 450–700min−1, which corresponded to a range of
mean energy dissipation rate ε = 0.25–0.94Wkg−1 andReynolds
numbers of Re = 17 711–27 550. The minimum stirrer speed
Nmin = 450 min−1 was selected to ensure fully developed disper-
sion, whereas the maximum speed Nmax = 700 min−1 was set to
prevent surface aeration.
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Figure 2. Signal processing chain from rawdata acquisition to result output, utilizing amodified Faster R-CNN as core component for object
detection. For better visual recognition, the endoscope images presented in the figure have been inverted.

2.3 Particle Measurement Technique

TheDSDsweremeasured using a photo-optical endoscopicmea-
surement technique (SOPAT GmbH). The employed probe type
SOPAT Sc features a field of view of 2.7 mm and can reliably
capture particles in the size range of dp = 9–1200 μm. Endo-
scopically obtained in situ images serve as the two-dimensional
(2D) raw data input for the signal processing chain toward final
measurement values, as graphically depicted in Fig. 2.

Images are acquired at 20 Hz with a resolution of 2476× 1980
pixel per single image (90 % ROI of full sensor). A series of 20–
100 images is acquired and is, without further pre-processing,
jointly batch-processed to define each single data point. A suf-
ficient number of detected particles ranging from 2000 to 4000
per image series was detected to ensure statistically stable data
points.

Image analysis is carried out offline in batches of image se-
ries, i.e., data points. The core component of the particle analysis
is a CNN, which outputs 2D recognized and measured objects.
The ensemble of all particle detections across all images in a se-
ries is used to define the particle distribution for that data point.
The distributions are then used to derive the characteristic values
such as d10, σ 0, and d32.

The employed CNN is a custom variant of Faster R-CNN [32,
33], modified by SOPAT to detect spherical particles [34]. This
modification allows for an end-to-end setting (raw image in, seg-
mented instances out). To train the CNN, the stochastic gradient
descent optimizer was chosen. The training data consisted of 22
individual subsets, totaling 139 manually annotated images. This
includes in total 25 462 marked particles (particles per image:
min. 36, max. 877, avg. 183.18). All training data were endoscopi-
cally acquired from systems containing solely spherical droplets.
The various subsets define different material systems (all liquid–
liquid) under completely different operating conditions.

2.4 Modeling

Here, a brief overview of the derived systemmodel is given. For a
detailed description, please refer to [31]. This work initially inves-
tigates a binary liquid–liquid system without mass transfer. For
the explicit modeling of the dynamic system describing the co-
alescence and breakage of the droplets in the stirred tank, two

key characteristics to describe the system behavior were used,
both of which are directly derived from the SOPAT image analy-
sis data described in Sect. 2.5. The operational quality regarding
mass transfer is assessed based on the interfacial area of droplets
a, calculated via the measured DSD. An increase in interfacial
area is beneficial for the mass transfer and, thus, maximizing the
interfacial area during the experiment in the stirred tank defines
desired operation conditions. For the phase separation occurring
in a downstream settler, larger droplet sizes are preferable; there-
fore, assuming a batch-like operation here, larger droplet sizes
at the end of the experiment are targeted. These droplet sizes
are characterized using themean droplet diameter d10, calculated
from the experimental distributions.

Given the droplet diameters di(t) at a discrete time instant t
from a distribution with nD data points, the diameter d10(t) can
be calculated as follows:

d10 (t ) = 1
nD

nD∑
i=1

di (t ) (2)

To enhance the robustness of the signal describing the inter-
facial area a(t), it is calculated based on a reformulation of the
definition of the Sauter mean diameter d32 as follows:

a (t ) = 6V
d32 (t )

(3)

Eq. (3) utilizes the Sauter mean diameter, calculated via SOPAT,
and the constant toluene volume of V = 200 mL, which is
ϕd = 10 vol %.

Both d10(t) and a(t) are modeled as functions of the effective
stirrer speedN(t) using ARXmodels. For a given input u(t) (here
the stirrer speedN(t)) and output y(t) (here either themean drop
size d10(t) or the total drop interfacial area a(t), respectively), the
relation between actual and past values is expressed as follows:

y (t ) + a1y (t − 1) + · · · + anay (t − na)

= b1u (t − nk) + · · · + bnbu (t − nb − nk + 1) + e (t ) (4)

The parameters na and nb are the orders of the ARX model,
and nk is the delay. e(t) is a noise signal that contains nor-
mally distributed noise, which is defined internally in Matlab to
improve the model performance.

By introducing the shift operator q, Eq. (4) can be reduced to

A
(
q
)
y (t ) = B

(
q
)
u (t − nk) + e (t ) (5)
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Figure 3. Block diagram of the used AutoRegressive with eXoge-
nous input (ARX) model.

with

A
(
q
) = 1 + a1q−1 + · · · + anaq

−na (6)

B
(
q
) = b1 + b2q−1 + · · · + bnbq

−nb+1 (7)

The generic block diagram for the ARX model is shown in
Fig. 3. The detailed polynomial equations A(q) and B(q) for
d10(t) and a(t), respectively, can be found in the Supporting
Information section.

2.5 Experiments

In the present study, two types of experiments, i.e., step func-
tions and identification experiments, were conducted to derive
the dynamic model.

The initial experimental part aimed to characterize a rela-
tively slowly coalescing liquid–liquid system suitable for process
control. This phase involved extensive studies on the system’s
coalescence and breakage behaviors, time constants, repro-
ducibility, range of drop sizes, and the self-similarity of DSDs.
During this phase, step functions were applied during mixing.
In particular, the dispersion was stirred at a constant stirrer
speed until a steady state was reached. The stirrer speed was then
abruptly—either increased or decreased—to induce drop break-
age or coalescence, respectively. The step response of DSDs was
observed andmeasured using the endoscope. As the stirrer speed
changed stepwise, the transient development of the DSDs was
closely monitored, with image series acquisition taking place ev-
ery 2–4 s until a new steady state was reached. Once the steady
state was attained, where the distributions remained practically
unaltered, the frequency of endoscope image acquisition was
reduced to up to one image series every 2.5 min.

In the second experimental phase, experiments were per-
formed to excite the higher frequency range of the system,
which is crucial for the identification of higher order dynamic
models. Two types of input signals were employed: chirp and
pseudo random binary sequence (PRBS), each serving distinct
purposes. The chirp, which was used for the auto-validation,
meaning the actual fitting of model parameters, was a sinus
signal lasting 1190 s. It swept through a frequency range of
f = 10−4–1.66 × 10−2 Hz with an amplitude of 125 min−1. Con-
versely, the PRBS was used for cross-validation of the model.
Defined as a 3600 s long signal with a sample time of 0.1 s and a
minimumholding time of 10 s for each stirrer speed step. Figures
of the two used signals can be found in the Supporting Infor-
mation section. Based on the obtained models, an optimization
problem was formulated that allowed the calculation of two dy-
namically changing stirrer speed trajectories to serve as a proof

of concept (see Eq. 8):⎡
⎢⎢⎢⎢⎣

y (0)
y (1)
y (2)
. . .

y (K)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y

=

⎡
⎢⎢⎢⎢⎣

D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0
. . . . . . . . . . . . . . .

CAKB CAK−1B CAK−2B . . . D

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Gy

⎡
⎢⎢⎢⎢⎣

u (0)
u (1)
u (2)
. . .

u (K)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
U

(8)

To do this, the identified ARX models are transformed into
their respective state-space representations (matricesA,B,C,D).
Using these matrices and the fact that the system is linearly de-
scribed, the system responsesY i inmean drop size (indexm) and
surface area (index a) to an actuationU over a period of length
K were described by multiplying this stacked actuation vectorU
by the respective stacked system matrices Gm and Ga. This was
used to formulate a cost function I with the respective weight-
ing vectors Wm and Wa as I(U ) = (WT

mGm + WT
aGa)U , which

is minimized. Two optimizations with slightly different weights
were performed using Matlab (fmincon). Only the last value of
Wm was non-zero (108), all entries of Wa were the same in each
optimization, and either wa ∈ {1013} or wa ∈ {1014} for trajectory
1 and 2, respectively.

3 Results

3.1 Characterization of Material System

In the initial stages of experimentation, the coalescence and
breakage behavior of the selected liquid–liquid dispersion sys-
tem was characterized in batch operation in the stirred tank
by applying step functions during mixing. As the stirrer speed
changed by an increasing or decreasing step, the transient de-
velopment of the DSDs was closely monitored, until a steady
state was reached. The DSD results from the two competing phe-
nomena of drop breakage and coalescence. Although complete
DSDs were measured, the use of the Sauter mean diameter as
a single characteristic length of the distribution proved to be
a reliable and adequate description of the system’s responsive-
ness to changes in stirrer speed, while correlating with the total
interfacial area available for mass transfer.

Fig. 4 illustrates the evolution of the Sauter mean diameter
d32 over time t for three experiments where identical step func-
tions were applied at the same intervals. Specifically, the stirrer
speed alternated among three levels: 450, 600, and 700 min−1.
The stirrer speed profile is also graphically depicted. As expected,
the drop sizes decrease when the stirrer speed increases (i.e.,
dominant drop breakage), and they increase when the stirrer
speed drops (i.e., more pronounced coalescence). When the stir-
rer speed returns to a previous setting, both the DSD and the
Sauter mean diameter revert to their prior values, demonstrat-
ing the system’s consistency. A slight drift in drop diameter over
time was observed in most experiments. Investigations into the
origin of this drift have not linked it to variations in electrolyte
composition (e.g., due to CO2 absorption), but it could be at-
tributed to the turbulence intermittency previously reported by
other authors [35–37]. Although this drift seems to be systematic,
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Figure 4. Development of the Sauter mean diameter over time
for a given stirrer speed step profile for three experiments with
the identical applied step functions.

it remains small (<4 % for the d32) and in the range of typical
measurement errors.

The comparison among the experimental runs confirms the
good reproducibility of the system, as further corroborated by
additional experimental data acquired. Deviations in the quasi
steady-state Sautermeandiameter d32st at the same applied stirrer
speed across different runswereminimal, lyingwithin±(2–7)%.

All droplet size distributions determined for the specific
system toluene/NaOH solution (0.1 M) exhibited Gaussian char-
acteristics, as exemplified by the histogram shown in Fig. 2.
Fig. 5a depicts the steady-state distributions for the stirrer speeds
applied in Fig. 4, presented as box plots. These plots reveal a

symmetric distribution around the median, confirming that the
acquired distributions are normal. Moreover, these distributions
demonstrated self-similarity with respect to the stirrer speed, i.e.,
once normalized over the respective d32, they aligned along an al-
most identical curve, regardless of the applied stirrer speed N.
This pattern is visually summarized in the probability plot of
Fig. 5b for three stirrer speeds (the operation limits and an in-
termediate stirrer speed). Further verification was conducted for
several distributions at intermediate stirrer speeds (N= 500, 550,
650 min−1). Only minor deviations were observed at the lowest
stirrer speed ofN= 450 min−1, particularly affecting the smaller
droplet sizes.

To facilitate effective modeling and control design, under-
standing the speed at which the dispersion system responds to
stirring changes is critical. Therefore, time constants character-
izing this response have been determined. Fig. 6a illustrates the
dynamic behavior of the system exemplarily for the largest stirrer
speed steps noted in Fig. 4, specifically the step increase from 450
to 700 min−1 and the decrease from 700 to 450 min−1. In partic-
ular, the data refer to the experimental run “Exp. 2” of Fig. 4. The
determined dynamic response shown in Fig. 6a aligns with that
of a first-order system, described by the step response equation:

d32 (t ) = K
(
1 − e(−t/T1 )

)
(9)

where K is the gain, and T1 the time constant. Tab. 1 presents the
gains and time constants for the drop size evolution at each step
of Fig. 4, averaged across runs “Exp. 1,” “Exp. 2,” and “Exp. 3.”
The shortest time constant T1, approximately 18 s, was deter-
mined for the stirrer speed increase from 450 to 700 min−1. The
time constants for other steps were longer. The direction of the
speed change—whether increasing or decreasing—significantly
impacts the time constant. In general, drop breakage occurs
much faster than drop coalescence. Accordingly, an increase
in stirrer speed leads the system toward a breakage-dominant
condition, accompanied by a corresponding decrease of the
time constant. Conversely, with a decrease in stirrer speed,

Figure 5. Steady-state distributions determined at three stirrer speeds (N= 450, 600, 700min−1). (a) as box plots and (b) as probability plots,
the data fit to a Gaussian distribution with a mean of μ = 0.76 and a standard deviation of σ = 0.31.
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Figure 6. Dynamic responses to a step increase and decrease in stirrer speed of 250min−1, (a) of thematerial system, fittedwith a first-order
step response and (b) of the stirrer, fitted with a second-order step response to determine the time constants.

coalescence becomes the time-determining process, resulting in
longer time constants.

In addition to depicting the system response, Fig. 6b shows the
corresponding evolution of the stirrer speed for the step from450
to 700min−1 and back from700 to 450min−1 in Fig. 4, controlled
via the Speedgoat target machine. The behavior of the stirrer can
be characterized as a second-order system due to the inertia of
both the stirrer and the liquid. The corresponding step response
is represented by

N (t ) = K ′
[
1 − T1 ′

T1 ′ − T2 ′ e(
−t/T1 ′) + T2 ′

T2 ′ − T1 ′ e(
−t/T2 ′)

]
(10)

where K′ is the gain and T1
′ and T2

′ are the time constants. As
seen in Fig. 6b, the determined time constants of the stirrer
are T1

′ < 1 s and T2
′ < 2 s. These values are notably smaller

than those determined for the material system (as detailed in
Fig. 6a and Tab. 1), differing by at least an order of magni-
tude. This significant difference in time constants between the

Table 1. The determined gain K (as an absolute value) and time
constant T1 of Eq. (9) for the drop size evolution in each stirrer
speed step of Fig. 4.

Stirrer speed step Gain, |K| [μm] Time constant, T1 [s]

450 min−1 → 700 min−1 108 (±9) 18 (±2)

700 min−1 → 450 min−1 103 (±6) 70 (±2)

450 min−1 → 600 min−1 79 (±9) 28 (±3)

600 min−1 → 450 min−1 77 (±9) 81 (±12)

450 min−1 → 700 min−1 99 (±4) 17 (±3)

700 min−1 → 600 min−1 25 (±2) 31 (±2)

Note: The system behaves as a first-order system. (In parenthesis
the standard deviation among the runs).

stirrer and the material system ensures that the control of the
DSD through adjustments in the stirrer speed is feasible for
the specific liquid–liquid dispersion system. Experiments with a
toluene/water system (atϕd = 10 vol%) showed that the response
(coalescence andbreakage) to changing stirrer speedwas too fast,
whereas the determined time constants for the equivalent stirrer
speed steps of Fig. 6a were T1 < 5 s. Therefore, this system was
not further used as a case study for this research work, and a rela-
tively “slower” coalescing system was searched for, leading to the
toluene/NaOH solution (0.1 M) system presented in this study.

3.2 Validation of SystemModel and Design of Test
Trajectory

In the second experimental phase, the experiments performed
aimed at identifying and validating a systemmodel that can accu-
rately describe the dynamic system behavior. Two types of input
signals were employed: a chirp for auto-validation, which in-
volves the actual fitting of model parameters, and a PRBS for
cross-validation of themodel. Detailed visualizations of both sig-
nals are provided in the Supporting Information section. This
section focuses on the results of the cross-validation using the
PRBS signal. For a more detailed description of the system iden-
tification and auto-validation, please refer to our previous work
[31].

Fig. 7 illustrates the responses of the liquid–liquid system
to the PRBS signal as deviation from the operation setpoint at
N = 575 min−1 for the actual experimental data and the derived
ARX model (see Sect. 2.4 and Supporting Information section).
The PRBS was a 3600 s long signal with a sample time of 0.1 s
and a minimum holding time of 10 s for each stirrer speed step.
However, only 3350 s of this signal are depicted in Fig. 7; the
remainder of the experimental period represents the time re-
quired for the system to reach a steady state at the setpoint of
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Figure 7. System response to pseudo randombinary sequence (PRBS) signal; comparison of the deviation of (a) themean droplet diameter
and (b) interfacial area from operation setpoint at N= 575 min−1, for the experimental data and the AutoRegressive with eXogenous input
(ARX) model.

N= 575min−1. Fig. 7a,b illustrates the response using themetrics
of the arithmeticmean drop diameter d10 and the total drop inter-
facial area a, respectively. The graphical representation provides
a visual confirmation of the model’s capacity to predict system
behavior under varying operational conditions, highlighting its
potential utility in process control.

The quality of the model in comparison to the experimental
data is described herein using the normalized root mean square
error:

NRMSE =
√∑n

i=1
(ŷi−yi)2

n

ymax − ymin
(11)

with n being the total number of measured values, ŷi the pre-
dicted values, and yi the measured values with ymax and ymin as
the respective maximum and minimum measured values.

The model’s fit quality, with a 67.9 % accuracy for the mean
droplet diameter and 69.2 % for the interfacial area in this
cross-validation experiment, is considered sufficiently good for
a model that serves as a basis for dynamic process control
applications. The maximum deviation of the model from the ex-
perimental data is up to 6 % for the mean droplet diameter and
up to −8 % for the interfacial area (see Supporting Information
section Fig. S3).

Overall, themodel describes the process adequatelywell.Most
notably, unlike the more complex models briefly described in
Sect. 1.2, the identified model is characterized by its simplic-
ity and linearity. Its parameters are easily identifiable through
straightforward experiments that can be conducted with stan-
dard laboratory equipment. This simplicity not only makes the
model more accessible but also supports the implementation of
dynamic process control strategies. It allows the design of op-
timal control trajectories, thereby contributing to the potential
optimization of the entire mixer-settler process.

Despite the overall good model fit, the deviation between ex-
perimental andmodel data increases with time as shown in Fig. 7
and more clearly in Supporting Information section Fig. S3 but
remains in low and acceptable ranges (<10 %). The increasing
deviation is attributed to the slight drift in drop sizes during stir-

ring mentioned above. To handle the observed drift as well as
variations in system behavior among different batches, a state
estimation method using Extended Kalman Filter (EKF) is cur-
rently being implemented to further adapt the models identified
so far. This will allow a better description and prediction of the
system behavior.

As a proof of concept, the developed models were used to
design two control test trajectories for the current open-loop sys-
tem. Based on the theory that a large surface area is favored for
mass transfer in the STR, whereas large drops are required for
efficient separation in a downstream settler, two non-static tra-
jectories were designed aiming to serve as a test of the model’s
applicability. The ARX models were transformed into their re-
spective state-space representations (matrices) as described in
Sect. 2.5, and a cost function was formulated to allow the opti-
mization of both themeandrop size and surface areawith slightly
different weights for the two trajectories.

Fig. 8a illustrates the designed trajectories. Fig. 8b–d shows
the responses of the mean droplet diameter d10, the interfacial
area a, and the cumulative interfacial area At, respectively, in
direct comparison to the result for a constant stirrer speed opera-
tion (at constantminimumandmaximumpossible stirrer speeds
for the specific setup, i.e., N = 450 and 700 min−1).

The requirements for these open-loop control trajectories are
simple, and therefore, their signal (Fig. 8a) appears straightfor-
ward and predictable, i.e., maximum stirrer speed was used and
switched to minimum stirrer speed at the end of the experiment,
at a time that varies based on the applied weights used in the cost
function. Nevertheless, the results illustrate the potential of dy-
namic open-loop control compared to static control. The results
of d10 and a are balanced between the two extremes of static op-
eration, whereas the cumulative interfacial area At remains at its
maximum throughout the experiment. Moreover, these simple
test trajectories serve as an important basis for designing opti-
mal closed-loop trajectories in future steps. More complicated
requirements can be set by a corresponding configuration of the
generated cost function, and in this way, different objectives can
be achieved during a continuously operated process chain with a
mixer and a downstream settler.
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Figure 8. (a) The designed test trajectories of the stirrer speed and the responses of (b) the mean droplet diameter, (c) the interfacial area,
and (d) the overall cumulative created surface area available for mass transfer throughout the experiment, in comparison to the respective
outcomes of a static operation at constant minimum or maximum stirrer speed.

4 Conclusions and Outlook

The primary objective of this research is to develop a sophis-
ticated closed-loop feedback control system that dynamically
monitors and adjusts the stirrer speed based on observed DSDs
in a liquid–liquid dispersion. The overall goal is to optimize a
mixer-settler process, ensuring an optimal balance that maxi-
mizes mass transfer while simultaneously enhancing the sepa-
ration efficiency. This goal necessitates the creation of a process
model that, despite its simplicity, captures the dynamic behavior
of the stirred liquid–liquid system with sufficient accuracy.

The dynamic behavior of a toluene/aqueous NaOH solution
system, which serves as a case study for the investigations, was
examined in a stirred tank operated in batch mode. Initial char-
acterization of the liquid–liquid system was conducted through
step response experiments, which reliably demonstrated that the
drop size response to changes in stirrer speed steps was repro-
ducible. Additionally, the development of the Gaussian DSD at
steady state exhibited characteristics typical for a first-order sys-
tem. Control of the stirrer was managed via a real-time target
machine, which revealed that the stirrer’s response adheres to a
second-order control system model. The differentiation in the
dynamics, with the stirrer operating on a faster time scale than
the DSD changes—as indicated by the time constants differing
by at least one order of magnitude—shows that dynamic control
of the DSDs through the stirrer is both feasible and realistic.

Consequently, identification experiments were conducted to
identify a dynamic model that describes this stirring process,
wherein coalescence and breakage coexist and form the final
DSDs under turbulent conditions. Validation experiments of the
derived model demonstrated that, despite its simplicity as a lin-
ear function, it accurately describes the intricate dynamics of
the process. The model’s simplicity offers significant advantages
compared to traditional static open-loop control. The applicabil-
ity of themodel was demonstrated by designing and applying test
open-loop control trajectories.

Further research is being carried out based on the identified
model. To address deviations inDSDs over time and variations in
system behavior between batches, a state estimation method us-
ing EKF is currently being implemented. This will allow an even
better description and prediction of the system behavior and en-
able the application of advanced control methods such as model
predictive control.

The development and implementation of an online image
acquisition system, coupled with online image analysis, is in
progress. The real-time acquisition of DSD data and its integra-
tion with the stirrer control unit (Speedgoat), whichmanages the
application of the optimum stirrer trajectories, will ultimately
finally enable the establishment of a sophisticated closed-loop
control system.

Finally, in a closed-loop system, the design of optimal stirrer
speed control trajectories based on the identified model and its
further adaptation can be carried out to optimize the complete
mixer-settler system with the aim of improving mass transfer
rates and separation efficiency.

This study focuses on the general methodology to develop
a process model for closed-loop control. The transferability to
other chemical systems and mixing equipment will be examined
in future investigations.
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Symbols used

a [m2] total drop interfacial area
a…ana [–] coefficients in Eqs. (4)–(7)
A [–] polynomial equations in

Eqs. (5) and (6)
At [m2] cumulative interfacial area
b…bnb [–] coefficients in Eqs. (4)–(7)
B [–] polynomial equations in

Eqs. (5) and (7)
Bb [mm] baffle width
C1, C2, C3 [–] constants in Eq. (1)
cc [mol L−1] base concentration of

continuous phase
D [mm] tank diameter
dP [μm] drop diameter
dst [mm] stirrer diameter
d10 [μm] arithmetic mean drop diameter
d32 [μm] Sauter mean drop diameter
e(t) [–] noise signal in Eq. (4)
H [mm] tank filling height
Hb [mm] immersed baffle length
hst [mm] stirrer bottom clearance
K, K′ [μm or min−1] gains in Eqs. (9) and (10)
N [min−1] stirrer speed
Neturb [–] Newton number of stirrer in

turbulent regime
n [–] number of measured values in

Eq. (11)
na, nb [–] model orders in Eq. (4)
nk [s] delay in Eq. (4)
q [–] Shift operator in Eqs. (5)–(7)
Re [–] Reynolds number
T1, T1

′, T2
′ [s] time constants in Eqs. (9) and

(10)
t [s] time
u(t) [min−1] input in Eq. (4)
V [mL] volume of the dispersed phase
yi [μm or m2] measured values in Eq. (11)
ŷi [μm or m2] predicted values in Eq. (11)
y(t) [μm] output in Eq. (4)
We [–] Weber number

Greek letters

ε [W kg−1] energy dissipation rate
η [mPa s] dynamic viscosity
γ [mN m−1] interfacial tension
μ [–] mean value
ρ [kg m−3] density
σ [–] standard deviation

ϕ [mL mL−1] dispersed phase fraction

Subscripts

c continuous phase
d dispersed phase

Superscripts

st steady state

Abbreviations

ARX AutoRegressive with eXogenous input
CNN convolutional neural network
DO dissolved oxygen
DSD drop size distribution
LQR linear quadratic regulator
ML machine learning
NRMSE normalized root mean square error
PBE population balance equation
PI(D) proportional-integral-(derivative)
PRBS pseudorandom binary sequence
PSD particle size distribution
STR stirred tank reactor
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