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The main purpose of this manual is to develop a simulator of the balancing robot that will
then be used in the next labs for rapid debugging and prototyping purposes.

1 Derivation of the Equations of Motion

The Equations of Motion (EOM) are the heart of the simulation. Without them there is nothing
to simulate. Furthermore, the EOM can be used for advanced filtering, for example in a Kalman
filter.

The balancing robot should be modeled as in Figure 1 (check also the table for the notation
on page ??): the body of the robot can be simplified as a thin pole with its mass mb concentrated
only in the center of mass of the robot, depicted as a larger dot in figure 2. The center of mass
is at a distance lb from the center of the wheel. The wheel has a radius of lw, and mass of mw.
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lw = radius of the wheel

lb = body-wheel’s center distance

mw = mass of the wheel

mb = mass of the body

Figure 1: A simple schematic representation of a one-wheeled balancing robot where all the mass of robot
(but the wheels’) is concentrated in its center of mass.

The following assumptions should be made in order to simplify the problem:

1. The robot moves in a flat and horizontal environment, i.e., ẏw = 0 always.

2. The wheels never slip and the robot is never turned around by external factors, i.e., xw =
lwθw always.

3. The aerodynamic frictions are negligible.

4. The inductance Lm and the motor viscous coefficient bm are negligible.

5. The unique force that can be commanded is the torque applied by the motor to the wheel,
and this torque is driven by the voltage that is applied to the motor.
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Fy = vertical component of the tension with the wheel
Fx = horizontal component of the tension with the wheel
mbg = gravity for the body
Tm = motor torque
Tf = friction torque

Figure 2: Summary of the forces that apply to the body of the balancing robot.

The Newton law for the linear movement of the body states that

mbẍb = Fx (1)
mbÿb = Fy −mbg (2)

Notice that the gravity does not affect the x (horizontal) component since it is orthogonal to it.
The Newton principle for the angular movement of the body (with rotational axis on the center
of mass of the body) states that

Ibθ̈b = −Tm + Tf + Fylb sin (θb)− Fxlb cos (θb) (3)

for which the gravity does not affect the θb component since it does not lead to torque effects.
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Fy = vertical component of the tension with the body
Fx = horizontal component of the tension with the body
mwg = gravity for the wheel
N = reaction of the plane
Ft = tractive force
Tm = motor torque
Tf = friction torque

Figure 3: Summary of the forces that apply to the wheel of the balancing robot.

The Newton law for the horizontal and vertical movements of the wheel are

mwẍw = Ft − Fx (4)
mwÿw = N −mwg − Fy = 0 (5)

The Newton law for the angular movement of the wheel finally states that

Iwθ̈w = Tm − Tf − lwFt (6)
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Figure 4: Schematic representation of a DC motor. Here, θm indicates the angle of the motor.

Analyzing the electrical circuit we get

Lm
dim
dt

+Rmim = Rmim = vm − e (7)

where e is the back electromangetic force (emf), connected with the angular velocity of the motor
through

e = Ke

(
θ̇w − θ̇b

)
= Ke

(
ẋw
lw

− θ̇b

)
(8)

where the first equality in (7) follows from the assumption that Lm = 0. Substituting (8) in (7)
we then get

im =
vm
Rm

− Ke

Rm

(
ẋw
lw

− θ̇b

)
(9)

Consider then that the torque Tm on the wheel’s shaft induced by an armature’s current equal to
im is Tm = Ktim, with Kt the motor torque constant. Substituting in (9) we eventually obtain

Tm =
Kt

Rm
vm − KeKt

Rm

(
ẋw
lw

− θ̇b

)
(10)

Since we have two motors, producing double the torque Tm, we replace the motor torque by

T̂m = 2Tm =
2Kt

Rm
vm − 2KeKt

Rm

(
ẋw
lw

− θ̇b

)
Remark 1.1

Be careful at the quantities that are considered in the various tasks: pay specially attention
at the subscripts, and remember that w means “wheel”, b means “body”, m means “motor”.

Remark 1.2

In order to rewrite Ft, Fx and Fy the Newton’s laws for the linear movements of the wheel
and of the body can be used. If everything goes as expected then there will be the need
for simplifying the quantity “ ÿb sin (θb) − ẍb cos (θb)”. The following equivalences can be
exploited for the simplification:

xb = xw + lb sin (θb)

ẋb = ẋw + θ̇blb cos (θb)

ẍb = ẍw + θ̈blb cos (θb)− θ̇2b lb sin (θb)
yb = yw + lb cos (θb)

ẏb = ẏw − θ̇blb sin (θb) = −θ̇blb sin (θb)
ÿb = −θ̈blb sin (θb)− θ̇2b lb cos (θb)

(11)
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Eliminating Ft, Fx and Fy from (3) and from (6) leads to two different equations of motion.

Equation 1: To eliminate Fx and Fy from (3) we can exploit (1) and (2) to obtain

Ibθ̈b = −T̂m + Tf +mblbg sin (θb) +mblbÿb sin (θb)−mblbẍb cos (θb) . (12)

We don’t like too much this expression, since it contains xb and yb terms. So we now aim to
rewrite ÿb sin (θb)− ẍb cos (θb) in a different way. Considering then Figure 1 on page ii, it follows
that ẍb and ÿb are linked to ẍw and θ̈b as in (11). Thus

+ÿb sin (θb)− ẍb cos (θb) =(
−θ̈blb sin (θb)− θ̇2b lb cos (θb)

)
sin (θb)−

(
ẍw + θ̈blb cos (θb)− θ̇blb sin (θb)

)
cos (θb) =

−θ̈blb sin2 (θb)− θ̇2b lb cos (θb) sin (θb)− ẍw cos (θb)− θ̈blb cos
2 (θb) + θ̇2b lb sin (θb) cos (θb) =

−θ̈blb − ẍw cos (θb)
(13)

Plugging into (12) we then obtain

Ibθ̈b = −T̂m + Tf +mblbg sin (θb)−mbl
2
b θ̈b −mblbẍw cos (θb) (14)

and thus, rearranging,(
Ib +mbl

2
b

)
θ̈b = +mblbg sin (θb)−mblbẍw cos (θb)− T̂m + Tf (15)

Equation 2: Plugging (4) into (6), and using θ̈w = ẍw/lw leads to

Iw
lw
ẍw = T̂m − Tf − lwFx − lwmwẍw. (16)

To eliminate Fx we then combine (1) and (11) into

Fx = mbẍw +mblbθ̈b cos (θb)−mblbθ̇
2
b sin (θb) . (17)

Plugging this into (16) we then obtain

Iw
lw
ẍw = T̂m − Tf − lw

(
mbẍw +mblbθ̈b cos (θb)−mblbθ̇

2
b sin (θb)

)
− lwmwẍw (18)

and, rearranging,(
Iw
lw

+ lwmb + lwmw

)
ẍw = −mblblwθ̈b cos (θb) +mblblwθ̇

2
b sin (θb)− Tf + T̂m. (19)

2 Linearization of the Equations of Motion

Since the goal is to design a controller, if the mathematical model is too complicated, we will have
difficulties in the design. We know a lot about controllers when the system is linear. Therefore,
it is better if the EOM are linearized.

Since the operation of the robot will be around the equilibrium, the linearization point must
be the equilibrium θb = 0. Therefore,

• sin (θb) ≈ θb;

• ẍw cos (θb) ≈ ẍw;

• θ̈b cos (θb) ≈ θ̈b.
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As for θ̇2b sin (θb), the suggestion is to assume negligible centripetal forces (i.e., small body angle
velocities), so that we can say θ̇2b ≈ 0. Thus, the linearized EOM are

(
Ib +mbl

2
b

)
θ̈b = +mblbgθb −mblbẍw − 2Kt

Rm
vm +

(
2KeKt

Rm
+ bf

)(
ẋw
lw

− θ̇b

)
(
Iw
lw

+ lwmb + lwmw

)
ẍw = −mblblwθ̈b +

2Kt

Rm
vm −

(
2KeKt

Rm
+ bf

)(
ẋw
lw

− θ̇b

)
(20)
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