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The main purpose of this manual is to develop a simulator of the balancing robot that will
then be used in the next labs for rapid debugging and prototyping purposes.

1 Derivation of the Equations of Motion

The Equations of Motion (EOM) are the heart of the simulation. Without them there is nothing
to simulate. Furthermore, the EOM can be used for advanced filtering, for example in a Kalman

filter.

The balancing robot should be modeled as in Figure 1 (check also the table for the notation
on page 77): the body of the robot can be simplified as a thin pole with its mass my, concentrated
only in the center of mass of the robot, depicted as a larger dot in figure 2. The center of mass
is at a distance [, from the center of the wheel. The wheel has a radius of [,,, and mass of my,,.

l, = radius of the wheel
Iy = body-wheel’s center distance
M = mass of the wheel

mp = mass of the body

Figure 1: A simple schematic representation of a one-wheeled balancing robot where all the mass of robot
(but the wheels’) is concentrated in its center of mass.

The following assumptions should be made in order to simplify the problem:

1.

2.

The robot moves in a flat and horizontal environment, i.e., ¢,, = 0 always.

The wheels never slip and the robot is never turned around by external factors, i.e., x,, =
Ll always.

The aerodynamic frictions are negligible.
The inductance L,, and the motor viscous coefficient b, are negligible.

The unique force that can be commanded is the torque applied by the motor to the wheel,
and this torque is driven by the voltage that is applied to the motor.
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myg

0, F, = vertical component of the tension with the wheel
F, = horizontal component of the tension with the wheel
mpg = gravity for the body

T, = motor torque

T Ty = friction torque

Fy

Figure 2: Summary of the forces that apply to the body of the balancing robot.

The Newton law for the linear movement of the body states that
mpZy = Fy (1)
myijy = Fy — mpg (2)

Notice that the gravity does not affect the = (horizontal) component since it is orthogonal to it.
The Newton principle for the angular movement of the body (with rotational axis on the center
of mass of the body) states that

Ibéb = —Tm + Tf + Fylb sin (Qb) - Fxlb COS (9(,) (3)

for which the gravity does not affect the 8, component since it does not lead to torque effects.

F, = vertical component of the tension with the body
F, = horizontal component of the tension with the body
myg = gravity for the wheel

N = reaction of the plane

F; = tractive force

T,, = motor torque

Ty = friction torque

Figure 8: Summary of the forces that apply to the wheel of the balancing robot.

The Newton law for the horizontal and vertical movements of the wheel are

mw:b'w = Ft — Fx (4)
Myliw = N —mypg — Fy =0 (5)

The Newton law for the angular movement of the wheel finally states that

L0y = Ty — Ty — L, Fy (6)
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Dl wnl(5)

Figure 4: Schematic representation of a DC motor. Here, 0, indicates the angle of the motor.

Analyzing the electrical circuit we get

N
Lm% 4 Ry = Ryl = v — € (7

~—

where e is the back electromangetic force (emf), connected with the angular velocity of the motor
through
o= K. (b, —b,) = K., <fw _ 9b) ()
w

where the first equality in (7) follows from the assumption that L,, = 0. Substituting (8) in (7)
we then get

. Um Ke j3w A

Iy = — — — — 0 9

"™ Ry Rm ( L ”) ®)
Consider then that the torque T}, on the wheel’s shaft induced by an armature’s current equal to
im 18 Ty, = Ktip,, with K; the motor torque constant. Substituting in (9) we eventually obtain

K, KKy [ty -
T = ——Vm — - 1
Rmv Rm <lw 95) ( 0)

Since we have two motors, producing double the torque T},, we replace the motor torque by

2K 2K K¢ (:U >

Tm:2Tm:R Um — = b,
m m

L

Remark 1.1

Be careful at the quantities that are considered in the various tasks: pay specially attention
at the subscripts, and remember that w means “wheel”, b means “body”, m means “motor”.

Remark 1.2

In order to rewrite Fy, F, and Fy, the Newton’s laws for the linear movements of the wheel
and of the body can be used. If everything goes as expected then there will be the need
for simplifying the quantity “ijsin (6,) — &y cos (6)”. The following equivalences can be
exploited for the simplification:

Ty = Ty + lpsin (6p)

ib = i)w I éblb COS (Qb)

Tp = Ty + éblb cos (91,) = 9§lb sin (91))
Yo = Yw+lycos (0p) '

U = Yuw — Oblpsin (0p) = —0plpsin (0p)
Gy = —Oplysin (6;) — églb cos (6p)

(11)




Eliminating Fy, F, and F, from (3) and from (6) leads to two different equations of motion.

Equation 1: To eliminate F, and F, from (3) we can exploit (1) and (2) to obtain
Ibéb = — Am + Tf + myplpg sin (9(,) + mplpijp sin ((917) — myplpZy cos (91,) . (12)

We don’t like too much this expression, since it contains x; and y terms. So we now aim to
rewrite ¢ sin (0y) — &y, cos (6) in a different way. Considering then Figure 1 on page ii, it follows
that & and g are linked to &, and 6 as in (11). Thus

+ijp sin (0p) — Zp cos (0) =
(—éblb sin ((9(,) — leb COS (91,)) sin (9()) — (ﬂ?w + éblb COS (Gb) — éblb sin (91))> COS (91)) =
S

—Byly sin® (0y) — 621y cos (0y) sin (By) — i cos (0) — Byly cos? (0) + 621, sin (63) cos (6,) =
—Oplp — Ty cos (Op)

(13)
Plugging into (12) we then obtain
Ibéb = — Am + Tf + mblbg sin ((91,) — mblgéb - mblbiw COS ((9(,) (14)
and thus, rearranging,
(Iy + mpl?) Gy = +myplpg sin (6p) — mplyiy cos (0y) — T + Ty (15)
Equation 2: Plugging (4) into (6), and using 6, = &y /l,, leads to
Iy .. A .
l—mw =T =Tt = lwFy — Lymypiy. (16)
To eliminate F, we then combine (1) and (11) into
F, = mpZqy + mblbéb cos (91)) — mblbélg sin (91)) . (17)
Plugging this into (16) we then obtain
Iy .. A ; p o . .
7 G = T — T — Ly (mbmw + myplpBy cos (0p) — mblbeg sin (Gb)) — LMy T (18)

and, rearranging,

Iw B .. - ~
< + lymp + lwmw> Zoy = —mplply,0p cos (0p) + mblblwef sin (0p) — Tt + T (19)

L

2 Linearization of the Equations of Motion

Since the goal is to design a controller, if the mathematical model is too complicated, we will have
difficulties in the design. We know a lot about controllers when the system is linear. Therefore,
it is better if the EOM are linearized.

Since the operation of the robot will be around the equilibrium, the linearization point must
be the equilibrium 6, = 0. Therefore,

e sin (0y) =~ Oy;
o Ty cos (0p) = Tyy;

e 0, cos (Op) ~ 0y.



As for 0? sin (6), the suggestion is to assume negligible centripetal forces (i.e., small body angle
velocities), so that we can say 67 ~ 0. Thus, the linearized EOM are

; 2K 2K K, e
o st (258 (-0

Ly . . 2K 2K K Py
< + Lwmy + lwmw> Foo = —mplpluly + v, — ( Ly bf) (x - 9b>

Ly R, ™ Ry, lo
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