Balancing Robot

PID control of the Minseg robot

Learning goals

» Further understand the main principles of feedback control

» Understand what is a PID control and what each component does

1 Project Introduction
Balancing Robots
1/14

Feedback Control

system we want

/ to control

actuating controlled
signal variable

Plant
J

How do we generate the
right input to get the
output we want

» Job of the control engineer: How do we produce the appropriate actuating signal,
so that the plant produces a controlled variable that is equal to the desired output?

1 Project Introduction
Balancing Robots
2/14

Feedback Control

what we want the

system to do system we want

to control

desired actuating controlled
value signal variable

Plant
—J

> Job of the control engineer: How do we produce the appropriate actuating signal,
so that the plant produces a controlled variable that is equal to the desired output?

» The desired output is designated by a desired value/reference.

1 Project Introduction
Balancing Robots
2/14

Feedback Control

what we want the

system to do system we want

we want zero error to control
desired actuating controlled
value + error signal variable
©) e

Plant
J

feedback path

Job of the control engineer: How do we produce the appropriate actuating signal,
so that the plant produces a controlled variable that is equal to the desired output?

The desired output is designated by a desired value/reference.

In feedback control, the controlled variable is fed back (and hence the name) and
compared to the desired value. The difference between the two is the error term.

1 Project Introduction
Balancing Robots
2/14

Feedback Control

what we want the

system to do system we want

we want zero error to control

desired actuating controlled

value + @ error ” signal variable

? Plant

feedback path

Job of the control engineer: How do we produce the appropriate actuating signal,
so that the plant produces a controlled variable that is equal to the desired output?

The desired output is designated by a desired value/reference.

In feedback control, the controlled variable is fed back (and hence the name) and
compared to the desired value. The difference between the two is the error term.

The question is: How do we take this error and transform it to suitable actuating
signals so that the error goes to zero?

1 Project Introduction
Balancing Robots
2/14

Proportional Controller

» Obvious approach: multiply the error by a gain ky

» So, a bigger error leads to a larger actuating signal end hence to a bigger effect
onto the system.

1 Project Introduction
Balancing Robots
3/14

Proportional Controller

» Obvious approach: multiply the error by a gain k),

> So, a bigger error leads to a larger actuating signal end hence to a bigger effect
onto the system.

» The actuating signal would then be:

u(t) = kp X e(t)

1 Project Introduction
Balancing Robots
3/14

Proportional Controller: example

> Let us consider a simple example: automatic cruise control (ACC)

P The throttle/valve plate rotates within the throttle body, opening the throttle passage
to allow more air into the intake manifold.

Electronic

/ control unit i
.
] —=
| ECU H PWM il - DC Motor

Pulse-width
modulation

: \I ntermediate
: gear
Return / ___.

spring i H

Frassssssmerr s pessinseod - Position
sensor

Sector gear

1 Project Introduction
Balancing Robots
4/14

\\\‘I’I
\\\40 g0

Vg,
s 8/,

W\

W

v
6077,
707,
80=
90=

~
100\\

> Initially, the speed is zero (so the error is 50 km/h)

1 Project Introduction
Balancing Robots

5/14

v
6077,
707,
80=
90=

-~
100Q

> Initially, the speed is zero (so the error is 50 km/h)

» The throttle plate will open and the car will start
moving, thus reducing the error.

1 Project Introduction

Balancing Robots

5/14

\\\\‘510'1/, > Initially, the speed is zero (so the error is 50 km/h)
7

a0 70”~
520 80’: » The throttle plate will open and the car will start

- - moving, thus reducing the error.
=10 90=

= / <

» 1003

wv i, > What if the speed is already at 50 km/h?
\ 0 /

\\\ 40 60"/,

~ 30 07

=20 80~

=10 90=

= <

-0 100$

1 Project Introduction
Balancing Robots
5/14

W\, > Initially, the speed is zero (so the error is 50 km/h)
\a0 50 607/,

a0 70”,
520 80’: » The throttle plate will open and the car will start
=10

- moving, thus reducing the error.
90=
/ =
1003

W\

wv i, > What if the speed is already at 50 km/h?
\ 0 A/
\\\ 40 60"/,
QT30 70”7,
<0 80~ » The error would become zero, and the throttle valve
_: - would close and the car would start reducing speed.
=10 90 =
- ~
-0 1003 » When that happens, the error increases and the throttle

valve opens again.

1 Project Introduction
Balancing Robots
5/14

> Initially, the speed is zero (so the error is 50 km/h)

~
520 80’: » The throttle plate will open and the car will start

- - moving, thus reducing the error.
=10 90=

= / <

» 1003

wv i, > What if the speed is already at 50 km/h?
\ 0 A/
\\\ 40 60"/,
QT30 70”7,
<0 80~ » The error would become zero, and the throttle valve
_: - would close and the car would start reducing speed.
=10 90 =
- ~
-0 1003 » When that happens, the error increases and the throttle

valve opens again.

» There exists a throttle angle such that the speed remains
at 50 km/h.

1 Project Introduction
Balancing Robots
5/14

How does the proportional controller make the ACC
stay at that speed?

1 Project Introduction
Balancing Robots
6/14

How does the proportional controller make the ACC
stay at that speed?

> Let's assume that the car needs a throttle angle of 20° to maintain its speed
constant.
> Also, suppose that the throttle angle is given by
Throttle angle = error x gain
> If the gain is 0.1

50-0=50 km/h Throttle
50kmh 45N error 0.1 angle - 0 km/h

feedback path

the throttle angle is 5° and while the error is reduced the car will never reach 50
km/h.

1 Project Introduction
Balancing Robots
6/14

How does the proportional controller make the ACC
stay at that speed?

> Let's assume that the car needs a throttle angle of 20° to maintain its speed
constant.

> Also, suppose that the throttle angle is given by

Throttle angle = error X gain

> If the gain is 1

50-0=50 km/h Throttle
50 km/h + @ error 1 angle -Car 0 km/h

feedback path

the throttle angle is 50° and while the error is reduced, when the error becomes 20
km/h (i.e.,when the cars has speed 30 km/h), the car will stop accelerating since
the throttle angle will be 20°.

1 Project Introduction
Balancing Robots
6/14

How does the proportional controller make the ACC
stay at that speed?

> Let's assume that the car needs a throttle angle of 20° to maintain its speed
constant.
> Also, suppose that the throttle angle is given by
Throttle angle = error X gain
» If the gain is 5

50-0=50 km/h Throttle
50km/h 4,5} error 5 angle - 0 km/h

feedback path

when the error becomes 4 km/h (i.e.,when the cars has speed 46 km/h), the car
will stop accelerating since the throttle angle will be 20°.

1 Project Introduction
Balancing Robots
6/14

Error does not vanish, it just gets smaller!

increasing no control
gain (9ain=0)

error

‘/

time
» The error that remains is called steady state error

» How can we get rid of this?

1 Project Introduction
Balancing Robots
7/14

Proportional-Integral (Pl) Control

The idea is to use an integral action (memory) as well.

Small errors that persist over a long time might indeed be small and hence lead to
small values for the proportional controller. But their integral, so the are
underneath the curve gets larger overt time:

Small errors will also have a large (growing) effect over time so that the controller
can react to it.

When the system has error, this is integrated over time, thus increasing the
integral term, and as a result, the throttle angle.

It stops increasing when the error is zero.

1 Project Introduction
Balancing Robots
8/14

Proportional-Integral (Pl) Control

» The system then has a controller with two parts:

Integral

desired + Throttle
angle
value + error Proportional +® g speed
feedback path

» The actuation signal (here: throttle angle) would then be:
t

u(t) = kp x e(t) + k; X / e(t)dt
0

> When the system has a steady state error, this error is integrated over time, thus
increasing the integral term, and as a result, the throttle angle.

1 Project Introduction
Balancing Robots
9/14

Proportional-Integral (PI) Control

» The system then has a controller with two parts:

Integral

desired + Throttle
angle
value + error Proportional +<:> g ed
feedback path

» The actuation signal (here: throttle angle) would then be:
t

u(t) = kp x e(t) + k; X / e(t)dt
0

> When the system has a steady state error, this error is integrated over time, thus
increasing the integral term, and as a result, the throttle angle.

> An integral term increases action in relation not only to the error, but also the
time for which it has persisted = if applied control action is not enough to bring
the error to zero, this control action will be increased as time passes.

1 Project Introduction
Balancing Robots
9/14

» Pro: The integral action can bring the error to zero.

» Con: However, if one chooses a small value of k; it is slow to react (because the
integral grows over time), and if k; is large, it will create overshoots and
oscillations because the integral part only stops changing if the error is zero:

error

o

decreasing increasing
integral gain proportional gain
A
)
=
)
\/ time time -

1 Project Introduction
Balancing Robots
10/14

» Pro: The integral action can bring the error to zero.

» Con: However, if one chooses a small value of k; it is slow to react (because the
integral grows over time), and if k; is large, it will create overshoots and
oscillations because the integral part only stops changing if the error is zero:

A '
decreasing increasing
integral gain proportional gain
— A
))
— —
P P
))

o

v

o

v

\/ time \j/ time

» These overshoots and oscillations are usually not desired.

1 Project Introduction
Balancing Robots
10/14

» Pro: The integral action can bring the error to zero.

» Con: However, if one chooses a small value of k; it is slow to react (because the
integral grows over time), and if k; is large, it will create overshoots and
oscillations because the integral part only stops changing if the error is zero:

A '

decreasing increasing
integral gain proportional gain

— A

))

= =

))

0 - > 0 >

\/ time \j/ time

» These overshoots and oscillations are usually not desired.

» Is there any way to compensate for that?

1 Project Introduction
Balancing Robots
10/14

Proportional-Integral-Derivative (PID) Control

» The idea is to predict the future and respond to how fast the error is changing:

» The derivative control term

P looks at the current rate of change of error (the faster the error is growing, the larger
the derivative term becomes),

P determines how fast the desired value is approached, and

P prematurely reduces the throttle angle.

1 Project Introduction
Balancing Robots
11/14

Proportional-Integral-Derivative (PID) Control

» The idea is to predict the future and respond to how fast the error is changing:

» The derivative control term

P looks at the current rate of change of error (the faster the error is growing, the larger
the derivative term becomes),

P determines how fast the desired value is approached, and

P prematurely reduces the throttle angle.

How are these concepts applied to our robot?

1 Project Introduction
Balancing Robots
11/14

Proportional-Integral-Derivative (PID) Control

» The system then has a controller with three parts:

—>| Integral
desired P +. Throttle
angle
value +® error Proportional —>(+ E>—’g Car spee_»d
— — +
Derivative

feedback path

» The actuation signal (here: throttle angle) would then be:

de(t)
dt

t
u(t) = kp x e(t) + k; x / e(t)dt + kg x
0

1 Project Introduction
Balancing Robots
12/14

Proportional-Integral-Derivative (PID) Control

» The system then has a controller with three parts:

desired
value

+ @ error

Integral
—_— + Throttle
angle
Proportional —_t@)—g. Car speed
—
Derivative

feedback path

» The actuation signal (here: throttle angle) would then be:

t
u(t) = kp x e(t) + k; x / e(t)dt + kg x
0

de(t)
dt

How are these concepts applied to our robot?

1 Project Introduction
Balancing Robots
12/14

PID Control at the Minseg Robot

See the controller implementation in the library “SEG_CONTROL"!
How is the equation for the actuating signal implemented?
ot

u(t) = kp X e(t) + k; x / e(t)dt + kg %
Jo

de(t)
dt

1 Project Introduction
Balancing Robots
13/14

PID Control at the Minseg Robot

See the controller implementation in the library “SEG_CONTROL"!
How is the equation for the actuating signal implemented?

ot

u(t) = kp X e(t) + k; x / e(t)dt + kg %
Jo

de(t)
dt

Proportional part:
Voutl = Kp * error + Kd * dTerm + integralTerm;

1 Project Introduction
Balancing Robots
13/14

PID Control at the Minseg Robot

See the controller implementation in the library “SEG_CONTROL"!
How is the equation for the actuating signal implemented?

ot

u(t) = kp X e(t) + k; x / e(t)dt + kg %
Jo

de(t)
dt

Proportional part:
Voutl = Kp * error + Kd * dTerm + integralTerm;

How are the integral and derivative parts being calculated?

1 Project Introduction
Balancing Robots
13/14

Integral (1) Control at the Minseg Robot

» We must calculate the integral numerically.

» We do not know the error for all the times but only for some moments where we
measured it.

1 Project Introduction
Balancing Robots
14/14

Integral (1) Control at the Minseg Robot

We must calculate the integral numerically.

We do not know the error for all the times but only for some moments where we
measured it.

This leads to an approximation of the integral as areas of rectangles

t;<t

t
/ e(t)dt = Z e(ti) X (ti—1 — ;)
0

ti=t1

The rectangles have height e(t;) and width ¢;_1 — ¢;.

1 Project Introduction
Balancing Robots
14/14

Integral (1) Control at the Minseg Robot

We must calculate the integral numerically.

We do not know the error for all the times but only for some moments where we
measured it.

This leads to an approximation of the integral as areas of rectangles

t;<t

t
/ e(t)dt = Z e(ti) X (ti—1 — ;)
0

ti=t1
The rectangles have height e(t;) and width ¢;_1 — ¢;.

In the code it reads (including the factor k;):
integralTerm += error * actualDt * Ki;

1 Project Introduction
Balancing Robots
14/14

Derivative (D) Control at the Minseg Robot

» We must calculate the derivative numerically.

» We do not know the error for all the times but only for some moments where we
measured it.

1 Project Introduction
Balancing Robots
15/14

Derivative (D) Control at the Minseg Robot

» We must calculate the derivative numerically.

» We do not know the error for all the times but only for some moments where we
measured it.

» This leads to an approximation of the derivative as a slope:

de(t) N e(ti) — e(tifl)

~

dt t; —ti—1

The slope follows from the height of the triangle e(t;) — e(t;—1) and its width
ti —ti—1.

1 Project Introduction
Balancing Robots
15/14

Derivative (D) Control at the Minseg Robot

We must calculate the derivative numerically.

We do not know the error for all the times but only for some moments where we
measured it.

This leads to an approximation of the derivative as a slope:

de(t) N e(ti) — e(tifl)

~

dt t; —ti—1

The slope follows from the height of the triangle e(t;) — e(t;—1) and its width
ti —ti—1.

In the code it reads:
dTerm = (error - lastErr) / actualDt;

1 Project Introduction
Balancing Robots
15/14

