
Template Design and Automatic Generation of Controllers
for Industrial Robots

Lenko Grigorov
School of Computing
Queen’s University

Kingston, ON, Canada
lenko.grigorov@banica.org

José E. R. Cury
DAS

Federal University of Sta. Catarina
Florianópolis, SC, Brazil
cury@das.ufsc.br

Karen Rudie
Dept. of Electrical and
Computer Engineering

Queen’s University
Kingston, ON, Canada

karen.rudie@queensu.ca

Steffi Klinge
Institute of Automation

Technology
Otto-von-Guericke University

Magdeburg, Germany
mail@steffi-klinge.de

ABSTRACT
The basic theory of supervisory control of discrete-event sys-
tems is extended with the notion of templates, which sim-
plifies the modeling of controllers since one can work with
conceptual designs. In this work, software which provides
support for the new design approach is presented along with
its application to a robotic testbed.

Categories and Subject Descriptors: J.6 [Computer-
Aided Engineering]; J.7 [Computers in Other Systems]: In-
dustrial control

General Terms: Design, Experimentation.

Keywords: System Control, Discrete-Event Systems, Tem-
plate Design, Code Generation.

1. INTRODUCTION
In an industrial setting with many robots, such as a fac-

tory floor, one has to consider higher-level control specifi-
cations for the general process of operation, such as robot
coordination. The theory of supervisory control of Discrete-
Event Systems (DESs) was developed by Ramadge and Won-
ham [4] in order to address exactly this aspect of control. In
this framework, the system of interest is modeled as a finite-
state automaton (FSA) which describes its discrete behavior
in terms of occurrences of events. The events are instanta-
neous, spontaneous, and certain control can be exercised by
preemptively preventing their occurrence. The entity ex-
ercising the control is called a supervisor. There is an al-
gorithm that automatically computes the most permissive
supervisor for a given specification.

The use of predefined DES units by engineers may lead

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

to a much easier application of supervisory control. In [2],
the authors describe how templates are used to design con-
trollers for industrial application. However, the approach is
not cast within the supervisory control framework and can-
not take advantage of the algorithms therein. This issue is
addressed in [3] where templates are defined in the context
of supervisory control. There are two types of entities that
can be used in a model: modules and channels. Modules
are the active parts of the system (e.g., individual robots).
Channels are passive parts of the system, specifications that
govern the interaction between modules (e.g., network pro-
tocols). Common types of system modules or specifications
are kept in an abstract form, as templates, in a template
library. Templates are concretized, or instantiated, during
the process of modeling. If there are many similar robots
on the factory floor, the template for this type of robots can
be instantiated many times. The designer links instances by
selecting which events between instances will be considered
equivalent.

Here we describe a pilot application of the methodology in
practice, i.e., for the control of a small robotic testbed. We
developed a prototype tool for template design of DESs and
for the automatic generation of Programmable Logic Con-
troller (PLC) code. A more detailed report on this project
appears in [3].

2. SOFTWARE AND APPLICATION
From the description of the template design approach, it

can easily be seen that the approach borrows ideas from
object-oriented programming (OOP). The concepts of tem-
plates and instances correspond loosely to the concepts of
classes and objects. The links between instances establish
how parts of the system interact. However, one significant
difference is that the protocols for message passing between
objects in OOP have to be determined by control structures
in the code. In template design, on the other hand, the
protocols for interaction between modules are determined
by the behavior encoded in the channels that interconnect
them. In other words, the specifications for the whole system
are given implicitly. It becomes very easy to substitute one
channel with another just by reconnecting the corresponding



Figure 1: The template design interface in IDES.

modules. That, plus the availability of pre-designed tem-
plates in the library, makes the methodology suitable for
rapid prototyping of control solutions.

We decided to extend existing DES software to add the
template design functionality. The IDES software developed
at Rudie’s research laboratory, [5], was chosen since its ar-
chitecture supports the addition of extensions and it offers
an advanced graphical interface infrastructure. The latter
was an important factor because the user interface we de-
signed is based on the use of the mouse cursor to create and
manipulate graphical elements. A snapshot of a template
design opened in IDES can be seen in Fig. 1.

The solution of a supervisory control problem is in the
form of a supervisor modeled as an FSA. Usually, the events
in such a system are abstractions of sequences of low-level
events. For example, the event “move robot arm to location
2” may involve a sequence of electric signals sent to one of
the motors in order to rotate the required amount. There
is a gap that needs to be filled between the abstract con-
troller represented by the DES supervisor and the low-level
controller for the real system.

We decided to use a hybrid approach, where most of the
control logic is derived from the FSAs of the supervisors,
while the user specifies the low-level control code manually.
In this way, the majority of the work on developing control
software is automated, while the experts retain full access
to the hardware. We used the method proposed in [1] to
convert FSAs into code. A section of the generated code
consists of PLC subroutines to interact directly with the
hardware. The execution of a subroutine signifies the occur-
rence of an event in the control code. This method relies
on manual modifications to the generated code in order to
insert the required subroutines. Instead of modifying the
generated code post factum, we propose a simple solution
where, for each event in the template design, the user can
specify a snippet of PLC code. In other words, the low-level
subroutine for each event can be specified within the design.
Then, during PLC code generation, this code snippet can
be automatically inserted as needed.

In order to test the applicability of template design of
DESs and to evaluate the software implementation, the IDES
extension was used to design a controller for a robotic testbed
at the Department of Automation and Systems, Federal Uni-
versity of Santa Catarina, Brazil. The intended functional-
ity of the system is to retrieve parts from an input buffer,
perform operations on the parts and test if the operations
were successful. Depending on the outcome of the test, the
given part is output into one of a number of buffers (such as
“accepted”, “reprocess”, etc.) The system is controlled via a
Siemens S7-200 series PLC unit.

3. DISCUSSION AND CONCLUSIONS
In summary, the template design methodology proved to

be much more effective in the design of controllers for our
robotic testbed than the traditional method. Overall, the
advantages expected from an approach similar to that of
OOP were not as important as as the advantages of hav-
ing a visual environment for rapid prototyping of control
solutions. In our project, we needed to obtain a very small
supervisory solution (in order to fit in the PLC memory) and
it was necessary to go through a large number of iterations
where the system was simplified with different approaches.
This would not have been feasible if the system had to be
completely remodelled every time and if the consistency of
the model had to be maintained manually. The automatic
generation of PLC code sped up greatly the deployment of
each control solution and enabled a faster test cycle.

Future work will focus on modifications to the software so
that rapid prototyping is supported better and more freedom
is allowed in the customization of template instances.

Acknowledgments
We would like to thank the following people for their help
and support: Max de Queiroz, Francisco da Silva, Guilherme
Lise and Luis Marques from UFSC, Brazil. The project
was supported through grants from NSERC and Queen’s
University, Canada, and CNPq, Brazil.

4. REFERENCES
[1] M. H. de Queiroz and J. E. R. Cury. Synthesis and

implementation of local modular supervisory control for
a manufacturing cell. In Proceedings of the 6th
International Workshop on Discrete Event Systems
(WODES’02), pages 377–382, Zaragoza, Spain, October
2002.

[2] G. Ekberg and B. H. Krogh. Programming discrete
control systems using state machine templates. In
Proceedings of the 8th International Workshop on
Discrete Event Systems, pages 194–200, Ann Arbor,
MI, USA, July 2006.

[3] L. Grigorov. Template design of discrete-event systems.
Technical report 2007-538, School of Computing,
Queen’s University, Canada, 2007.

[4] P. J. Ramadge and W. M. Wonham. Supervisory
control of a class of discrete event processes. SIAM
Journal on Control and Optimization, 25(1):206–230,
1987.

[5] K. Rudie. The integrated discrete-event systems tool.
In Proceedings of the 8th International Workshop on
Discrete Event Systems, pages 394–395, Ann Arbor,
MI, USA, July 2006.


