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Abstract

This paper considers a string of vehicles where the local control law uses the states of the vehicle’s immediate predecessor and follower.
The coupling towards the preceding vehicle can be chosen different to the coupling towards the following vehicle, which is often referred
to as an asymmetric bidirectional string. Further, the coupling differences, i.e., asymmetry, can be chosen differently for the velocity and
the position coupling between neighbouring vehicles. This general approach includes the special cases of symmetric bidirectional strings
and predecessor following control schemes. It is investigated how the effect of disturbance on the control errors in the string changes
with the string length. It is shown, that in case of symmetric position coupling and asymmetric velocity coupling, linear scaling can be
achieved. For symmetric interaction in both states, i.e., in symmetric bidirectional strings, the errors scale quadratically in the number of
vehicles. When the coupling in position is asymmetric, exponential scaling may occur or the system might even become unstable. The
paper thus gives a comprehensive overview of the achievable performance in linear, asymmetric, bidirectional platoons. The results reveal
that symmetry in the position coupling and asymmetry in velocity coupling qualitatively improves the performance of the string. Extensive
numerical results illustrating the theoretical findings are also presented.
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1 Introduction

Vehicle platoons form an important part of future intelligent
transportation systems, because such systems are anticipated
to increase both the safety and capacity of highways while
offering more comfort for drivers and passengers. In its sim-
plest form, a platoon, consisting of N cooperatively-acting,
automatically controlled vehicles travels in a longitudinal
line with tight spacing between the vehicles.

An important safety and performance measure in this area is
how the response of the platoon to disturbances scales with
respect to the number of vehicles, that is, how the norm of
the local errors depend on the number of vehicles N. When
the local errors are bounded independently of N, the string
is called “string stable”. See [21] for an overview of defi-
nitions of string stability using for instance different norms.
Generally speaking, a platoon is string stable if disturbances,
which are propagating through the string, do not grow with
the number of vehicles or the position within the string.
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The literature often distinguishes between “unidirectional”
strings, where each vehicle only considers information of
a group of direct predecessors, and “bidirectional”, where
information from following vehicles is also used. It is well
known, that a strict form of string stability in linear vehicle
strings with double integrators in the open loop, local infor-
mation only and tight spacing, can be achieved in neither
unidirectional nor bidirectional strings [1, 22].

Bidirectional strings seem to offer advantages as more in-
formation – not only forward distance errors (towards the
direct predecessor) but, additionally, backward errors (to-
wards the direct follower) – is used to control the vehicle’s
motion. For example, a weaker form of string stability can
be achieved [16]. In bidirectional system, the control input
due to forward distance errors are often weighed as high
as backward distance errors. This is referred to as a “sym-
metric” string. In contrast, by weighing the forward error
higher, that is, allowing asymmetric controller gains, some
important benefits can be obtained. The authors of [2] have
shown that the approach of the eigenvalues of the formation
to zero can be better when asymmetry is used. In fact, it was
later proved that a uniform bound on the eigenvalues can be
achieved [7,11]. This guarantees much faster transients than
what can be obtained with symmetric control.
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While the eigenvalues determine the convergence speed, the
transients are not solely determined by the eigenvalues. In-
deed, there is a price to pay for the better convergence rate:
the H∞ norm of the transfer function from the leader to the
last vehicle in the platoon scales exponentially in the num-
ber of vehicles for asymmetric strings (compared to linear
scaling for symmetric strings [24]). This extremely bad scal-
ing was shown in [23] for double integrator systems and for
an arbitrary agent model with two integrators in [11]. Later
it was shown that the H∞ norm scales exponentially with
the distance between agents [10].

Many works in the area assume that the degree of asym-
metry in the position and velocity coupling is identical, see
for instance [2]. However, the performance of the string can
be improved by assuming symmetric position coupling and
asymmetric velocity coupling. A good scaling of such an ap-
proach was numerically shown in [8] and the properties of
the platoon’s response to a step change in leader’s velocity
were derived in [5]. Using these properties, the parameters
of the controller as well as the coefficient of asymmetry can
be optimised to minimise the transient time [12]. In both
papers [5,12] it was shown that symmetry in position is nec-
essary for a good scaling. In addition, it was proved in [19]
that symmetry in position is a necessary condition for lo-
cal string stability. Note that, when different asymmetries in
velocity and position coupling are used, none of the conve-
nient approaches presented in the literature for a distributed
system analysis [6, 9] and synthesis [18, 25] can be used.
The reason is that the Laplacians for position and velocity
are not simultaneously diagonalisable.

Port-Hamiltonian systems analysis was used in [16] to study
string stability of a bidirectional vehicle string. It was shown,
that by using local drag, spring and damping terms together
with integral action control, weak string stability can be
guaranteed. The results were extended to analyse the effects
of measurement errors in [17]. Further, using similar tools
allowed the analysis of a system with a more general graph
describing the inter vehicle connections instead of a simple
line graph, [15].

Using the port-Hamiltonian approach for simple vehicle
models in [16], this paper investigates the effect of distur-
bances on the norms of the state. Specifically, the paper fo-
cuses on how the norm of the response scales with the num-
ber of vehicles N for different string settings. The results
are summarised graphically in Figure 1: Let hp and h∆ rep-
resent the asymmetry coefficients describing the asymme-
try in the velocity and position coupling, respectively. Then
hp = h∆ = 0 corresponds to the symmetric, bidirectional
case while hp = h∆ = 1 describes the unidirectional (“pre-
decessor following” = ‘PF’) case. For details on the system
description please see Sections 3 and 4.

The contributions of this paper are as follows:

(1) It is shown that asymmetry in velocity with symmetric
position coupling, i.e., case “A” in Fig. 1, can achieve

hp

h∆

1

1
PF

C: cN

D: cN

E: unstable

B: N2 A: N

Figure 1. Scaling of a disturbance response with respect to string
length N for different selections of asymmetry. Area A: linear
scaling in N, Area B: quadratic in N, Area C and D: exponential
in N.

linear scaling, while a completely symmetric control
scales quadratically, i.e., case “B” in Fig. 1. See further
Section 3. 1

(2) It is shown that in some cases of asymmetric position
coupling below a certain bound, the errors might scale
exponentially, i.e., case “C” in Fig. 1, see Section 4.1.
We conjecture that it is also true for h∆ ≥ 1, i.e., case
“D” in Fig. 1.

(3) It is shown that for some cases of stronger asymmetry
in the position coupling compared to the velocity cou-
pling, i.e., for a subset of h∆ > hp of case “E” in Fig. 1,
the system is unstable for a sufficiently high N, see
Section 4.2. We also conjecture that for all combina-
tions captured in case “E” a finite critical string length,
which is the maximal stable string length, exists.

(4) A comprehensive overview of the effect of asymmetry
in velocity and position coupling is given. The system
description unifies several existing well studied platoon
descriptions such as unidirectional strings as in [22],
bidirectional symmetric strings as in [1, 16] and bidi-
rectional asymmetric strings as in [2,5]. The results for
different choices of asymmetry in velocity and position
coupling include existing results for those well studied
special cases. A summary and discussion of the results
is found in Section 5.

(5) Extensive numerical results are presented to illustrate
the technical results, see Section 6.

Notation: The L2 vector norm is given by |x|2 = |x| =
√

xTx

and the L2 vector function norm by ‖x(·)‖2 =

√∫ ∞
0 |x(t)|2dt.

1 To the best knowledge of the authors, this is the first paper which
analytically proves better scaling when symmetry in position and
asymmetry in velocity is used. The papers [5, 12] relied in their
proofs only on (reasonable, though) conjectures.
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For a scalar function H(x) of a vector x = [x1, x2, . . . , xn]T

its gradient is defined as ∇H(x) =
[
∂H(x)
∂x1

, ∂H(x)
∂x2

, . . . , ∂H(x)
∂xn

]T
.

The ith element of the gradient ∂H(x)
∂xi

is also denoted as
∇xi H(x). Denote the state and the disturbance vector by
the column vectors x(t) = col(x1(t), . . . , xN(t)) and d(t) =
col(d1(t), . . . , dN(t)). The column vector of ones is denoted
by 1 and ~ei is the ith canonical vector of length N. Simi-
larly, denote the diagonal matrix A ∈ RN×N with diagonal
entries a1, . . . aN as A = diag(a1, . . . aN). The matrix 〈A〉 is
a matrix obtained from A by taking the absolute values of
the elements. A > 0 and A ≥ 0 denote that A is a positive
definite or positive semi-definite matrix, respectively. σi(A)
is the ith smallest singular value of A and λi(A) is the ith
smallest eigenvalue. σmin(A), σmax(A) (λmin(A), λmax(A)) are
the minimal and maximal singular values (eigenvalues) of
A, respectively.

2 System Description

Consider a system of N vehicles, modelled as double inte-
grators. The finite mass of vehicle i = 1, 2, . . . ,N is denoted
mi > 0. The motion equations of the system can be described
using the momentum and position of each vehicle, i.e., pi
and xi, as follows

ṗi =Fi + di, (1)

ẋi =m−1
i pi, (2)

where Fi is the control force on the vehicle, di is the dis-
turbance, and the momentum satisfies pi = mivi, where vi is
the velocity. 2

In many platooning applications, the relative position be-
tween neighbouring vehicles, ∆i = xi−1 − xi, is more impor-
tant than the absolute position of the vehicles since control-
ling the inter-vehicle distances is key to avoid crashes. By
collecting the positions in the vector x(t) = col(x1, . . . , xN),
and introducing ∆(t) = col(∆1, . . . ,∆N) the local position
errors can be represented by

∆(t) = −BT(x(t) − 1x0(t)), (3)

where the position x0 is the reference position, i.e., the posi-
tion of the virtual leader of the platoon, which the first vehi-
cle (i = 1) is required to follow. The matrix B describes the

2 Note that this notation is often used in mechanical systems.
For the description of vehicle platoons, it has also been used for
instance in [16].

coupling between the vehicles and has the bidiagonal form

B =



1 −1 0 · · · 0

0 1 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −1

0 · · · 0 0 1


. (4)

The dynamics of the string system can be described by ṗ

∆̇

 =

 0 B

−BT 0

∇Hol(p) +

F0
 +

 d

~e1v0

 , (5)

where v0 = ẋ0, p ∈ RN is the momentum vector, i. e.,
p = col(p1, . . . , pN), and the control force vector is F =
col(F1, . . . , FN). The open loop Hamiltonian function Hol(p)
is given by

Hol(p) =
1
2

pTM−1 p. (6)

The matrix M ∈ RN×N is the constant and positive definite
inertia matrix M = diag(m1, . . . ,mN).

2.1 Symmetric Control Law

Consider the local control force Fi acting on vehicle i, to
be made up by a linear combination of virtual springs (tak-
ing the position deviations towards neighbouring vehicles
into account) and dampers (taking the velocity deviations
towards neighbouring vehicles into account) between vehi-
cle i and its two nearest neighbouring vehicles i−1 and i+1.
This control approach is motivated by results from mechan-
ical engineering, which studies mass-spring-damper mod-
els, and consensus algorithms for distributed second order
agents. 3 Since in mechanical systems it can be assumed that
Newton’s third law holds, that is, the forces on both sides on
springs and dampers have the same magnitude, let us first
introduce symmetric local damping and spring forces.

In their simplest form, the damping forces are linear and
symmetric such that

Fr
i =


ri

(
m−1

i−1 pi−1(t) − m−1
i pi(t)

)
−ri+1

(
m−1

i pi(t) − m−1
i+1 pi+1(t)

)
for 1 ≤ i ≤ N − 1,

ri

(
m−1

i−1 pi−1(t) − m−1
i pi(t)

)
for i = N,

(7)

3 Note that both the damping and spring forces are virtual, i.e.,
there are neither physical dampers, nor springs. All the coupling is
realised by the onboard controller, which has at its output a control
action, which causes the acceleration of the vehicle. The terms
come from the fact that part of the control law is proportional to
the relative velocity (“damper”) and part to the distance (“spring”).

3



where ri describes the damping coefficient of the damper
between vehicle i and its predecessor, i − 1. Note that, in
the remainder of this paper, it is assumed that the damping
coefficients are bounded from below and above:

Assumption 1 There exist constants r > 0 and r̄ < ∞ such
that r ≤ ri ≤ r̄ for all i ≤ N.

Hence, the vector of damping forces is described by

Fr = −BRBT(M−1 p − 1v0), (8)

with R = diag(r1, . . . , rN) > 0 due to ri > 0.

In addition to the coupling in relative velocity, assume fur-
ther linear, symmetric spring forces of the form

Fs
i =


ai (xi−1(t) − xi(t))
−ai+1 (xi(t) − xi+1(t)) for 1 ≤ i ≤ N − 1,

ai (xi−1(t) − xi(t)) for i = N,
(9)

where ai > 0 describes the spring coefficient between vehi-
cles i and i − 1. Using the distance variables ∆, the vector
of spring forces can be written as

Fs = BA∆, (10)

where A = diag(a1, a2, . . . aN)>0.

Then, with local control F = Fr + Fs, the overall system can
be described in the port-Hamiltonian form ṗ(t)

∆̇(t)

 =

−BRBT B

−BT 0

∇H(p(t),∆(t)) +

d(t)

0

 (11)

with the Hamiltonian function

H(p,∆) =
1
2

(p(t)−M1v0)TM−1(p(t)−M1v0)+
1
2

∆T(t)A∆(t).
(12)

This Hamiltonian captures the kinetic “energy” stored in
the relative velocity to the leader and potential “energy”
stored in the relative distances. Since the system (11) has
a symmetric coupling both in position and in velocity, it
will be abbreviated SPSV (Symmetric Position, Symmetric
Velocity).

Using the approach of [15], the scaling effects of the distur-
bance d can be analysed when the number of vehicles grows.

Theorem 2 ( [15]) Consider the system (11) with Hamilto-
nian (12). Then

(i) the autonomous system is asymptotically stable,
(ii) the system is passive with input vector d(t), output vec-

tor ∇pH and storage function (12), and

(iii) the following bound on the Hamiltonian at time t holds

H(p(t),∆(t)) ≤ H(p(0),∆(0)) +
‖d(·)‖22

2σmin
(
BRBT) . (13)

Remark 3 Note that, the influence of the disturbance onto
the Hamiltonian (and hence the states) is scaled by the in-
verse of the smallest singular value of BRBT. Hence, the
scaling of the platoon’s disturbance response with respect
to N will depend on the scaling of σmin

(
BRBT

)
with respect

to N. It will be shown below that in case of asymmetric ve-
locity coupling, the scaling depends on the minimal singular
value of an altered matrix, which scales differently with re-
spect to N, leading to a different (improved) scaling in the
platoons disturbance response.

3 Effect of Damping Asymmetry in Local Control

Assume the control input resulting from the velocity dif-
ference between two neighbouring vehicles i and i − 1 is
weighted differently by vehicle i compared to vehicle i − 1.
Specifically, vehicle i weighs the damping force control in-
put of the damper between itself and its direct predecessor
i − 1 by 1 + hp, whereas the damping force control input
of the damper between itself and its direct follower i + 1 is
scaled by 1 − hp, where hp > 0 is the coefficient describing
the asymmetry in the damping forces. Then, the damping
force of the ith vehicle for i < N is

Fr
i =(1 + hp)ri

(
m−1

i−1 pi−1(t) − m−1
i pi(t)

)
− (1 − hp)ri+1

(
m−1

i pi(t) − m−1
i+1 pi+1(t)

)
(14)

and Fr
N = (1 + hp)rN

(
m−1

N−1 pN−1(t) − m−1
N pN(t)

)
. When dis-

cussing asymmetry in velocity coupling, the following as-
sumption is needed:

Assumption 4 ri ≥ ri+1 for all i < N.

Note that the assumption above is necessary when allowing
asymmetry in velocity, i. e., hp > 0, to guarantee, that (12)
is still a suitable Hamiltonian function for the system. Then,
the system can be described by ṗ(t)

∆̇(t)

 =

−
(
B + B̃p

)
RBT B

−BT 0

∇H(p(t),∆(t)) +

d(t)

0

 (15)

with the Hamiltonian function (12) and the velocity asym-
metry matrix

B̃p = hp〈B〉. (16)
Since the system (15) has symmetric position coupling and
asymmetric velocity coupling, it will be abbreviated as SPAV
(Symmetric Position, Asymmetric Velocity).

A similar result as for symmetric coupling (Theorem 2), can
be stated.
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Theorem 5 Consider the system (15) under Assumption 4
with Hamiltonian (12). Then

(i) the autonomous system is asymptotically stable,
(ii) the system is passive with input vector d(t), output vec-

tor ∇pH and storage function (12), and
(iii) the following bound on the Hamiltonian at time t holds

H(p(t),∆(t)) ≤ H(p(0),∆(0)) +
‖d(·)‖22

2σmin

((
B + B̃p

)
RBT

) .
(17)

PROOF. (i) Take H in (12) as a Lyapunov function and set
d(t) = 0. The time derivative of H is

Ḣ = ∇TH

−
(
B + B̃p

)
RBT B

−BT 0

∇H. (18)

This yields Ḣ = −∇T
pH

(
B + B̃p

)
RBT∇pH. In order to show

that −∇T
pH

(
B + B̃p

)
RBT∇pH < 0, let pi be the ith element

of ∇pH. Then, since
(
B + B̃p

)
RBT has the tridiagonal struc-

ture (it is a graph Laplacian of the path graph)



(1 +hp)r1+(1−hp)r2 −(1−hp)r2

−(1 + hp)r2
. . .

. . .

. . .
. . . −(1−hp)rN

−(1+hp)rN (1+hp)rN


(19)

it follows that

− ∇T
pH

(
B + B̃p

)
RBT∇pH

= − (r1(1 + hp) + r2(1 − hp))p2
1 + r2(1 − hp)p1 p2

+ r2(1 + hp)p2 p1 −
(
r2(1 + hp) + r3(1 − hp)

)
p2

2 + . . .

− rN(1 + hp)p2
N

≤ − r1 p2
1 − r2(p1 − p2)2 − r3(p2 − p3)2 − . . .

− rN−1(pN−1 − pN)2 − rNhp p2
N

<0, (20)

where Assumption 4 is used. Hence, the system is Lya-
punov stable. Asymptotic stability follows using the invari-
ance principle, see [14].

(ii) Considering d(t), the derivative of the Lyapunov function
(12) is Ḣ = −∇T

pH
(
B + B̃p

)
RBT∇pH + ∇T

pHd(t). Taking
y = ∇pH as an output yields

Ḣ ≤ −σmin

((
B + B̃p

)
RBT

)
|y|2 + yTd. (21)

This shows that the increase in the energy of the system H
is less than the “power” yTd applied to the system. Hence
the system is passive.

(iii) Extending (21) by completing the squares leads to

Ḣ ≤ −
σmin

((
B + B̃p

)
RBT

)
2

|y|2 +
|d(t)|2

2σmin

((
B + B̃p

)
RBT

)
−
σmin

((
B + B̃p

)
RBT

)
2

∣∣∣∣∣∣∣∣y − d(t)

σmin

((
B + B̃p

)
RBT

)
∣∣∣∣∣∣∣∣
2

≤
|d(t)|2

2σmin

((
B + B̃p

)
RBT

) . (22)

Integrating both sides of (22) with respect to time yields the
result. �

3.1 Scaling of singular values

In both cases discussed above, that is, using symmetric ve-
locity coupling and asymmetric velocity coupling, the effect
of the disturbance depends on the minimal singular value of
the damping matrices. That is,

H(p(t),∆(t)) ≤ H(p(0),∆(0)) +
‖d(·)‖22

2σmin(Lp)
(23)

where Lp = BRBT for the symmetric case (Theorem 2)
and Lp =

(
B + B̃p

)
RBT when using asymmetry in velocity

(Theorem 5). From (23), it is clear that the smaller σmin(Lp)
is, the larger the effect of the disturbance d(t) will be on
the total energy of the system, and therefore, also on the
deviations from the equilibrium.

How the smallest singular value scales with an increasing
number of vehicles for both systems will be investigated
next.

Lemma 6 Consider
(
B + B̃p

)
RBT. Then, with some con-

stants c1 > 0, c2 > 0,

σmin

((
B + B̃p

)
RBT

)
≥

c1 r
N

for hp > 0, (24)

σmin

((
B + B̃p

)
RBT

)
≥

c2 r
N2 for hp = 0. (25)

PROOF. See Appendix A.

Hence, the lower bound on σmin approaches zero in both
cases, but the approach is slower (linear) in case of asym-
metric velocity coupling, while it is quadratic in SPSV. This
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Figure 2. Scaling of σmin

((
B + B̃p

)
RBT

)
as a function of N and

hp for R = I for hp = 0 (SPSV) and increasing values of hp > 0
(SPAV). The dashed and dash-dot lines are 1/N2 and 1/N, respec-
tively.

means that when asymmetric coupling in velocity is used,
the effect of the disturbance is qualitatively smaller than in
SPSV systems.

Lemma 6 above provides a lower bound on the scaling of
σmin. The following lemma completes the picture by pro-
viding an upper bound for σmin.

Lemma 7 The minimal singular value of (B̃p + B)RBT is
upper bounded as follows

σmin

((
B + B̃p

)
RBT

)
≤

c3 r̄
N

for hp > 0, (26)

σmin

((
B + B̃p

)
RBT

)
≤

c4 r̄
N2 for hp = 0. (27)

with some c3 > 0, c4 > 0.

PROOF. See Appendix B.

Hence, the lower bounds (Lemma 6) and upper bounds
(Lemma 7) of σmin

((
B + B̃p

)
RBT

)
approach zero with the

same order of magnitude.

These results are also verified numerically. The scaling of
the smallest singular value of the velocity coupling matrix(
B + B̃p

)
RBT is shown in Fig. 2. It is clear that asymmetric

coupling achieves scaling with rate 1/N, while symmetric
coupling approaches zero faster, i. e., as 1/N2. Note that
the larger the asymmetry (greater hp), the larger also the
smallest singular value. Thus, increasing asymmetry helps
in mitigating the effect of the disturbance. 4

4 Asymmetry in position coupling

Using similar notation as in the case of asymmetric velocity
coupling, define the position coupling asymmetry coefficient

4 Time-domain plots and scaling of other important quantities are
illustrated in the Sec. 6. It confirms that in any of the quantities
SPAV achieves better results.

h∆ > 0 such that the asymmetric spring forces for i < N are
given by

Fs
i = (1 + h∆)ai (xi−1(t) − xi(t))− (1− h∆)ai+1 (xi(t) − xi+1(t))

(28)
and Fs

N = (1 + h∆)aN (qN−1(t) − xN(t)). Also define the po-
sition coupling asymmetry matrix

B̃∆ = h∆〈B〉. (29)

This system is abbreviated as APAV (asymmetric position,
asymmetric velocity).

4.1 Asymmetry in position less than in velocity, h∆ ≤ hp

It will be shown below, that the system is stable for hp ≥ h∆

and h∆ < 1. In contrast, it will be shown in Section 4.2, that
for some cases of hp < h∆ the system is unstable.

In order to show stability for hp ≥ h∆, the following scaled
Hamiltonian is introduced

H∆(p,∆) =
1
2

(p(t) − M1v0)TEM−1(p(t) − M1v0)

+
1
2

∆T(t)(1 + h∆)EA∆(t). (30)

with the matrix E = diag
(
1, 1−h∆

1+h∆
,
(

1−h∆

1+h∆

)2
, . . . ,

(
1−h∆

1+h∆

)N−1
)
.

This H∆ is positive definite for h∆ < 1.

Using (30) leads to the system description ṗ(t)

∆̇(t)

=

−
(
B+B̃p

)
RBTE−1 1

1+h∆
(B+B̃∆)E−1

−BTE−1 0

∇H∆+

d(t)

0

 .
(31)

This is a skew-symmetric form since −(−BTE−1)T = E−1B

is equal to 1
1+h∆

(B + B̃∆)E−1. To see this, rewrite the lat-

ter as
(

1
1+h∆
B + h∆

1+h∆
〈B〉

)
E−1. It can be easily verified that(

1
1+h∆
B + h∆

1+h∆
〈B〉

)
= I − 1−h∆

1+h∆
Du, where Du has ones only at

the first upper-diagonal. Note also that 1−h∆

1+h∆
DuE−1 = E−1Du.

This yields
(

1
1+h∆
B + h∆

1+h∆
〈B〉

)
E−1 = (I − 1−h∆

1+h∆
Du)E−1 =

E−1 − E−1Du = E−1B.

Theorem 8 Consider system (31) under Assumption 4 with
Hamiltonian (30). Then,

(i) the autonomous system is asymptotically stable for hp ≥

h∆ and h∆ < 1, and
(ii) the effect of disturbances is bounded as

H∆(t) ≤ H∆(0) +
‖d(·)‖22

2σmin

(
E

(
B + B̃p

)
RBT

) , (32)
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and σmin

(
E

(
B + B̃p

)
RBT

)
approaches zero with rate

1/cN , with c > 1.

PROOF. (i) Use H∆ in (30) as a Lyapunov function and
set d(t) = 0. With ṽ := M−1(p − M1v0) such that ∇pH∆ =

Eṽ, the time derivative is Ḣ∆ = −ṽTE
(
B + B̃p

)
RBTṽ. This

quadratic form is equivalent to the quadratic form −ṽTS ṽ
with S = 1

2

(
E

(
B + B̃p

)
RBT + BR(B + B̃p)TE

)
, S = S T.

Thus, −ṽTE
(
B + B̃p

)
RBTṽ < 0 for all ṽ if and only if S > 0.

The sum si of the ith row of S is

si =
(hp − h∆)

(
ri(1 + h∆) − ri+1(1 − h∆)

)
(1 − h∆)i−2

(1 + h∆)i (33)

and the sums s1 =
(1+h∆+hp+h∆hp)r1−r2(hp−h∆)

1+h∆
and sN =

rN
(hp−h∆)(1−h∆)N−2

(1+h∆)N−1 . Recall that by Assumption 4 ri ≥ ri+1.
Then if hp > h∆ and h∆ < 1, all sums si are positive, so S is
positive definite. Then, the derivative Ḣ∆ is negative semi-
definite and the invariance principle completes the proof.
Stability for hp = h∆ < 1 follows from [23, Thm 2.3].

(ii) Consider d(t) , 0. The derivative of H∆ is Ḣ∆ =
ṽTE(B + B̃p)RBTṽ + ṽTEd. It can be bounded since
Ḣ∆ ≤ −σmin

(
E

(
B + B̃p

)
RBT

)
|ṽ|2 + ṽTEd. Using Lp =(

B + B̃p

)
RBT and completing the squares then leads to a

similar form as in (22) such that

Ḣ∆ ≤
|d|2

2σmin

(
E

(
B + B̃p

)
RBT

) .
In the derivation we used the fact that σmax(E) = 1. The
result (32) follows from integrating both sides with respect
to time.

The smallest singular value of E
(
B + B̃p

)
RBT can be upper

bounded as [3, Prop. 9.6.6]

σmin(E
(
B + B̃p

)
RBT) ≤ σmin(E)σmax

((
B + B̃p

)
RBT

)
(34)

The bound onσmax

((
B + B̃p

)
RBT

)
isσmax

((
B + B̃p

)
RBT

)
≤

r̄σmax

((
B + B̃p

)
BT

)
≤ 4r̄. This follows from Gershgorin

Theorem applied to
((
B + B̃p

)
BT

)T (
B + B̃p

)
BT. The

smallest singular value of E is
(

1−h∆

1+h∆

)N−1
. Then,

σmin(E
(
B + B̃p

)
RBT) ≤

(
1 − h∆

1 + h∆

)N−1

4r̄ ∝
1

cN . (35)

with c = 1+h∆

1−h∆
> 1. Thus, σmin

(
E

(
B + B̃p

)
RBT

) )
goes to

zero exponentially fast. �

Theorem 8 above means that the upper bound on the effect
of the disturbance scales exponentially in the number of ve-
hicles, which is qualitatively much worse than the scaling
for symmetry in position coupling. Hence, breaking up the
symmetry in position significantly deteriorates the perfor-
mance.

Remark 9 Theorem 8 above yields an upper bound. This
does not mean that the system does not scale better. On the
other hand, the results in the literature confirm that at least
for a particular cases where hp = h∆ the H∞ norm of any
transfer function in the formation scales exponentially with
the graph distance [10]. This means that the norm of the
system should scale exponentially as well. Note that simi-
lar results appeared in [11,22,23]. Exponential scaling can
also be expected from the Lyapunov function (30), which
weights the states of the vehicles exponentially towards zero
with growing distance from the leader. In addition, the sim-
ulations in Sec. 6 confirm exponential scaling.

4.2 Asymmetry in position greater than in velocity, h∆ > hp

It will be shown below that even short strings of length N = 2
become unstable for particular combinations of hp and h∆.

For simplicity, set R = A = M = I. Then, the dynamics of
vehicle i for i < N are given by

ẍi =(1 + hp)(vi−1 − vi) + (1 − hp)(vi+1 − vi)
+ (1 + h∆)(xi−1 − xi) + (1 − h∆)(xi+1 − xi), (36)

whereas the last vehicle is described by

ẍN = (1 + hp)(vN−1 − vN) + (1 + h∆)(xN−1 − xN). (37)

Applying the Laplace transform to both equations above
and denoting Xi = L{xi(t)}, leads to the following transfer
function relations

Xi(s) =
(1 + hp)s + (1 + h∆)

s2 + 2s + 2︸                    ︷︷                    ︸
:=G−

Xi−1(s)

+
(1 − hp)s + (1 − h∆)

s2 + 2s + 2︸                    ︷︷                    ︸
:=G+

Xi+1(s) (38)

XN(s) =
(1 + hp)s + (1 + h∆)

s2 + (1 + hp)s + 1 + h∆︸                        ︷︷                        ︸
:=GN

XN−1(s) (39)

Then, by writing Xi(s) = Gi(s)Xi−1(s), the transfer functions
Gi for i < N can be derived recursively using the relation
Gi = (1−G+Gi+1)−1G− such that the dynamics of the entire
string can be described as illustrated in Fig. 3.

Then, it can be shown that for specific choices of hp and h∆,
strings of length N = 2 are unstable:
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G1
X0 . . .

X1
GN−1

XN−2
GN

XN−1 XN

Figure 3. String model using the transfer function description
Xi(s) = Gi(s)Xi−1(s) with (38)-(39).

Lemma 10 Strings of N ≥ 2 vehicles are unstable if h∆ ≥
2h4

p+12h3
p+25h2

p+30hp+11
3h2

p+6hp+7 or h∆ ≥
h3

p+5h2
p+8hp+10

hp−1 for hp > 1.

PROOF. The results in (38) and (39) and tedious calcu-
lations reveal that the denominator of GN−1 is given by
denN−1 = s4 + (3 + hp)s3 + (3 + h∆ + (1 + hp)2)s2 + 2(1 +

hp)(1+h∆)s+(1+h∆)2. Using the Hurwitz stability criterion,
it is evident that all roots of denN−1 have negative real parts

if and only if h∆ > −1, hp > −3, h∆ ≤
2h4

p+12h3
p+25h2

p+30hp+11
3h2

p+6hp+7

and h∆ ≤
h3

p+5h2
p+8hp+10
hp−1 in case hp > 1. Hence, if one or more

of those bounds are violated, then the second last transfer
function in the string is unstable, leading to an overall unsta-
ble string. Since only nonnegative hp and h∆ are considered
here, the bounds yield the result. �

Similar bounds on h∆ can also be found for the stability of
the third last vehicle in the string using the same method as
in the proof of Lemma 10. Fig. 4 illustrates the maximal,
stable string length N̄stab for combinations of hp and h∆. It
can be seen that longer strings remain stable for smaller
ratios h∆/hp. Also, from Theorem 8 it follows that strings
of arbitrary lengths are stable if h∆ ≤ hp and h∆ < 1 (where
the border of this region is marked with a red, solid line).
Based on those observations, we formulate the following
conjecture.

Conjecture 11 For every h∆ > hp there exists a maximal
string length N̄stab for which the system is stable and such
that all strings of length N > N̄stab are unstable.

Remark 12 Note that connecting additional vehicles to the
beginning of the string leads to the additional transfer func-
tion block Gi = (1 − G+Gi+1)−1G−, which is derived re-
cursively from the transfer function Gi+1. The mathematical
expression reveals that this interaction is equivalent to a
positive feedback loop of BIBO stable subsystems, which is
known to potentially lead to closed-loop unstable systems.

5 Discussion of the results

The results are summarised in the following theorem.

Theorem 13 The qualitative effect of the disturbance on the
energy in the system scales with the number of vehicles N as

• (SPSV): H(t) ≤ H(0) + ‖d‖2 1
c1

N2 with (12).
• (SPAV): H(t) ≤ H(0) + ‖d‖2 1

c2
N with (12).

Figure 4. Maximal stable string length N̄stab as a function of hp
and h∆: N̄stab = 1 in red, N̄stab = 2 in orange, . . . , N̄stab = 10 in
purple, N̄stab > 10 in black

• (APAV): H∆(t) ≤ H(0) + ‖d‖2 1
c3

cN with (30).
This holds for hp ≥ h∆ and h∆ < 1.

where c1 > 0, c2 > 0, c3 > 0 and c > 1 are some constants
independent of N. For h∆ > hp we conjecture instability for
a sufficiently high string length N.

PROOF. The proof follows from combining Theorems 2
and 8, Theorem 5 with Lemmas 6 and 7. �

The results of Theorem 13 are illustrated in Fig. 1. The
region denoted as A corresponds to the case with symmetric
coupling in position and asymmetric in velocity (SPAV),
h∆ = 0, hp > 0. For this, it was shown that the scaling is
linear in N. When the coupling becomes symmetric also
in velocity (SPSV), i.e., point B with h∆ = 0, hp = 0, the
scaling deteriorates to N2. In the region C the asymmetry
in position is less than the asymmetry in velocity (APAV),
h∆ < 1 and hp ≥ h∆. In this region the scaling is cN with
c > 1, that is, exponential in the worst case (Theorem 8). We
conjecture, based on numerical simulations, that the same
exponential scaling occurs also in the region D defined as
1 ≤ h∆ < hp. In the region E, defined as h∆ > hp, there exist
combinations of h∆ and hp for which even trivial strings of
length N = 2 are unstable. We conjecture that for all h∆ > hp

there exist a critical stable string length N̄stab such that the
string becomes unstable for N > N̄stab.

Scaling in some of the regions were known previously. For
instance, the case hp = h∆ = 1 corresponds to the prede-
cessor following (PF) case, for which Seiler et.al. in [22]
proved that the H∞ norm grows exponentially. Later, this
was generalised in [11, 23] to 0 ≤ hp = h∆ ≤ 1.

It is noteworthy that so far, most literature in the area of string
stability has focused on case B, the predecessor following
(PF) architecture or on identical asymmetries, that is on the
line 0 ≤ hp = h∆ ≤ 1. However, these popular choices are
clearly outperformed by case A, that is, choosing hp > 0 and
h∆ = 0. This effect is also illustrated by several numerical
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simulations discussed in the following section. Therefore,
we believe that the results presented in this paper should lead
to a new “standard”, that is, choosing hp > 0 and h∆ = 0.

5.1 Difference between springs and dampers

It is clear from Fig. 1 that whenever allowing asymmetry
in the positions, i.e., h∆ > 0, the performance of the sys-
tem deteriorates or the system might even become unstable.
However, by introducing asymmetry only in velocity, i.e.
hp > 0, the scaling compared to the symmetric case is im-
proved. This brings about the question: why are asymmetric
dampers beneficial while asymmetric springs are not?

To answer this question a review of how dampers and springs
process incoming energy is required. The dampers are in-
stances of generalised resistances [13]. Hence, they only ex-
tract (“burn”) energy from the system. When introducing
asymmetric dampers, only how the energy is extracted (dis-
sipated) is changed.

Assume that the virtual springs between the agents are ideal.
Then, by Newton’s third law (‘actio = reactio’) it should be
true, that a force acting on one side of the spring is exactly
the opposite of a force at the other side of the spring such
that their sum is zero. However, this fundamental law is
violated when introducing asymmetric springs: Consider a
spring between two adjacent vehicles (preceding i − 1 and
following i) with A = I where the inter vehicle distance
is bigger than desired. When introducing asymmetry, the
force, which is pulling the preceding vehicle backwards, is
(1 − h∆)(xi−1 − xi), while the force, which is pulling the
following vehicle forward, is (1 + h∆)(xi−1 − xi). Together,
the overall force is −(1 − h∆)(xi−1 − xi) + (1 + h∆)(xi−1 −

xi) = 2h∆(xi−1 − xi). Hence, the asymmetric, virtual spring
is introducing additional forces, and hence adds energy to
the system.

6 Examples and simulations

First, illustrative simulations confirming quadratic and linear
growth are discussed. The simulation setup is the following.
The input signal is di(t) =

pi

‖p‖2
√

Tf
for t < Tf and di(t) = 0

for t > Tf . That is, the disturbance vector is parallel to the
momentum vector. The time Tf is some given duration of
the signal. Since the input signal has compact support, it
is a proper disturbance in line with our derivations. The L2
norm ‖d(·)‖2 is then 1 for all N. All the simulations were
started with zero initial conditions, hence H(0) = 0 in (12)
and H∆(0) = 0 in (30). As follows from our theorems, we
are interested in the maximal value of the Hamiltonian func-
tions Hmax = maxt H(p(t),∆(t)). Note that setting the distur-
bance vector parallel with the momentum vector achieves
the fastest growth of the energy possible, as follows from
(21).

First consider SPSV. Different durations of the input signal
in the range Tf ∈ [200, 10000] were used. The plot of Hmax

N
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(a) SPSV, dashed line is the quadratic bound (13)
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(b) SPAV, dashed line is the linear bound (17)

Figure 5. Plot of maximal value of H(t) for SPSV (a) and SPAV (b)
in logarithmic coordinates when the input is applied for different
times (Tf ∈ [200, 10000]) and N = 25, . . . , 200.

is shown in Fig. 5a for SPSV. The solid lines correspond to
different Tf . Note that, the longer the duration Tf is chosen,
the lower the value for low N and the higher the maximal
value of H become. On the curve for each Tf , consider the
point which is the closest to the bound. From the plot in
Fig. 5a it is apparent that this point scales quadratically with
N. It means that the quadratic growth was achieved. The
case with SPAV behaves similarly. The growth of the point,
where each curve gets closest to the bound, is linear. This
is illustrated in Fig. 5b. Thus, the results of Theorem 13
were verified. Note that, for a given N, maxt H(t) is much
smaller for case SPAV, than for SPSV. Although the bounds
are conservative, they capture the scaling qualitatively.

6.1 Other important characteristics

It is not only the growth of the Hamiltonian in which SPAV
achieves the best scaling. Numerically, it can be shown that
the SPAV control has much better transients than SPSV and
APAV. As the test conditions, assume that all the initial states
are zero. At time zero, the leader starts to move with unit
velocity, hence its position is given as x0 = t. This corre-
sponds to an acceleration manoeuvre of the platoon. Further,
it is assumed ri = 1, ai = 1,mi = 1∀i, in SPAV hp = 0.5∀i
and in APAV hp = 0.5, h∆ = 0.2, ∀i.

When one looks at the time-domain plots in Fig. 6, it is ap-
parent that SPAV has shorter convergence time and lower
overshoots than SPSV. When asymmetry in position is in-
troduced (APAV), extremely high peaks occur. Despite the
fact that the leader moves with unit velocity, during the tran-
sient the momentum and relative positions of some vehicles
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Figure 6. Response of the platoon with N = 150 to the leader’s
step change in velocity. Black is SPSV, red is SPAV, blue is APAV.

reached up to the order of 106.

Scaling of other quantities, such as maximal overshoot,
maximal control effort, convergence time and total error, is
shown in Fig 7, from which the following can be observed:

• Maximal overshoot maxi,t ∆i(N, t) (Fig. 7a): Both SPSV
and SPAV are bounded for all N, while SPAV achieves a
lower bound. APAV scales exponentially.

• Maximal control effort maxi,t Fi(t) (Fig. 7b): Both SPAV
and SPSV have the same value equal to one, while APAV
scales exponentially. The control effort of SPSV and SPAV
does not grow with N.

• Convergence time (Fig. 7c): It is apparent that SPAV and
APAV scale linearly, while SPSV scales quadratically with
N. Thus, linear scaling of SPAV and quadratic scaling of
SPSV appears also in the convergence time.

• Total error E =
∑N

i=1

∫ ∞
0 ∆2

i +(vi−v0)2dt. (Fig. 7d): Appar-
ently, SPAV achieves the best scaling, that is, quadratic,
SPSV scales cubically and APAV scales again exponen-
tially with N.

We conclude that SPAV performs the best in all cases. The
only exception is the convergence time. It is true that APAV
achieved about 4 times faster transient, but at the price of
exponential scaling of any other quantity. We can see that
SPAV has similar convergence time as APAV while keeping
bounded control effort as SPSV.

7 Conclusions

This paper studied scaling in asymmetric bidirectional ve-
hicular platoons with respect to the string length. Each ve-
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Figure 7. Scaling of several quantities of interest as a response
to the unit step in leader’s velocity. Note that a) and b) are in
semilogarithmic coordinates, c) and d) in logarithmic coordinates.
In c) the dashed lines are 2N2 (black), 5N (red) and 1.5N (blue).
In d) the dashed lines are 0.1N3 (black), 0.2N2 (red) and e0.17N

(blue).

hicle was modelled as a double integrator. Different asym-
metries in position and velocity were considered in order to
give a complete overview of scaling depending on the type
of asymmetry used.

It was shown that the effect of disturbance scales quadrati-
cally in case of symmetric coupling in position and veloc-
ity, while it scales only linearly when symmetric coupling
in positions and asymmetric in velocity is considered. When
allowing asymmetry also in position, exponential scaling oc-
curs for hp ≥ h∆ and the system becomes unstable for at least
some choices of hp < h∆. These findings were also verified
by simulations. Hence, we conclude that having symmetric
coupling in position and asymmetric coupling in velocity is
the best choice.

We conjecture that similar claims can be made even for
different vehicle models (more realistic linear models than
double integrators) and maybe also for more general graph
topologies. This is a subject of our future research.
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A Proof of Lemma 6

First, consider the symmetric case such that
(
B + B̃p

)
RBT =

BRBT is given by

BRBT =



r1 + r2 −r2 0 · · · 0

−r2 r2 + r3 −r3
. . .

...

0 −r3
. . .

. . . 0
...

. . .
. . . rN−1 + rN −rN

0 · · · 0 −rN rN


. (A.1)

Then, the minimal singular value (which is equivalent to the
minimal eigenvalue in this case) can be bounded by

λmin(BRBT) ≥ rλmin





2 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1
. . .

. . . 0
...
. . .

. . . 2 −1

0 · · · 0 −1 1




. (A.2)

Note that the matrix above is a well known matrix - a pinned
Laplacian for a path graph. Its eigenvalues are given in a
closed form as [20, Prop. 3.3]

λi = 2
(
1 − cos

(2i − 1)π
2N + 1

)
= 4 sin2 (2i − 1)π

4N + 2
. (A.3)

The smallest eigenvalue λ1 can be obtained using sin x ≈ x
as

λ1 = 4 sin2 −π

4N + 2
≈ 4

(
−π

4N + 2

)2
=

4π2

16N2 + 16N + 4
.

(A.4)
It follows that the minimal eigenvalue approaches 0 with
rate 1/N2, so

λminBRBT ≥ cr
1

N2 , c > 0. (A.5)

Now, consider the case hp = 1 such that B+ B̃p = B+ 〈B〉 =

2I and, hence,
(
B + B̃p

)
RBT = 2RBT. Then, the minimal

singular value of
(
B + B̃p

)
RBT is given by

σmin

((
B + B̃p

)
RBT

)
=

√
λmin

(
BR4RBT)

≥2
√

r
√
λmin

(
BRBT). (A.6)

Since it is known from above that λmin

(
BRBT

)
ap-

proaches 0 with rate 1/N2, it follows that for hp = 1,
σmin

((
B + B̃p

)
RBT

)
approaches zero with rate 1/N.

To determine the decay of the smallest singular value for the
case hp > 0, denote Lp = (B + hp〈B〉)RBT. Then

σ2
min

(
(B + hp〈B〉)RBT

)
= λmin

(
Lp

TLp

)
The smallest eigenvalue of the matrix can be rewritten as

λmin

(
Lp

TLp

)
=λmin

((
BRBT

)T (
BRBT

)
+ h2

pBR〈B〉T〈B〉RBT

+ hp

(
BR

(
〈B〉TB + BT〈B〉

)
RBT

))
≥r2λmin

(
Γ1 + hpΓ2 + h2

pΓ3

)
. (A.7)

with Γ1 = (BBT)T(BBT), Γ2 =
(
B

(
〈B〉TB + BT〈B〉

)
BT

)
=

diag(2, 0, .., 0) and Γ3 = B〈B〉T〈B〉BT. Restructuring leads
to

λmin

(
Lp

TLp

)
≥ r2λmin

(
Γ1 + h2

pΨ1 + h2
pΨ2

)
(A.8)

where

Ψ1 =



1 + 2
hp

0 −1 0 0 0 0 . . . 0

0 2 0 −1 0 0 0 . . . 0

−1 0 2 0 −1 0 0 . . . 0

0 −1 0 2 0 −1 0 . . . 0
...

...
...

...
...

...
...
. . .

...

0 . . . 0 0 −1 0 2 0 −1

0 . . . 0 0 0 −1 0 1 0

0 . . . 0 0 0 0 −1 0 1



, (A.9)

Ψ2 =



0 0 0 . . . 0
...
...
...
. . .

...

0 0 0 . . . 0

0 . . . 0 1 −1

0 . . . 0 −1 1


. (A.10)

Using [3, Fact 5.12.2], λmin can be bounded by

λmin

(
Lp

TLp

)
≥ r2

(
λminΓ1 + h2

pλmin(Ψ1) + h2
pλmin(Ψ2)

)
.

(A.11)
By previous development, the smallest eigenvalue of Γ1 =
(BBT)2 decays with rate 1/N4. The matrix Ψ2 is positive
semi-definite matrix, hence λmin(Ψ2) = 0. It remains to in-
vestigate λmin(Ψ1). Note that Ψ1 is a reducible matrix. Using
the permutation matrix P = [~e1, ~e3, . . . ~eN−1, ~e2, ~e4, . . . ~eN],
leads to

λmin(Ψ1) = λmin

(
P−1Ψ1P

)
= λmin


L1 0

0 L2


 , (A.12)
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which is a block diagonal matrix with matrices defined
as L1 = B̄DB̄T ∈ RN/2×N/2 and L2 = BB̄T ∈ RN/2×N/2

with D = diag(1/hp, 1, . . . , 1) and B̄ has the same struc-
ture as B but half the size. It follows that λmin(Ψ1) =
min {λmin(L1), λmin(L2)}. Let γ = min{1/hp, 1}. The eigenval-
ues of individual matrices are given as λmin(L1) ≥ γλminB̄B̄

T

and λmin(L2) = λmin

(
B̄B̄T

)
. Hence, λmin(Ψ1) ≥ γλmin

(
B̄B̄T

)
and

λmin

(
Lp

TLp

)
≥r2

(
h2

pγλmin(B̄B̄T)
)
. (A.13)

From (A.5) it is known that the smallest eigenvalue of B̄B̄T

approaches zero with quadratic rate. Hence,

σmin

(
(B + hp〈B〉)RBT

)
=

√
λmin

(
LT

pLp

)
≥ cr

1
N
, c > 0.

(A.14)

B Proof of Lemma 7

First note that σmin

((
B + B̃p

)
RBT

)
≤ r̄σmin

((
B + B̃p

)
BT

)
.

Hence, it suffices to analyse σmin

((
B + B̃p

)
BT

)
. The matrix(

B + B̃p

)
BT has a form

(
B + B̃p

)
BT =



2 −(1−hp) 0 . . . 0

−(1+hp) 2 −(1−hp) . . . 0
...

...
...

. . .
...

0 . . . −(1+hp) 2 −(1−hp)

0 . . . 0 −(1+hp) 1+hp


.

(B.1)
As its leading principal submatrix of size N−1, it has a finite
Toeplitz matrix, denoted as MN . The matrix MN has as its
symbol a(t) = −(1−hp)t−1 + 2− (1 + hp)t1 with t ∈ C, |t| = 1.
The symbol is not Fredholm, because it has a zero at t = 1.
The order α of the zero at t = 1 is either 1 for hp > 0 or
2 for hp = 0. The result [4, Thm. 9.8] specifies scaling of
singular values for Toeplitz matrices as

σi(MN) = O

(
1

Nα

)
(B.2)

for any fixed i with σi ≤ σi+1. That is, the singular values
go to zero with a rate at least given by the order of the zero
of the symbol.

Since MN is a submartix of
(
B + B̃p

)
BT, use the result [4,

Thm. 9.7] on interlacing of the singular values for subma-
trices. It follows that

σmin

((
B + B̃p

)
BT

)
≤ σ3(MN) (B.3)

From (B.2) follows that σ3(MN) = O
(

1
Nα

)
, hence σ3(MN) ≤

c/Nα. Thus, by (B.3) σmin

((
B + B̃p

)
BT

)
≤ c1/N if hp > 0

and σmin

((
B + B̃p

)
BT

)
≤ c2/N2 if hp = 0. �
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