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Abstract

This paper considers a string of vehicles where the local control law uses the states of the vehicle’s immediate predecessor and follower.
The coupling towards the preceding vehicle can be chosen different to the coupling with the following vehicle, which is referred to as
an asymmetric bidirectional string. Further, the asymmetry for the velocity coupling can be chosen differently to the asymmetry in the
position coupling. It is investigated how the effect of the disturbance on the control errors in the string depends on the string length. It
is shown, that in case of symmetric position coupling and asymmetric velocity coupling, linear scaling can be achieved. For symmetric
interactions, the errors scale quadratically in the number of vehicles. When the coupling in position is asymmetric, exponential scaling
may occur or the system might even become unstable. The paper thus gives a comprehensive overview of the achievable performance in
linear, asymmetric, bidirectional platoons. The results reveal that symmetry in the position coupling and asymmetry in velocity coupling
qualitatively improves the performance of the string. Extensive numerical results illustrate the theoretical findings.
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1 Introduction

Vehicle platoons are anticipated to increase both the
safety and capacity of highways. In its simplest form, a
platoon, consisting of N cooperatively-acting, automatically
controlled vehicles, travels in a longitudinal line with tight
spacing between the vehicles. An important safety and per-
formance measure in this area is how the response of the
platoon to disturbances scales with respect to N. When the
local errors are bounded independently of N, the string is
“string stable”. Generally speaking, a platoon is string stable
if disturbances propagating through the string do not grow
with N or the position within the string, Ploeg et al. (2014).

The literature often distinguishes between “unidirec-
tional” strings, where each vehicle only considers informa-
tion of a group of direct predecessors, and “bidirectional”,
where information from following vehicles is also used.
A strict form of string stability in linear vehicle strings
with double integrators in the open loop, local information
only and tight spacing, can neither be achieved in unidi-
rectional nor in bidirectional strings, Seiler et al. (2004),
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Barooah & Hespanha (2005). This definition of string sta-
bility requires the L2 norm of the local error vector to be
bounded for any L2 bounded disturbance vector. In unidi-
rectional strings, string stability can be achieved using a
time headway spacing policy, Klinge & Middleton (2009),
Middleton & Braslavsky (2010), or inter-vehicle commu-
nication, Alam et al. (2015). However, the time-headway
policy leads to undesirable large steady-state inter vehicle
distances and wireless communication between the vehicles
can potentially be disturbed by an intruder.

Bidirectional strings seem to offer advantages, as also
backward distance errors are used to control the vehicle.
If the the forward distance error is weighed equally to the
backward distance error, the string is referred to as a “sym-
metric”. By Knorn et al. (2014) a weaker form of string sta-
bility can be achieved, where the L∞ norm of the local error
vector is guaranteed to be bounded for any disturbances in
L2. The results were extended by Knorn et al. (2015) and
Knorn & Ahlén (2016). In contrast, by weighing the forward
error higher, that is, allowing asymmetric controller gains,
a uniform bound on the eigenvalues of the formation can
be achieved, see Hao & Barooah (2012), which guarantees
faster transients compared to symmetric control.

The drawback of the better convergence rate is exponen-
tial scaling in N of theH∞ norm of the transfer functions for
asymmetric strings compared to linear scaling for symmet-
ric strings, see Veerman et al. (2007). This was first shown
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for a double-integrator model by Tangerman et al. (2012)
and later generalized by Herman et al. (2015) and Herman,
Martinec, Hurák & Sebek (2016).

Many works in the area assume that the degree of asym-
metry in the position and velocity coupling is identical, e. g.
Barooah et al. (2009). But the performance of the string can
be improved by allowing symmetric position coupling and
asymmetric velocity coupling. Good stability margin prop-
erties were shown by Hao & Barooah (2010). A good scal-
ing of system norms with such an approach was numerically
shown in Hao et al. (2012) and the properties of the pla-
toon’s response to a step change in leader’s velocity were
derived by Cantos et al. (2016). Using these properties, the
parameters of the controller as well as the coefficient of
asymmetry can be optimised to minimise the transient time,
see Herman, Martinec & Veerman (2016). In both papers by
Cantos et al. (2016), Herman, Martinec & Veerman (2016)
it was shown that symmetry in position is necessary for a
good scaling. In addition, it was proved by Martinec et al.
(2016) that symmetry in position is a necessary condition
for “local” string stability.

1.1 Problem formulation

This paper considers a heterogeneous, asymmetric, bidi-
rectional string of N vehicles with constant masses mi, posi-
tions xi, velocities vi and momenta pi for all i ∈ {1, 2, . . . ,N}.
The vehicles are modelled as double integrators such that

mi ẍi = Fi + di, (1)

where di is the disturbance acting on vehicle i. The linear
control force Fi has the form

Fi =(1 + hp)ri(vi−1 − vi) − (1 − hp)ri+1(vi − vi+1)
+ (1 + h∆)ai∆i − (1 − h∆)ai+1∆i+1, (2)

where ∆i := xi−1 − xi − δrefi−1,i is the local position error be-
tween vehicle i and its predecessor i − 1, aimed to be kept
at the fixed distance δrefi−1,i; constants ri > 0 and ai > 0 are
the velocity and position coupling parameters and hp and h∆

are the asymmetry coefficients for the velocity and position
coupling, respectively. The index i = 0 refers to a virtual ref-
erence vehicle with position x0, velocity v0 and momentum
p0 and the last vehicle only considers the forward error.

This paper investigates the disturbance scaling for such
asymmetric bidirectional platoons.
Definition 1 Collecting all error states of the platoon in the
vector χ(t) and all disturbances in the vector d(t), distur-
bance scaling refers to how the scaling factor ξ in |χ(t)| ≤
|χ(0)|+ξ‖d(·)‖2 scales with the string length N, where ‖d(·)‖2
denotes the L2 norm of the disturbances.

1.2 Contributions

Figure 1 summarises how ξ scales with N for different
choices of hp and h∆. The point hp = h∆ = 0 corresponds
to the symmetric, bidirectional case while hp = h∆ = 1 de-
scribes the unidirectional (“predecessor following” = ‘PF’)
case. The findings can be summarised as follows:

hp

h∆

1

1
PF

C: cN

D: cN (?)

E: unstable (?)

B: N2

A: N

Figure 1. Disturbance scaling with respect to N for different se-
lections of asymmetry. Area A: linear scaling, Area B: quadratic,
Area C and D: exponential. Conjectures are marked with (?).

(1) It is shown that asymmetry in velocity with symmetric
position coupling, i.e., case A, achieves linear scaling,
while a completely symmetric control scales quadrati-
cally, i.e., case B. See Section 3. 2

(2) It is shown that for asymmetric position coupling below
a certain bound, the errors scale exponentially, i.e., case
C, see Section 4.1. We conjecture that it is also true for
h∆ ≥ 1, i.e., case D.

(3) It is shown that for some cases of stronger asymmetry
in the position coupling compared to the velocity cou-
pling, i.e., for a subset of case E, the system is unstable
for a sufficiently high N, see Section 4.2. We conjec-
ture that for all strings in E a finite critical N, which is
the maximal stable string length, exists.

(4) Extensive numerical results are presented to illustrate
the technical results, see Section 5.

(5) The system description unifies several existing platoon
descriptions such as unidirectional strings, Seiler et al.
(2004), bidirectional symmetric strings, Knorn et al.
(2014), Barooah & Hespanha (2005), and bidirectional
asymmetric strings, e. g. Barooah et al. (2009), Cantos
et al. (2016).

Notation: The L2 vector norm is |x|22 = xTx and the L2

vector norm ‖x(·)‖22 =
∫ ∞

0 |x(t)|22dt. For a scalar function
H(x) of a vector x = [x1, . . . , xn]T its gradient is defined
as ∇H(x) =

[
∂H(x)
∂x1

, ∂H(x)
∂x2

, . . . , ∂H(x)
∂xn

]T
and its ith element

∇xi H(x). x(t) = col(x1(t), . . . , xN(t)) is the column vector
with N elements. The column vector of ones of length N is
1. Denote the diagonal matrix A ∈ RN×N with diagonal en-
tries a1, . . . aN as A = diag(a1, . . . aN). The matrix 〈A〉 is a
matrix obtained from A by taking the absolute values of the
elements. A > 0 and A ≥ 0 denote that A is a positive def-
inite or positive semi-definite matrix, respectively. σi(A) is
the ith smallest singular value of A and λi(A) is the ith small-

2 To the best knowledge of the authors, this is the first paper which
analytically proves better scaling when symmetry in position and
asymmetry in velocity is used. The papers by Cantos et al. (2016),
Herman, Martinec & Veerman (2016) relied in their proofs only
on (reasonable, though) conjectures.
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est eigenvalue. σmin(A), σmax(A) (λmin(A), λmax(A)) are the
minimal and maximal singular values (eigenvalues) of A.

2 Mathematical preliminaries

Consider the dynamics in (1) and (2) with constant,
bounded control parameters and vehicle masses:
Assumption 2 There exist constants r > 0, r < ∞, m >
0,m < ∞, a > 0, a < ∞ such that r ≤ ri ≤ r, m ≤ mi ≤ m
and a ≤ ai ≤ a for all i ≤ N and for all N.

By collecting the positions in x(t) = col(x1, . . . , xN),
and introducing δref = col(δref0,1, . . . , δref0,N) the local posi-
tion errors can be represented by ∆(t) := col(∆1, . . . ,∆N) =
−BT(x(t) − 1x0(t) + δref), where the coupling matrix B is

B =



1 −1 0 · · · 0

0
. . .

. . .
. . . 0

...
. . . 1 −1

0 · · · 0 0 1


. (3)

Let R = diag(r1, . . . , rN) > 0 be the matrix of damping
coefficients and M = diag(m1, . . . ,mN) > 0 be the inertia
matrix. Further, let the velocity asymmetry matrix be given
as B̃p = hp〈B〉. Then the vector of forces due to relative
velocities is described by Fr = −(B+ B̃p)RBT(M−1 p− 1v0),
where p = col(p1, . . . , pN) is the momentum vector. The
vector of forces due to position errors can be written as
Fs = (B + B̃∆)A∆, where A = diag(a1, . . . aN) > 0 and
B̃∆ = h∆〈B〉. Hence, F = col(F1, . . . , FN) = Fr + Fs.

We will analyse the following asymmetry combinations:
• h∆ = 0, hp = 0, which refers to symmetric position and

symmetric velocity coupling, abbreviated as SPSV.
• h∆ = 0, hp > 0, which refers to symmetric position and

asymmetric velocity coupling, abbreviated as SPAV.
• h∆ > 0, hp ≥ 0, which refers to asymmetric position and

asymmetric velocity coupling, abbreviated as APAV.

3 Symmetric position coupling

This section considers symmetric position forces, such
that the platoon can be written in the port-Hamiltonian form ṗ(t)

∆̇(t)

 =

−(B + B̃p)RBT B

−BT 0

∇H(p(t),∆(t)) +

d(t)

0

 , (4)

with h∆ = 0 (and thus B̃∆ = 0) and the Hamiltonian function

H(p,∆) =
1
2

(p(t)−M1v0)TM−1(p(t)−M1v0) +
1
2

∆T(t)A∆(t)
(5)

and the equilibrium

∆i = 0 and vi = v0 for all i ≤ N. (6)

The Hamiltonian H(p,∆) captures the kinetic “energy”
stored in the relative velocity to the leader and potential

“energy” stored in the position errors. Hence, it captures
both the spacing and velocity errors of all vehicles. In the
following we provide an upper bound on the Hamiltonian,
leading to a bound on the maximal error.

The following assumption is necessary to guarantee, that
(5) is a suitable Hamiltonian function for SPAV systems.
Assumption 3 ri ≥ ri+1 for all i < N.

SPSV and SPAV systems have similar properties:
Theorem 4 (SPSV, SPAV) Consider system (4), (5) under
Assumption 2. If hp > 0 (SPAV), the following holds under
Assumption 3; if hp = 0 (SPSV), it holds unconditionally:

(i) for d(t) ≡ 0 the equilibrium (6) of the autonomous
system is asymptotically stable,

(ii) the system is passive with input vector d(t), output vec-
tor ∇pH and storage function (5),

(iii) the following bound on the Hamiltonian at time t holds

H(p(t),∆(t)) ≤ H(p(0),∆(0))+
‖d(·)‖22

2σmin

(
(B + hp〈B〉)RBT

) .
(7)

PROOF. The proof for hp = 0 is found in Knorn & Ahlén
(2016). Thus, only the proof for hp > 0 is presented here.

(i) Take H in (5) as a Lyapunov function and set d(t) =

0. Then, Ḣ = −∇T
p H

(
B + B̃p

)
RBT∇pH. In order to show

that Ḣ < 0, let ṽi be the ith element of ∇pH. Then, since(
B + B̃p

)
RBT has the tridiagonal structure



(1 +hp)r1+(1−hp)r2 −(1−hp)r2 0

−(1 + hp)r2
. . .

. . .

. . .
. . . −(1−hp)rN

0 −(1+hp)rN (1+hp)rN


,

it follows that

− ∇T
p H

(
B + B̃p

)
RBT∇pH

= −
(
r1(1 + hp) + r2(1 − hp)

)
ṽ2

1 + r2(1 − hp)ṽ1ṽ2

+ r2(1 + hp)ṽ2ṽ1 −
(
r2(1 + hp) + r3(1 − hp)

)
ṽ2

2 + . . .

− rN(1 + hp)ṽ2
N

≤ − r1ṽ2
1 − r2(ṽ1 − ṽ2)2 − r3(ṽ2 − ṽ3)2 − . . .

− rN−1(ṽN−1 − ṽN)2 − rNhpṽ2
N < 0,

where in the first inequality we used Assumption 3. Hence,
the system is Lyapunov stable. Asymptotic stability follows
using the invariance principle, see Khalil (2001). The set
when Ḣ = 0 is ∇pH = 0. Then in (4) ṗ = 0 ⇔ B∇∆H = 0.
Since ∇∆H = A∆ and A and B are nonsingular, it follows
that the only positively invariant set is ∆ = 0.

(ii) Considering d(t), the derivative of the Lyapunov
function (5) is Ḣ = −∇T

p H
(
B + B̃p

)
RBT∇pH + ∇T

p Hd(t).
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Taking y = ∇pH as an output yields

Ḣ ≤ −σmin

((
B + B̃p

)
RBT

)
|y|22 + yTd. (8)

(iii) Extending (8) by completing the squares leads to

Ḣ ≤ −
σmin

((
B + B̃p

)
RBT

)
2

|y|22 +
|d(t)|22

2σmin

((
B + B̃p

)
RBT

)
−
σmin

((
B + B̃p

)
RBT

)
2

∣∣∣∣∣∣∣∣y − d(t)

σmin

((
B + B̃p

)
RBT

)
∣∣∣∣∣∣∣∣
2

2

≤
1

2σmin

((
B + B̃p

)
RBT

) |d(t)|22. (9)

Integrating with respect to t yields (7). �

3.1 Scaling of singular values

Suppose that the norm of the disturbance signal is fixed
for any N. Then, the effect of the disturbance depends on
σmin(B + hp〈B〉)RBT. The smaller it is, the larger will be
the effect of the disturbance d(t) on the deviations from
the equilibrium. The worst-case convergence rate (8) also
depends on this singular value. Below, we will investigate
how the smallest singular value scales with N. First, we
consider the lower bound. For the proof see Appendix A.
Lemma 5 Let γ = min{1, 1/hp}. Then,

σmin

(
(B + hp〈B〉)RBT

)
≥ r

√
1/(16N4) + h2

pγ/N2. (10)

The final scaling result, proven in Appendix B, is as follows.
Lemma 6 With c1, c2, c3, c4 > 0 and for N sufficiently large,

c1 r
N
≤ σmin

((
B + hp〈B〉

)
RBT

)
≤

c2 r
N

if hp > 0, (11)

c3 r
N2 ≤ σmin

((
B + hp〈B〉

)
RBT

)
≤

c4 r
N2 if hp = 0. (12)

The upper and lower bounds on σmin are of the same
order and approach zero as N grows both for SPAV and
SPSV. The rate of approach is quadratic for SPSV, while it
is linear for SPAV. Thus, in SPAV systems, the effect of the
disturbance is qualitatively smaller than in SPSV systems.
Remark 7 Consider that hp is very small such that γ = 1.
Then, for sufficiently small N, 1/(16N4) � h2

p/N
2 such that

the singular value scales quadratically. However, if N ≥
1/(4hp). the second term in the square root in (10) becomes
dominant and the scaling improves to linear.

These results are also verified numerically. The scaling
of σmin

(
B + hp〈B〉

)
RBT is shown in Fig. 2. It is clear that

for SPAV σmin scales with rate 1/N, while for SPSV σmin

Figure 2. Scaling of σmin

((
B + hp〈B〉

)
RBT

)
for R = I as a function

of N with hp = 0 (SPSV) and various hp > 0 (SPAV). The dotted
line is 1/N2 and the dashed line is 1/N.

approaches zero faster, i. e., as 1/N2. The larger the asymme-
try (greater hp), the larger also the smallest singular value.
Also, for very small asymmetry hp = 0.001, the scaling is
quadratic for small N, and improves to linear for N > 250.
Remark 8 Lemma 5 together with Fig. 2 suggest that
σmin

(
(B + B̃p)RBT) increases with hp, leading to smaller

deviation bounds and faster convergence rates. Although
this is mathematically true, a practical implementation with
hp > 1 might be fragile as the coupling of vehicle i with i+1
gets a positive sign, causing a locally positive feedback.
hp � 1 also leads to high gains and potential actuator
saturation. Thus, setting hp ≤ 1 is preferable.

4 Asymmetric position coupling

In this section, we allow asymmetric position coupling,
i.e., h∆ ≥ 0, and distinguish between h∆ ≤ hp and h∆ > hp.

4.1 Asymmetry in position less than in velocity, h∆ ≤ hp

For h∆ < 1, the platoon can be modelled as ṗ(t)

∆̇(t)

=

−
(
B+B̃p

)
RBTE−1 1

1+h∆
(B+B̃∆)E−1

−BTE−1 0

∇H∆+

d(t)

0

 .
(13)

where

H∆(p,∆) =
1
2

(p(t) − M1v0)TEM−1(p(t) − M1v0)

+
1
2

∆T(t)(1 + h∆)EA∆(t). (14)

with the scaling matrix E = diag
(
1, 1−h∆

1+h∆
, . . . ,

(
1−h∆

1+h∆

)N−1
)
.

Then, in Appendix C we prove the following properties.
Theorem 9 (APAV) Consider system (13) under Assump-
tions 2 and 3 with Hamiltonian (14). Then,

(i) the equilibrium (6) of the autonomous system is asymp-
totically stable for hp ≥ h∆ and h∆ < 1, and

(ii) the effect of disturbances is bounded as

H∆(t) ≤ H∆(0) +
‖d(·)‖22

2σmin

(
E

(
B + B̃p

)
RBT

) , (15)

and σmin

(
E

(
B + B̃p

)
RBT

)
for N sufficiently large ap-

proaches zero with rate 1/cN , with c > 1.
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G1
X0 . . .

X1
GN−1

XN−2
GN

XN−1 XN

Figure 3. String model using the transfer function description
Xi(s) = Gi(s)Xi−1(s) with (16)-(17).

Remark 10 Theorem 9 shows that the upper bound on the
effect of the disturbance scales exponentially with N, which
is much worse than the scaling for symmetric position cou-
pling. Although this does not mean that the system does not
scale better, the results in the literature confirm that at least
for hp = h∆ the H∞ norm of the transfer function scales
exponentially with the graph distance, Herman, Martinec,
Hurák & Sebek (2016). Similar results appeared in Seiler
et al. (2004), Tangerman et al. (2012), Herman et al. (2015).
Remark 11 For the transition between APAV and SPAV or
SPSV consider h∆ to be very small and N sufficiently low.
Then, the scaling matrix E ≈ I, σmin(E) ≈ 1, H∆ ≈ H, and
(15) becomes (7). Thus, the scaling is similar to the scaling
of SPAV or SPSV, depending on hp. But for large N, the
scaling becomes exponential.

4.2 Asymmetry in position greater than in velocity, h∆ > hp

It will be shown that even short strings of length N = 2
become unstable for particular combinations of hp and h∆.
For simplicity, set R = A = M = I and δref = 0. Then,
applying the Laplace transform to the simplified state space
equations (1), (2) and denoting Xi(s) = L{xi(t)} = Xi, yields

Xi =
(1+hp)s+(1+h∆)

s2 + 2s + 2︸                ︷︷                ︸
:=G−

Xi−1 +
(1−hp)s+(1−h∆)

s2 + 2s + 2︸                ︷︷                ︸
:=G+

Xi+1 (16)

XN =
(1 + hp)s + (1 + h∆)

s2 + (1 + hp)s + 1 + h∆︸                        ︷︷                        ︸
:=GN

XN−1. (17)

By writing Xi(s) = Gi(s)Xi−1(s), the transfer functions Gi
for i < N can be derived recursively using the relation Gi =
(1−G+Gi+1)−1G− such that the dynamics of the entire string
can be described as illustrated in Fig. 3. Then, it can be
shown that some strings of length N = 2 are unstable:
Lemma 12 Strings of N ≥ 2 vehicles are unstable if h∆ ≥
2h4

p+12h3
p+25h2

p+30hp+11
3h2

p+6hp+7 or h∆ ≥
h3

p+5h2
p+8hp+10

hp−1 for hp > 1.

PROOF. The results in (16) and (17) and tedious calcula-
tions reveal that the denominator of GN−1 is s4 + (3+hp)s3 +

(3 + h∆ + (1 + hp)2)s2 + 2(1 + hp)(1 + h∆)s + (1 + h∆)2. Using
the Hurwitz stability criterion, and considering hp, h∆ ≥ 0,
the result follows. Hence, if those bounds are violated, then
the second last transfer function in the string is unstable,
yielding an unstable string. �

Fig. 4 shows the maximal stable string length N̄stab for
combinations of hp and h∆. It can be seen that longer strings
remain stable for smaller ratios h∆/hp. Also, from Theorem
9 it follows that strings of arbitrary lengths are stable if
h∆ ≤ hp and h∆ < 1 (the border is marked with a red line).
Based on those observations, we conjecture:

Figure 4. Maximal stable string length N̄stab as a function of hp
and h∆: N̄stab = 1 in red, N̄stab = 2 in orange, . . . , N̄stab = 10 in
purple, N̄stab > 10 in black

(a) SPSV (b) SPAV

Figure 5. Plot of maximal value of H(t) for SPSV and SPAV when
the input is applied for different times (Tf ∈ [200, 10000]) and
N = 25, . . . , 200. The dashed line is the bound (7).

Conjecture 13 For every h∆ > hp there exists a maximal
string length N̄stab for which the system is stable and all
strings of length N > N̄stab are unstable.

5 Examples and simulations

First, simulations confirming the quadratic and linear
growth are discussed. The disturbance is chosen parallel to
p(t) to achieve the fastest growth of the energy, i.e., di(t) =

pi(t)/
(
‖p‖2

√
Tf

)
for t < Tf and di(t) = 0 for t > Tf , such

that ‖d(·)‖2 = 1 for all N. The initial conditions are zero in
all simulations. We are interested in the maximal value of
the Hamiltonian functions Hmax = maxt H(p(t),∆(t)).

First consider SPSV. Different durations of the input sig-
nal in the range Tf ∈ [200, 10000] were used, see Fig. 5a,
where the solid lines correspond to different Tf . The longer
Tf is chosen, the lower the value for low N and the higher
the maximal value of H become. On the curve for each Tf ,
consider the point which is the closest to the bound. From
the plot in Fig. 5a it is apparent that this point scales quadrat-
ically with N. The illustration of the SPAV case in Fig. 5b
shows that the growth of the point, where each curve gets
closest to the bound, is linear. Also note that, for a given
N, maxt H(t) is much smaller for SPAV, than for SPSV. The
bounds are conservative but capture the scaling qualitatively.

To investigate the transients, assume zero initial states
and x0 = t. Further, ri = ai = mi = 1, δref i−1,i = 0∀i, in
SPAV hp = 0.5∀i and in APAV hp = 0.5, h∆ = 0.2, ∀i.

The time-domain plots in Fig. 6 show that SPAV has
shorter convergence time and lower overshoots than SPSV.
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(a) Momentum SPSV, SPAV (b) Pos. error SPSV, SPAV

(c) Momentum APAV (d) Pos. error APAV

Figure 6. Response of the platoon with N = 150 to the leader’s
step change in velocity. Black is SPSV, red is SPAV, blue is APAV.

When asymmetry in position is introduced (APAV), ex-
tremely high peaks occur. Despite the fact that the leader
moves with unit velocity, during the transient the states
of some vehicles reached up to the order of 106. Such
large peaks imply that, especially for larger platoons, APAV
should not be used in practical application. It might be a
reasonable solution only for small platoons.

The scaling of other quantities in Fig 7, shows:
• Maximal overshoot maxi,t ∆i(N, t) (Fig. 7a): Both SPSV

and SPAV are bounded for all N, while SPAV achieves
a lower bound. APAV scales exponentially.

• Maximal control effort maxi,t Fi(t) (Fig. 7b): The con-
trol effort of SPSV and SPAV does not grow with N,
while it scales exponentially for APAV.

• Convergence time (Fig. 7c): SPAV and APAV scale
linearly, while SPSV scales quadratically with N.

• Total error E =
∑N

i=1

∫ ∞
0 ∆2

i + (vi − v0)2dt. (Fig. 7d):
SPAV achieves quadratic scaling, SPSV scales cubi-
cally and APAV scales again exponentially with N.

Hence, SPAV outperforms SPSV and APAV in all cases
apart from the convergence time. It is true that APAV
achieved about 4 times faster transient, but at the price of
exponential scaling of any other quantity.

6 Summary and discussion

Now we summarize our results in terms of the distur-
bance scaling in Def. 1. Define two vectors of deviation from
the equilibrium (6):

χp =
√

1/2 col
(
M−1/2(p(t) − M1v0), A1/2∆

)
, (18)

χ∆ =
√

1/2 col
(
(EM)−1/2(p(t)−M1v0), (1+h∆)1/2E1/2A1/2∆

)
.

(19)

(a) Max. overshoot (b) Max. cont. eff.

(c) Conv. time (d) Total error

Figure 7. Scaling of quantities of interest for x0 = t. Note that a)
and b) are in semilogarithmic coordinates, c) and d) in logarithmic
coordinates. The dashed lines are in c) 2N2 (black), 5N (red) and
1.5N (blue) and in d) 0.1N3 (black), 0.2N2 (red) and e0.17N (blue).

Then H = χT
pχp = ‖χp‖

2
2 and H∆ = χT

∆
χ∆ = ‖χ∆‖

2
2. Hence, the

scaling of the Hamiltonians directly relates to the disturbace
scaling. The main results of this paper are summarised in
the following theorem.
Theorem 14 The qualitative effect of the disturbance on the
deviations from the equilibrium scales with the number of
vehicles N as
• (SPSV): ‖χp(t)‖22 ≤ ‖χp(0)‖22 + ‖d(·)‖22

1
c1

N2.

• (SPAV): ‖χp(t)‖22 ≤ ‖χp(0)‖22 + ‖d(·)‖22
1
c2

N.

• (APAV): ‖χ∆(t)‖22 ≤ ‖χ∆(0)‖22 + ‖d(·)‖22
1
c3

cN .
This holds for hp ≥ h∆ and h∆ < 1.

where c1, c2, c3 > 0 and c > 1 are some constants inde-
pendent of N. For h∆ > hp we conjecture instability for a
sufficiently large string length N.

PROOF. The scaling for SPSV and SPAV follows from
(12) and (11), respectively, in (7). Scaling of APAV directly
follows from Theorem 9. The conjecture about instability is
based on Lemma 12 and numerical simulations. �

The results of Theorem 14 are illustrated in Fig. 1. For
symmetric coupling in position and asymmetric in veloc-
ity (SPAV, case A) it was shown that the scaling is linear
in N. When the coupling becomes symmetric also in ve-
locity (SPSV, case B) the scaling deteriorates to N2. If the
asymmetry in position is less than the asymmetry in veloc-
ity (APAV, case C), the scaling is exponential in the worst
case. We conjecture, based on numerical simulations, that
the exponential scaling also occurs in case D. In the region
E, there exist combinations of h∆ and hp for which even
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trivial strings of length N = 2 are unstable. We conjecture
that for all h∆ > hp there exists a critical stable string length
beyond which the string becomes unstable.

Scaling in some of the regions were known previously.
For instance, the case hp = h∆ = 1 corresponds to the pre-
decessor following (PF) case, for which Seiler et al. (2004)
proved that the H∞ norm grows exponentially. Later, this
was generalised in Tangerman et al. (2012), Herman et al.
(2015) to 0 ≤ hp = h∆ ≤ 1. However, these popular choices
are clearly outperformed by choosing hp > 0 and h∆ = 0
(case A). This effect is also illustrated by several numerical
simulations discussed above. Therefore, we believe that the
results presented in this paper should lead to a new “stan-
dard”, that is, choosing hp > 0 and h∆ = 0.

Symmetric velocity coupling can be interpreted as vir-
tual dampers, whereas symmetric position couping can be
seen as virtual springs. The dampers are instances of gener-
alised resistances, Jeltsema & Scherpen (2009), which ex-
tract energy from the system. When introducing asymmetric
dampers, only how the energy is extracted is changed. Al-
lowing asymmetric position coupling has a different effect:
Assuming ideal springs, a force acting on one side of the
spring is exactly the opposite of a force at the other side
of the spring by Newton’s third law. This fundamental law
is violated when introducing asymmetric position coupling:
Consider A = I, ∆i > 0 and h∆ > 0. Then, the force, which
is pulling the preceding vehicle backwards, is (1 − h∆)∆i,
while the force, which is pulling the following vehicle for-
ward, is (1+h∆)∆i. Combining them yields 2h∆∆i > 0. Thus,
asymmetric position coupling introduces additional forces,
and hence adds energy to the system.

A Proof of Lemma 5

First, consider the symmetric case such that
(
B + B̃p

)
RBT =

BRBT. Let D = R1/2. Then BRBT = (BD)(BD)T and
σmin(BD) ≥ √rσmin(B) (Bernstein 2009, Prop. 9.6.4). Then
the minimal singular value (= minimal eigenvalue) can be
bounded by λmin

(
BRBT

)
≥ rλmin

(
BBT

)
, with BBT being a

pinned Laplacian for an undirected path graph. Its eigenval-
ues are given as (Parlangeli & Notarstefano 2012, Prop. 3.3)
λi = 2

(
1 − cos (2i−1)π

2N+1

)
= 4 sin2 (2i−1)π

4N+2 , i = 1, . . . ,N. The
smallest eigenvalue λ1 is bounded using sin x ≥ 2x/π as

λ1(BBT) = 4 sin2 π

4N + 2
≥ 4

1
(2N + 1)2 ≥

1
4

1
N2 . (A.1)

Then we get the quadratic bound

λminBRBT ≥ r 1/(4N2). (A.2)

Denote Lp = (B+hp〈B〉)RBT. Then,σ2
min

(
(B + hp〈B〉)RBT

)
=

λmin

(
Lp

TLp

)
= λmin

[
(BRBT)T(BRBT)+h2

pBR〈B〉T〈B〉RBT+

hp

(
BR

(
〈B〉TB + BT〈B〉

)
RBT

) ]
≥ r2λmin

(
Γ1 + hpΓ2 + h2

pΓ3

)
with Γ1 = (BBT)T(BBT), Γ2 =

(
B

(
〈B〉TB + BT〈B〉

)
BT

)
=

diag(2, 0, .., 0) and Γ3 = B〈B〉T〈B〉BT. Restructuring yields
λmin

(
Lp

TLp

)
≥ r2λmin

(
Γ1 + h2

pΨ1 + h2
pΨ2

)
, where

Ψ1 =



1 + 2
hp

0 −1 0 0 . . . 0
0 2 0 −1 0 . . . 0

−1 0 2 0 −1
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

...
. . . −1 0 2 0 −1

0 . . . 0 −1 0 1 0
0 . . . 0 0 −1 0 1


(A.3)

and Ψ2 is a matrix of zeros with

 1 −1

−1 1

 in the bottom-right

corner. Using (Bernstein 2009, Fact 5.12.2) yields

λmin

(
Lp

TLp

)
≥ r2

(
λminΓ1 + h2

pλmin(Ψ1) + h2
pλmin(Ψ2)

)
.

(A.4)
By (A.1), λmin(Γ1) = λmin(BBT)2 ≥ 1/(16N4). The ma-
trix Ψ2 is positive semi-definite matrix, hence λmin(Ψ2) =
0. It remains to investigate λmin(Ψ1). Note that Ψ1
is a reducible matrix. Using the permutation matrix
P = [~e1, ~e3, . . . ~eN−1, ~e2, ~e4, . . . ~eN], leads to λmin(Ψ1) =

λmin

(
P−1Ψ1P

)
= λmin


L1 0

0 L2


, with L1 = B̄DB̄T,

L2 = B̄B̄T where D = diag(1/hp, 1, . . . , 1) and B̄ has
the same structure as B but half the size. It follows that
λmin(Ψ1) = min {λmin(L1), λmin(L2)}. Let γ = min{1/hp, 1}.
Then λmin(L1) ≥ γλminB̄B̄

T and λmin(L2) = λmin

(
B̄B̄T

)
.

Hence, λmin(Ψ1) ≥ γλmin

(
B̄B̄T

)
. Since B̄ ∈ RN/2×N/2, from

(A.1) we get λmin(Ψ1) ≥ γ
/
N2. Using this, (A.1), (A.4) and

λmin(Ψ2) = 0 yields (10).

B Proof of Lemma 6

The lower bound is given by (10). For hp = 0, quadratic
scaling is shown in (A.2). For hp > 0, the approach with rate
1/N4 is much faster than the approach of h2

pγ/N
2, hence

for N sufficiently large σmin((B + B̃p)RB) ≥ rhp
√
γ
/
N.

For the upper bound, note that σmin

((
B + B̃p

)
RBT

)
≤

rσmin

((
B + B̃p

)
BT

)
, where

(
B + B̃p

)
BT has the form


2 −(1−hp) 0 . . . 0

−(1+hp) 2 −(1−hp) . . . 0
...

...
...

. . .
...

0 . . . −(1+hp) 2 −(1−hp)
0 . . . 0 −(1+hp) 1+hp

 . (B.1)

As its leading principal submatrix of size N − 1, it has a
finite Toeplitz matrix, denoted as MN . The matrix MN has
as its symbol a(t) = −(1 − hp)t−1 + 2 − (1 + hp)t1 with
t ∈ C, |t| = 1. The symbol is not Fredholm, because it has
a zero at t = 1. The order α of the zero at t = 1 is either
1 for hp > 0 or 2 for hp = 0. The result (Böttcher & Grud-
sky 2005, Thm. 9.8) specifies scaling of singular values for
Toeplitz matrices as σi(MN) = O (1/Nα) for any fixed i with
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σi ≤ σi+1. That is, the singular values go to zero with a
rate at least given by the order of the zero of the symbol.
Since MN is a submartix of

(
B + B̃p

)
BT, by (Böttcher &

Grudsky 2005, Thm. 9.7) it follows σmin

((
B + B̃p

)
BT

)
≤

σ3(MN). Then, σ3(MN) = O (1/Nα), and hence σ3(MN) ≤
c/Nα. Thus, σmin

((
B + B̃p

)
BT

)
≤ c2/N if hp > 0 and

σmin

((
B + B̃p

)
BT

)
≤ c4/N2 if hp = 0. �

C Proof of Theorem 9

First we show that (13) is a skew-symmetric form.
It can be verified that

(
1

1+h∆
B + h∆

1+h∆
〈B〉

)
= I − 1−h∆

1+h∆
Du,

where Du has ones only at the first upper-diagonal. Also,
1−h∆

1+h∆
DuE−1 = E−1Du. This yields

(
1

1+h∆
B + h∆

1+h∆
〈B〉

)
E−1 =

(I− 1−h∆

1+h∆
Du)E−1 = E−1 − E−1Du = E−1B = −(−B̃E−1)T.

(i) Use H∆ in (14) as a Lyapunov function and set d(t) =
0. With ṽ := M−1(p−M1v0) such that ∇pH∆ = Eṽ, the time
derivative is Ḣ∆ = −ṽTE

(
B + B̃p

)
RBTṽ. This is equivalent

to −ṽTS ṽ with S = 1
2

(
E

(
B + B̃p

)
RBT + BR(B + B̃p)TE

)
,

S = S T. Thus, −ṽTE
(
B + B̃p

)
RBTṽ < 0 for all ṽ if and

only if S > 0. The sum si of the ith row of S is si =(
(hp − h∆)

(
ri(1 + h∆) − ri+1(1 − h∆)

)
(1 − h∆)i−2

)
/(1 + h∆)i

and the sums s1 =
(
(1+h∆+hp+h∆hp)r1−r2(hp−h∆)

)
/
(
1+h∆

)
and sN = rN((hp − h∆)(1 − h∆)N−2)/(1 + h∆)N−1. Recall that
by Assumption 3 ri ≥ ri+1. Then if hp > h∆ and h∆ < 1,
all sums si are positive, so S > 0. Then, Ḣ∆ ≤ 0 and the
invariance principle completes the proof. For hp = h∆ < 1
see (Tangerman et al. 2012, Thm 2.3).

(ii) Consider d(t) , 0. The derivative of H∆ is
Ḣ∆ = −ṽTE(B + B̃p)RBTṽ + ṽTEd. It can be bounded
since Ḣ∆ ≤ −σmin

(
E

(
B + B̃p

)
RBT

)
|ṽ|2 + ṽTEd. Com-

pleting the squares then leads to a similar form as in (9)
such that Ḣ∆ ≤

|Ed|22
2σmin(E(B+B̃p)RBT) ≤

|d|22
2σmin(E(B+B̃p)RBT) since

σmax(E) = 1. (15) follows from integration with respect
to time. The smallest singular value of E

(
B + B̃p

)
RBT

can be upper bounded as (Bernstein 2009, Prop. 9.6.6)
σmin

(
E

(
B+B̃p

)
RBT

)
≤ σmin(E)σmax

((
B+B̃p

)
RBT

)
. By

Gershgorin’s Theorem, σmax

((
B + B̃p

)
RBT

)
≤ r̄σmax((B +

B̃p)BT) ≤ 4r̄. Also, σmin(E) =
(

1−h∆

1+h∆

)N−1
. Then, σmin(E(B+

B̃p)RBT) ≤
(

1−h∆

1+h∆

)N−1
4r̄ ∝ 1

cN , with c = 1+h∆

1−h∆
> 1. Thus,

σmin

(
E

(
B + B̃p

)
RBT

) )
goes to zero exponentially fast. �
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