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Abstract— It is shown how some classes of symmetric bidi- compliances of the dampers or springs between the vehicles,
rectional heterogeneous vehicle strings can be modelled ing respectively, grow with the string length. When using a
Hamiltonian functions. Hamiltonian systems theory is appled  \g|ocity depending distance between the vehicles, stiiag s
to show stability and string stability of the vehicle string bility can be guaranteed when the time headway is larger than

|. INTRODUCTION a infimal time headway (independently of the string length

In the field of coordinated systems, formation control idV)- I [8] the authors consider a bidirectional heterogeseou

one of many control objectives. A group bf vehicles (e. g string of vehicles using a detailed nonlinear vehicle idaig
platoon or string) is required to follow a given referencéaerodynamlc drag and friction forces. Using the relative

trajectory while the vehicles keep a prescribed distance yglocity error a_nd position: error towards the prgdecegsor
neighbouring vehicles. In its simplest form the vehicles jnd follower string stability can be guaranteed using a time

the platoon are only considered to move in one direction. h]?anay .pollcly.hSﬁﬁuent condltlor_1$ for string |_nstab|I|ty
Even though it is possible to create a decentralised Coﬂ_hbldlrectlolna, eterogdeneogs strings \_N(:_re dlerlved .[1
troller for the entire string, see e. g. [1], itis usually Wakle | "€S€ results are used to derive an infimal average time

to find distributed control solutions where each vehicle i§€adway that may avoid string instability.
equipped with a local controller using local measurements. A range of diferent methods has been used in the literature
In case information is only propagating through the string® far to analyse vehicle platoons. The Laplace transform
in one direction the string is called unidirectional, e.2],[ With respect to time is used for instance in [4], [10], [11]
[3], and bidirectional otherwise, e.g. [4], [5]. A string ist0 analyse the system dynamics in the frequency domain.
called homogeneous if the dynamics of each vehicle and ityapunov Theory has been applied in [8] and graph theory
controller are independent of its position within the girin Was used in [6] to analyse a string of vehicles with a
e.g. [4], and heterogeneous otherwise, e.g. [6]. general interconnection or communication structure. h [5
In most cases it is straight forward to design local con@ bidirectional string was approximated as a PDE.
troller to achieve a stable string in the usual sense. Thadism In this paper we will propose to use port Hamiltonian
initial deviations or disturbances cause small pertudnati Systems (PHS), to study a bidirectional string modelled as
However, it is well known that error signals can amplifya mass-spring-damper system. One clear advantage of this
when travelling through the string resulting in growth ofth method is that the model is based on physically meaningful
local error norm with the position in the string. Thifext states and therefore yields a direct physical interpatadi
is referred to as string instability’, e.g. in [4], [7], orlisky  the energy of the system. As the Hamiltonian function can be
effect’, e.g. in [8]. seen as the energy storage function conditions for standard
It was shown in [4], [9] that similar to unidirectional Stability andL, string stability of the system can be derived
strings, linear, symmetric bidirectional strings with twe  directly from the Hamiltonian function without lengthy or
tegrators in the open loop and constant spacing are alwaggmbersome analysis as for instance in [5], [10]. Another
string unstable. [7] examines a bidirectional string witme major advantage of using port-Hamiltonian systems is that
stant spacing and shows that string stability can be actlievetudying heterogeneous strings does not complicate tHe ana
with sufficiently large coupling with the leader position. Theysis (compared to the analysis using a PDE approximation
authors of [5] approximate a linear, bidirectional striffgho  in [5] or transfer functions as in [4], [10]). Also, it is easy
vehicles as a PDE. It is shown that the least stable eigemvaland straight forward to extend the stability analysis psmab
of the PDE approaches the origin wili{1/N?) if the string is  in this work to nonlinear stringsadd more stfi on PHS
symmetric andD(1/N) if the string is asymmetric. However, Local control using virtual springs and dampers between
the knowledge of the reference velocity is needed. the vehicles will be considered in combination with a drag
A different approach was considered in [10]. Modellingorce towards the ground. Integral action will be introddice
a symmetric bidirectional string as a mass-spring-dampes enhance the performance of the systand more stfi on
system, it is shown that string stability with constant spgc 1A
can be guaranteed if the damping fiagents or the inverse  As it was noted above it has been shown that string sta-
S. Knom, A. Donaire, J.C. Agliero and R.H. Middleton arehwit bility cannot be achieved for linear symmetric bidirecabn
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to be bounded for alN, we will focus on the point wise vehicles. Here we consider a bidirectional string where the
norm |x(t)] = XT(t)x(t) and require|x(t)] < oo for string local controller is driven by both the position error towsa
stability. This is a reasonable choice as it guaranteesdtieat group of preceding and following vehicles. The controllér o
local separation errors between the vehicles are boundedtla¢ first vehicle in the string aims to follow a given trajegto
all times. Thus, it can be guaranteed that the cars do ng4 and also minimise the local position error towards a group
crash into each other. of following vehicles. In the simplest setting the referenc
After discussing the notation and problem descriptiosignal is considered to be a ramp with constant velogity
in Section Il, local control between the vehicles will bei.e. qo = Vot.
introduced in Section Ill. As local control does not guaesnt  Note that the vehicles within the string (apart from a
string stability, integral action control will be introded in limited group at the beginning of the string) do not have
Section Ill. A short discussion of nonlinear strings in Secaccess to the reference signal and therefore have to adjust
tion V is followed by an illustrative example in Section VI their position and momentum indirectly by forcing theirdbc
and concluding remarks. position error to zero.
The overall control objective is to achieve “string stalkili
or “scalability”. This is that the norm of the local statestioé
A. Notation complete string do not grow without bound Bsincreases
We consider a system df vehicles with massn. The for nonzero disturbances or initial conditions. We will reak
motion equations of the system can be described using tH&e of the following definition for string stability:
momentum and position of each vehicle, ipp.and g with Definition 1 (String Stability):The system (3) with equi-

Il. ProOBLEM FORMULATION

i=12---,N, as follows librium x* is string stable if there exists ka< oo such that
) for all N and alli = 1,...,N [x/| < k and for alle > O there
pi =Fi +di (1) exists as(e) > 0 such that
: _1
Gi =M p; @) .
=mp 1)l < 6(e) and Ixo — X'| < 6(e) (5)

whereF; is the control force on the vehicle ardl is the ]
disturbance. The control fordg; will be chosen such that implies

only data of a group of nearest neighbours of ithevehicle ,

(both preceding and following vehicles) are needed. Wh XO =Xz <€ forallt=0andN =1 ©)
denoting all local states of thith vehicle (i. e. its momentum
its position and possible controller states)xhyhe dynamics
of the ith vehicle within the string are given by

%ote that the definition for string stability above requires
' two important properties of the system. First, the equilitr
states do not grow without bound &k increases. Further-
more, string stability guarantees that the states of thiesys
fI(XO’ sy Xi*ls Xi7 Xi+l9 B X|+kr ’dl) If I S kf remaln bounded' ) ) )

K= 4 Fi(Kimk - s Xiods Xis Xints -+ s XiskoO) iF ke <i <N—k; Note that_lnstead of_ using the pomt wise (local) norm
£ (x . 4 s N-k of x(t) — x* different definitions of string stability use tthe
(ks Xy X Xt oo Xvsth) - iF T2 N = 3) vector function norm|x(-) — x*||. However, it has been shown

for i = 1,...,N with initial conditionsx;, = x(t = 0) where xit[:]l] ;hﬁ: esvzré/i;yn;?dettr\;\?ohqulgg?r?etﬁzsob'grzeg(l)oni?getgch

ki € IN is the forward communication rangk, € {IN,0} is 9 P 9 P P P

o . ] vehicle in the string is string unstable. Therefore, we will
the rear communication range asglis a reference signal. focus on the less restrictive definition stated above
We assumeN > k; + k; and thatf;(0,...,0) = O for all i. '

We denote the state and the disturbance vector by te The Uncontrolled System

column vectorsx(t) = col(x(t),...,xn(t) and d(t) = ) o ) )
col(ch(t) dN(t))( |) e. Cal) N(®) ® Since the control objectives are described in terms of the
B ' vehicle momenta, which is proportional to the velocities] a
xa(t) X1, di(t) the distances between the vehicles, we will write the model
x)=| : [, %=]: and d(t)=| : |[. (4) using these variables as the states:
xn (t) XNo dn (0) P = My, @)

The column vector of ones is denoted byatd & is the
ith canonical vector of lengttN. Similarly we denote the
diagonal matrixA € RN*N with diagonal entriesy, ... ay as
A =diag@s, . . . an).

and the local position error between ttike vehicle and its
direct predecessor

Ai=0i-1— G 8

fori =1,--- ,N. The positiorgg is the product of the constant
velocity referenceyy and time. The state equation for the

The local control objective for each vehicle is to bring,omenta is (1), and the dynamic equations for the local
its local error to zero using local (distributed) controldan position error according to (2)

only locally available data. In a unidirectional string tbeal .
error is the position error towards one or more preceding A=G1-G = r’q’}lpi_l - mi’lpi (9)

B. Control Objectives



The dynamics of the string system described in momenta of Lemma 1: Consider the string system (10) in closed loop
the vehicles and separation distance between the vehantes evith the control law (14). Then,

be described in Port-Hamiltonian form as (i) the equilibrium @*,A*) = (M1vo,CS TB1vo) is global
p 0o g7 E d asymptotically stable in the absence of disturbances,
[A]z[_s o |VH(PA) + ||+ ol (10) i.e.d=0; and

(i) the system is passive with inpud, outputy =
whereA,p € RN are the displacement and momentum vector, VpHa(p,r) and storage functiok.

I.e. A =col(Ag,...,An), p = col(py,...,pn), and the control Proof: (i): From (14) and (10) the dynamic equations
force vector isk = col(Fy,....Fn). for the closed loop have the form
The functionH is the Hamiltonian function, and is given

p=STCIA-RMp+&rivo— BM1p+Blv - Blv +d
=— (R+B)M}(p- Mlvy) + STCH(A - CS"Blvy) +d,
(16)

by L
H(pA) = EDTM‘lp, (11)

The matrixM e RNN is the constant and positive definite A =—SM™p + &vo
inertia matrixM = diag(m,...,my). The matrixS has the - — SMY(p- Mlv). (17)

bidiagonal form
Thus the closed loop has the port Hamiltonian form

(1 0 e .. 0 o (B4R S )
11 : [A] | -s O]VHC'(D’AH of 18
S=lo -1 . . i (12)  with the closed-loop Hamiltonian function
10 He(P.8) = (p ~ M1vo) M~ (p — ML)
0 0 -1 1 2

1 T T 1 T
I L ocar CoNTROL +§(A—CS Blv) C*(A-CS"Blw). (19)
Local (distributed) control between the vehicles will beUsing H¢(p,A) as Lyapunov function, and computing the
introduced in this section. The control forces consist @ thtime derivative ofH(p,A) along the solution of (18) setting

“spring force”F?, that depends linearly on the position errorsd = 0 yields

Ai, the “damper force”F{, that depends linearly on the . ~(B+R) ST
velocity errors between two neighbouring vehicles, and the Ha(p.A) = VTHd[ _s O]VHm
“drag force” Ff| describing the friction of vehiclé towards T

the ground: = =VpHa(B+ R)VpHa

<0 (20)

i+1
. - . . . .
A LA —bntlo 4+ 1 (Mt o — il since B+ R) = (B+ R)" > 0. Since the biggest invariant
G 0 Gaflia 7 BM P (MR- MP) o included inS = ((pA)Ha(p.A) = 0} is (pr.A%) =
—fia(M P - mM3pia), Vo i=1.-- N-1 (M1vo,CS™"Blvy). Thus, by LaSalle’s Invariance Principle
Fn =F3 + Fy - F2 (found in most textbook, see e.g. [12, Theorem 4.4]) it can
:CNIAN + rN(mR,l,le—1 _ mgle) _ bngle (13) be ghoyvn that the s_ystem is asymptotically stable and the
. equilibrium reached isg(*,A*).
such that we can write (ii): Using Hei(p,A) as Lyapunov function, and computing
_ -1 T-1 the time derivative ofH.(p,A) along the solution of (18)
F=-(B+RM7p+é&nv+SC A (14) considering a nonzero disturbance yields

Fi=FS—FS, —Fl+ F —F!

whith

: oT -(B+R) ST d
TL+ry —T2 0 01 Ha(p,A) =V Hcl( _s o [VHa+]g
—Is fr+r3 —r3 = —V;HCI(B + R)VpHc| + Vngd. (21)
R=| o “rs ol (15) Withy= VH this yields
: s o1+ TN =T Ha(p.A) =-y'(B+ Ry +y'd
0 .0 Tty <— Amn(B+R)y?+y'd
B = diagly, .. .,bn) andC = diags, . . . .on).- __AmnBFR) e 1 g
We will show that the system is asymptotically stable with 2 2min(B + Rz)
respect to the equilibriump(,A*). However, the values of _/lmin(BJr R) _ 1
the displacements in steady state are undesirable and grow 2 Amin(B+ R)
with the string lengthN in presence of a nonzero reference dP2 (22)

) <
velocity vo. “2Amin(B+ R)



which implies the minimal singular value oB + R yields

' omin(B+R) =Amin(B+ R
Hcl(p(t)’A(t))SHcl(p(O),A(O))+m fo d(o)Pet (B+R) =dnin(B+R)

{ b1+r1+r2—r2; }
1 ) >min{ Minycion {0 + 1i + Fica = 1 = riza}
<Ha(p(0).A(0)) + m”d(')ﬂ . (23) by + Iy = 'y
>minb;. (28)
I

Thus the system is passive with inpdt outputy =

VoHa(p.A) and storage functiokic. - = Hence,o-max((B+ R)’l) < (min; b))~ Together with the fact
Note that the system is asymptotically stable with respect JTATAy

2 -
to the equilibriumCS~TB1vp but not string stable according that oa(A) = =5~ holds for any vectoly # 0, setting

to Definition 1. From A= (B+R1andy=r;8 yields

101 1 en(B+R 7 (B+R) & <rZoh,, ((B+R)™) < riminb2.

|
ST o 1 . (24) Finally note that i
o1 (8-(B+R™&) (6-(B+R™&)20  (29)
0 0 1 _
yields

andA* = CS "Bly, we see that’ = ¢ Z,’:‘:i bvo. Thus, if a . . éiTé éIrl(B+ R-T(B+R)'ri&
positive lower bound on the drag and compliancefiicients |§ (B+R) r1é1| s >

exist, i.e. minb; > b > 0 and ming > ¢ > 0, the steady 1 r2

state value ofA; grows with N and therefore the system is <=+ 712

not string stable. 2 2(min; by)
This efect could be avoided by choosing paramebpend  and therefore there exists an upper bound for %ach element

¢ that decrease fliciently fast withi. However, choosing of the vector, i. e.|é‘iT(B+ R™Bl <6 =15+ 2mirnl- NG for

decreasing; implies that the parameters tend to zero at thgll i. Note that the inequality is strict as the et Side of (29)

end of strings of increasing lengtt. This implies that such is only zero if 8 + R)~'r1& = &, which would lead to

a vehicle string is not scalable from a practical setting and T . T T .

is therefore undesirable. Choosing decreadipglso leads &§(B+RBL=€1-&(B+R &

(30)

to string instability as the minimal eigenvalue Bf+ R tends =& (1-8)
to zero asN increases. Thus, there does not exist an upper =0. (31)

bound of the right hand side of (45).

Thus, |€'(B + R)~*B1] is bounded. [ ]
Lemma 3:Consider the string system (10) with a refer-

ence signal with constant velocity, with constant distur-
Before introducing integral action, we will prove thebancedl in closed loop with a controller obtained by adding

following Lemma that will be used later in this section.  the control in Lemma 1 and the dynamic controller
Lemma 2:For any N and any choice ofB = _ T-1

diag@s,...,bx) and R as in (15) forb,r; > O for all Fia =MKS'C7A - (B+ RKz (32)

i €{1,...,N}, there exits & < « such that

IV. INTEGRAL AcTION

73=-S'CIA. (33)

where K ¢ RVMN is a diagonal positive matrixX =

T -1
€(B+R7B1 <6 (25)  giagls, ... .ky). Then
for alli e {1,...,N). (i) the desired equilibrium point
Proof: Note that (p*,A*,Z) = (M1vo,0,2) (34)
(B+R™B=1-(B+R'R (26) with @ = K-3(B+R)™(d — Blvp) is globally asymptot-
ically stable (despite the presence of constant unknown
Thus, disturbances),
(i) the system is passive with inpdf outputy = V, H;(2)
|&'(B+R) Bl <|d1-&(B+R R and storage functioki,, and
<1+ |éT(B+ R)*lrlé‘l|. (27)  (iii) the system is string stable.

Proof: (i): We will use the following change of coordi-
Using Gersgorin's Theorem (see e. g. [13]) it is easy to shoWates
that all eigenvalues dR lie in the range & 4;(R) <. Hence,
R is a positive semidefinite matrix whil® is a positive
definite matrix. Therefore, using again Gersgorin’s Tleeor

2 =p—- M1y + MK(z - @), (35)
2 =A (36)



Thus, combining (16), (32) and (33) yields which implies
21 Zp + MK23

1
Hoo(z() <H(Z(0)) + ——————Ild()I%. (45
:STC_lA—RM_1p+élr1VO— BM_1p+d 22( ()) 22( ( )) 2/lm|n(B+R)“ ()“ ( )
+MKSTC™A - (B+ R)Kz3 - MKS'C™'A Thus, the system is passive with ingljtoutputy = V,, H,(2)
=STC A -RMp+é&rivo-BMip+d and storage functiof,.
—(B + RKz + Blvg — Blvg (iii): Note that the equilibrium statep” and A* given

in (34) are bounded since the matricks C and B are

— _ -1 _ _ Tr-1
== (B+RM™(p-Mlvo + MK(z - )) + S'C™A diagonal with positive bounded entries for any string léangt

=-(B+RM 'z +S'C 'z (37) N. Lemma 2 together with the fact th&t is diagonal with
and (17) yields positive bo_undgd entries ensures that « is also bounded
’ element wise independently df.
7, =A With (28) equation (45) can be bounded by

_ 1rn
-_5S I\/I’l(p M1vo) Hao((t)) <(min(m)) 1z (0)% + (min(c)) Yz2(0)?
=-SM(p-Mlyp + MK(zz — @) + SK(zz — a) [ i

— _SMz +SKz - a). (38) +maxk|z — af® + (2 min(o) ()1 (46)
ThUS, the closed |00p dynamiCS have the port Hamiltoniagince the masmy, the Comp”ancei’ the drag cofficient bi
form : and the integral action control paramekefor each vehicle

_ T

;1 3 (Bi; R SO g YH,(2) (39) are positive the norm of the statess bounded for allN
.22 - z if |z(0) and||d(:)|l> do not increase wittN. Therefore, the
3

with the Hamiltonian function

0 -ST 0 X . ; N
system is string stable according to Definition 1. ]

1 1 1
Hy(2) = EZIerZl + Echflzz + 5(23 —)K(z - a). (40) V. NoNLINEAR CONTROL

Using H,(2) as Lyapunov function, and computing the time One important advantage of modelling the bidirectional
ng Mz yap ' puting string as a port-Hamiltonian system is that it is extendédble
derivative ofH,(2) yields

nonlinear systems, i. e. strings with nonlinear controtésr

-B+R) ST 0 due to nonlinear springs and dampers. As a proof of concept
H.(2) = V'Hy| -S 0 S|VH;(2 we will shortly discuss a simple local control law with
0 -sT 0 arbitrary nonlinear spring forces (satisfying the coruditi
— _V;'l HZ(B + R)Vlez fis(Ai)Ai >0 and fis(Ai) =0 onIy for Aj = O).
<0 (41) Nonlinear springs yield some significant advantages over

linear spring models. For instance list some advantages

since B+ R) = (B+ R)T > 0. Since the biggest invariant here
set included inS = {ZH;(2) = 0} is (7.2.Z) = (0,0,a). Assume the spring force between vehitle 1 andi is
Thus, by LaSalle’s Invariance Principle (found in mosigiven by the nonlinear functiofi¥(A;) with f3(Aj)A; > 0 and
textbook, see e. g. [12, Theorem 4.4]) it can be shown that thlé‘(Ai) =0onlyforAj =0 foralli=1,...,N. Thus,
system is asymptotically stable and the equilibrium redche
is (z,,2,,z;). This implies that the equilibrium in the original FS=STf5(A) 47)
coordinates is {§",A*,z}) = (M1vo,0,). _ _ _

(il): When choosing the Hamiltonian function (40) butwhere f5(A) is the column vector with entries
setting fr(A1), ..., fR(AN).

B =-KB+R)1Blv, (42) Hence, the dynamics of a system with nonlinear spring

) o forces and linear dampers (without drag forces), Fe=
the closed loop dynamics have the port Hamiltonian form ST5(A) — RM1p + Rlvo, can be described by

2] [-B+R ST 0 d _ - .
2=| =S 0 S|THaa+[0]. (3 HE AR (49)
; ]

with with

1 1 1
H ==zZIm1t ~ziCc™? 5 -B)'K P > )
28222 =5AM 2+ 53,C7 2 + 5 (z3 = ) K (23— ) Ha(p.A) = %(p— M1vo) ™M (p— M1V0)+Zf fE(w)dw.
-1 0
; | (49)
Hzo(21,22,23) < m=———|d? 44) Therefore the equilibriump(,A") = (M1vo,0) is asymptoti-
22(21,22,23) Zﬂmm(BjLR)' | (44) cally stable.

Hence, following similar steps as in (22) this yields



4.4

a2l

Other possible future extensions of the results presented
here include the discussion of a more general class of
bidirectional vehicle strings, nonlinear strings (e.g.thwi
nonlinear springs and dampers) and discrete time systems.

max |z(t)|
w
®

34 : : : : : : : : 1]
10 20 30 40 50 60 70 80 90 100

Fig. 1: Homogeneous string: max(t)| 2]

(31

3 . . [4]

*

A I I I I I I I
10 20 30 40 50N60 70 80 90

(5]

100

Fig. 2: Heterogeneous string: maxt)| 6]

(7]
VI. EXAaMPLE [8]

Ten homogeneous strings of length = 10,20,...,100
with local control and integral action control have been
simulated. Random nonzero initial conditions forands  [9]
normalised such thatp(0) — M1lvg| + |A(0)] = 1 haven
been used. Also, an exponentially decaying disturbana ont
the first vehicle in the string has been chosen such thEf]
ld()llz = 1.

First a homogeneous string with the following parametengz1)
has been simulatedn, = 1,¢, =1, b = 0.1, r; = 20 and
Ki = 100 for alli = 1,2,...,N. The maximum point wise
norm of z(t) for N = 10,20,...,100 is shown in Figure 1.  [12]

In the second simulation a heterogeneous string with3]
randomised parameters in the following range has been
chosen:m; € [1,2], ¢ € [1,2], bj € [0.1,0.2], r; € [20,21].
The maximum point wise norm aft) for N = 10,20, ...,100
is shown in Figure 2.

VII. CONCLUSIONS

Itis shown how heterogeneous bidirectional vehicle s&ing
can be described using physically meaningful Hamiltonian
functions. This enables a simple and straight forward proof
of asymptotical stability and string stability (scalatyilivith
respect to the string lengti) of the resulting system.

As it has been shown in [4] that the commonly strict
form of string stability (requiring thd, of all states to be
bounded for any., bounded disturbance) cannot be achieved
for symmetric homogeneous bidirectional strings with tigh
spacing and two poles in the open loop of each vehicle in the
string, the definition of string stability used here onlyuags
the point wise (in time) norm of the states to be bounded for
L, bounded disturbances. However, it might be possible to
show string stability for some classes of bidirectionahsfs
using the framework introduced here in the future.
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