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Abstract— Stability of nonlinear 2D continuous-discrete sys-
tems is shown using Lyapunov stability theory and iISS. The
proposed stability conditions are applicable with non-positive
divergence of the Lyapunov function. The results are used to
rigorously prove string stability of a nonlinear vehicle string
with variable time headway.

I. Introduction

In the field of coordinated systems, formation control is

one of many control objectives. A group of vehicles (e.g.

platoon or string) is required to follow a given reference

trajectory while the vehicles keep a prescribed distance to

neighbouring vehicles.

In its simplest form, platoon control requires a constant

distance between the vehicles and the lead vehicle to follow a

given trajectory, e.g. [1], [2]. We assume: (i) a homogeneous

string, i.e. the dynamics of the vehicle and controller are

independent of the location in the string; and, (ii) distributed

control, i.e. each vehicle is equipped with a controller that

aims to minimised the local position error, using only locally

available data. Here we consider a unidirectional string

with communication range 1, where each vehicle senses the

distance towards its direct predecessor or, in case of the first

vehicle, the reference.

In most cases it is easy to achieve an (asymptotically)

stable string in the usual sense, i.e. small initial deviations

cause small perturbations (and go to zero). However, it is

well known that error signals can amplify when travelling

through the string resulting in growth of the local error norm

with the position in the string. This effect is referred to as

string instability’, e.g. in [3]–[5], or ‘slinky effect’, e.g. in

[6]–[9]. It has been shown that it is not possible to achieve

string stability in a homogeneous string of strictly proper

feedback control systems with nearest neighbour communi-

cations when using only linear systems with two integrators

in the open loop and constant inter-vehicle spacing, [2], [10],

independent of the particular linear controller design, [4].

Different methods have been proposed to overcome this

problem. In [6] a time headway policy was introduced

where the prescribed distance between each vehicle and its

predecessor grows linearly with the velocity of the vehicle. If

the time headway is chosen sufficiently large string stability

can be guaranteed. This approach was later extended in [11]

proposing a variable time headway that can be represented

as a nonlinear two-dimensional system. In [12] string sta-

bility and performance of systems without time headway,
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with fixed time headway and with variable time headway

were compared and analysed. However, string stability with

variable time headway is only investigated locally, using the

linearisation of the model instead of the nonlinear string.

Other papers analysing the string stability of nonlinear ve-

hicle strings include [8], [13], [14]. In [13] the authors prove

that strings of nonlinear systems using the lead velocity, the

lead acceleration and local measurements are string stable if

the inputs vary sufficiently slow. In [14] a global Lipschitz

condition is used to guarantee string stability of nonlinear

systems with sufficiently small Lipschitz constants or “weak

coupling”. In [8] a string of vehicles with a detailed nonlinear

model and bidirectional nonlinear control is considered.

Methods used to analyse string stability range from using

the Laplace transform (see e.g. [4], [10], [12], [13]) or the Z

transform with respect to the position within the string (see

e.g. [1]) to applying graph theory in [15] , approximating the

string dynamics as a partial differential equation in [16] or

using Lyapunov stability theory in [8].

There is yet another method to analyse string stability of

homogeneous, unidirectional strings that we will propose

here. The system can be modelled as a two-dimensional

(2D) system, treating the position within the string k as an

independent discrete variable resulting in a 2D continuous-

discrete system depending on continuous time t and discrete

position k.

This is a suitable reformulation of the string stability

problem. String stability requires that the local errors (and

possibly other states of the kth vehicle or subsystem) are

bounded for all k. If a 2D system describing a vehicle platoon

with the second independent variable k being the position

within the string is stable, its states are bounded for all t and

k. Thus the vehicle platoon is string stable in the sense that

stability bounds are uniform with respect to k.

There is a huge body of work on the stability of linear 2D

systems available. The best known results in the frequency

domain include [17] whereas suitable 2D models in the time

domain where presented by Roesser in [18] and Fornasini

and Marchesini in [19] and their stability has been studied

for example in [20]–[23].

However, relatively few results concerning the stability

theory of general nonlinear 2D systems are known. Sta-

bility of a general nonlinear discrete 2D system of the

form

(

x1(k + 1,l)

x2(k,l + 1)

)

= f (x(k,l),u(k,l),k,l) was first analysed in

[24]. The main theorem guarantees uniform local stability

if a scalar, positive definite Lyapunov function φ(x,k,l) =

φ1(x1,k,l) + φ2(x2,k,l) exists such that

φ′(x,k,l) := φ1(x,k + 1,l) + φ2(x,k,l + 1) ≤ φ. (1)



In [25] the general discrete 2D Fornasini-Marchesini sec-

ond model of the form x(k+1,l+1) = f (x(k + 1,l),x(k,l + 1))

for k,l ≥ 0 was considered. Using the scalar Lyapunov

function V (global) stability is guaranteed if it satisfies

V( f (x1,x2)) − aV(x1) − bV(x2) ≤ 0 (2)

for any x1,x2 ∈ D ⊆ R
n (x1,x2 ∈ R

n), where a,b ≥ 0 with

a + b = 1.

These results were extended in [26] to time (or pa-

rameter) varying systems of the form x(k + 1,l + 1) =

f (k,l,x(k + 1,l),x(k,l + 1)). If there exists a Lyapunov func-

tion V satisfying

V(k+ 1,l+ 1, f (k,l,x1,x2))− aV(k+ 1,l,x1)− bV(k,l+ 1,x2) ≤ 0

(3)

the system is uniformly stable.

A similar model of the form x(k + 1,l + 1) =

f01 (x(k,l + 1),k,l + 1)+ f10 (x(k + 1,l),k + 1,l) for time-varying

systems was studied in [27]. If a scalar positive definite

function φ(x,k,l) exists such that

∆φ(x,k,l; ρ) = φ [x(k + 1,l + 1), k + 1,l + 1]

−ρφ [x(k,l + 1),k,l + 1] − (1 − ρ)φ [x(k + 1,l),k + 1,l] ≤ 0

(4)

the system is uniformly stable.

It should be noted that all results available for general

nonlinear 2D systems known to the authors exclusively study

discrete nonlinear 2D systems.

In this work the string stability of a vehicle platoon with

variable time headway shall be studied. As the 2D description

of such string leads to a 2D continuous-discrete system, the

development of suitable stability conditions seems necessary.

The notation will be clarified in Section II before studying

the stability of general nonlinear 2D continuous-discrete in

Section III. Examples to illustrate our results (including the

string stability discussion of a nonlinear string with variable

time headway) is given in Section IV. The paper closes with

concluding remarks in Section V.

II. Notation

Consider a string of N vehicles. The dynamics of the kth

vehicle within the string are given by

żk(t) =















g1(z0(t),z1(t)) for k = 1

gk(zk−1(t),zk(t)) for 1 < k ≤ N
(5)

where zk(t) are the local states of the kth vehicle and z0(t)

is the reference signal the first vehicle within the string is

aiming to follow. For simplicity we assume that gk(0,0) = 0

for all k.

When assuming a homogenous string we can set gk = g

for all k. Since a unidirectional string is considered, a string

of length N behaves as the truncation (considering only the

first N vehicles) of a string of length M > N (including

M = ∞) vehicles. Thus, a homogenous string described by

(5) can be modelled as a 2D system of the form
(

ẋ1(t,k)

∆x2(t,k)

)

=

(

f1(x1(t,k),x2(t,k))

f2(x1(t,k),x2(t,k))

)

(6)

with initial (or boundary) conditions x10(k) = x1(0,k) and

x20(t) = x2(t,0) where x1(t,k) is the first part of the state

vector x(t,k) of the 2D model containing the local variables

of the kth vehicle (such as its position, velocity and controller

states; denoted as zk(t) before). The second part of the state

vector contains the information of the preceding vehicle

needed for the local controller. (When the local controller

aims to follow the position of the preceding vehicle, x2(t,k)

will be the position of vehicle k − 1.) Note that states and

functions of the 2D system description are denoted by x(t,k)

and f (t,k) instead of the variables and functions used for the

distributed 1D system zk(t) and gk(t).

The derivative with respect to time t of x is denoted

by ẋ(t,k) = d
dt

x(t,k). Thus, ẋ1(t,k) = f1(x1(t,k),x2(t,k)) =

gk(zk−1(t),zk(t)) = g(zk−1(t),zk(t)). The difference with respect

to the position k of x or V is denoted by ∆x = x(t,k+1)−x(t,k)

or ∆V(x) = V(x(t,k + 1)) − V(x(t,k)), respectively.

Stability of the 2D continuous-discrete model will be

studied using the following 2D Lyapunov function.

Definition 1 (Two-Dimensional Lyapunov Function): A

2D function VT =
(

V1(x1) V2(x2)
)

is called a 2D Lyapunov

function for system (6) if:

(i) Vi(xi) is a particular type of iISS-Lyapunov function for

subsystem xi(t,k), that is, there exist functions αi, αi
∈

K∞, positive definite functions αi, and constants 0 ≤
bi < ∞ such that for i ∈ {1,2}

α
i
(|xi|) ≤Vi(xi) ≤ αi(|xi|), (7)

V̇1(x1) ≤ − α1(V1(x1)) + b1V2(x2), (8)

∆V2(x2) ≤ − α2(V2(x2)) + b2V1(x1); (9)

and,

(ii) the divergence of V is non-positive:

divV = V̇1(x1(t,k)) + ∆V2(x2(t,k)) ≤ 0 (10)

for all t,k > 0. ∗
Note that the shorthand notation Vi(xi(t,k)) = Vi(xi) =

Vi(t,k) is used throughout the paper.

According to the definitions of iISS-Lyapunov functions in

[28] and [29] V1(x1) needs to be continuously differentiable

since t is continuous and V2(x2) merely needs to be contin-

uous since k is discrete. The definitions for iISS-Lyapunov

functions from [28] and [29] have been altered in the way

that the last term in (8) and (9) explicitly contain b1V2(x2)

and b2V1(x1) instead of general class K∞ functions γ1(x2)

and γ2(x1).

It should also be noted similar to the stability conditions

known in the literature the divergence of V , (10), only needs

to be non-positive. (Compare (1), (2), (3) and (4) with (10).)

The following class of initial (or boundary) conditions will

be considered.

Definition 2 (LV and L∞ Bounded Initial Conditions):

Given positive definite functions Vi, the initial conditions of

the nonlinear two-dimensional system (6) are LV and L∞



bounded, if there exist ci,ζi < ∞ for i ∈ {1,2} such that

‖x10(·)‖V :=

∞
∑

k=0

V1 (x10(k)) ≤ c1, (11)

‖x20(·)‖V :=

∫ ∞

0

V2 (x20(t)) dt ≤ c2, (12)

‖x10(·)‖∞ = sup
k>0

|x10(k)| ≤ ζ1 and (13)

‖x20(·)‖∞ = sup
t≥0

|x20(t)| ≤ ζ2 (14)

is satisfied. ∗
Stability of 2D nonlinear continuous-discrete systems will

be studied according to the following definition.

Definition 3 (Stability of Nonlinear 2D Systems): The

autonomous nonlinear 2D system (6) is stable if for each

M > 0 there exists a set of ci(M),ζi(M) > 0 such that if

the initial conditions are LV and L∞ bounded with bounds

ci(M) and ζi(M) for i ∈ {1,2}, respectively, then

|x(t,k)| ≤ M (15)

for all t,k > 0. ∗
Note that this definition of 2D stability is used here to

study “string stability” of the underlying distributed 1D

system. If the states are bounded in the 2D sense for all t and

k for LV and L∞ bounded initial conditions, the local error

norm of each vehicle in the underlying 1D string is bounded

at all times independently of the position within the string or

the string length. Thus, we study string stability with respect

to nonzero, vanishing initial conditions. Note that assuming

nonzero initial conditions for the leading vehicle is equivalent

to studying a constant step disturbance onto the lead vehicle.

III. Stability of Nonlinear Two-Dimensional Systems

Having clarified the notation, we now give sufficient

conditions for stability of general nonlinear 2D continuous-

discrete systems. Two preliminary results will be given

before presenting the main theorem later in this section. The

first lemma was proposed in [28, Corollary IV.3].

Lemma 1 (Corollary IV.3 in [28]): Given any continuous

positive definite function α : R≥0 → R≥0, there exists a

KL-function β with the following property. For any 0 <

t̃ ≤ ∞, and for any (locally) absolutely continuous function

V :
[

0,t̃
) → R≥0 and any measurable, locally essentially

bounded function γ :
[

0,t̃
)→ R≥0, if

V̇(t) ≤ −α(V(t)) + γ(t) (16)

holds for almost all t ∈ [

0,t̃
)

, then the following estimate

holds

V(t) ≤ β(V(0),t) +

∫ t

0

2γ(s)ds (17)

for all t ∈ [

0,t̃
)

. •
The analogous version for discrete systems has not been

published explicitly as a separate lemma but can be found

in [29, Proof of Theorem 2, p. 301]. It could be stated as

Lemma 2: Given any continuous positive definite function

α : R≥0 → R≥0, there exists a KL-function β with the

following property. For any 0 < k̃ ≤ ∞, and for any (locally)

absolutely continuous function V :
[

0,k̃
)

→ R≥0 and any

measurable, locally essentially bounded function γ :
[

0,k̃
)

→
R≥0, if

∆V(k) ≤ −α(V(k)) + γ(k) (18)

holds for almost all k ∈
[

0,k̃
)

, then the following estimate

holds

V(k) ≤ β(V(0),k) +

k
∑

s=0

2γ(s) (19)

for all k ∈
[

0,k̃
)

. •
A further result needed for the proof of stability of general

nonlinear 2D continuous-discrete systems was published in

a general form in [30, Lemma 4.2].

Lemma 3: Consider the 2D space of two variables t

and k and the 2D non-negative vector field VT(t,k) =

(V1(t,k),V2(t,k)). If the divergence of the vector field V(t,k)

is non-positive for all t and k, then

k
∑

l=0

V1(t,l) ≤
k

∑

l=0

V1(0,l) +

∫ t

0

V2(τ,0)dτ (20)

∫ t

0

V2(τ,k)dτ ≤
k

∑

l=0

V1(0,l) +

∫ t

0

V2(τ,0)dτ. (21)

for all t,k > 0. •
Proof: To prove this lemma we will simply consider the

sum of the integral of the divergence of V(τ,l) over t ∈ [0,t]

for l ∈ [0,k]:

W(t,k) :=

k
∑

l=0

∫ t

0

(

V̇1(τ,l) + ∆2V2(τ,l)
)

dτ. (22)

Using the fundamental theorem of calculus or Gauss Di-

vergence Theorem for the continuous variable τ and simple

arithmetic for the discrete variables l, (22) can be transformed

into

W(t,k) =

k
∑

l=0

V1(t,l) −
k

∑

l=0

V1(0,l)

+

∫ t

0

V2(τ,k)dτ −
∫ t

0

V2(τ,0)dτ. (23)

Since the divergence is nonpositive for every τ and l, from

(22) we get W(t,k) ≤ 0. Also, V2(τ,l) is a nonnegative

function of τ and l. Therefore (23) implies (20). The bound

on of the integral of V2(t,k) in (21) follows equivalently.

This now enables us to state our main theorem.

Theorem 1 (Stability of Nonlinear 2D Systems): The

nonlinear 2D system (6) is stable if there exists

a two-dimensional Lyapunov function according to

Definition 1. •
Proof: From (20)-(21) together with the fact that the

initial conditions are LV bounded we get

k
∑

l=0

V1(t,l) ≤ c1 + c2 and

∫ t

0

V2(τ,k)dτ ≤ c1 + c2. (24)



Applying Lemma 1 we can guarantee that there exists a

function β1 ∈ KL such that

V1(x1(t,k)) ≤ β1(V1(x10(k)),t) +

∫ t

0

2b1V2(x2(τ,k))dτ. (25)

Using the fact that the initial conditions are in L∞ and (24),

equation (25) yields

V1(x1(t,k)) ≤ β1(ζ1,t) + 2b1(c1 + c2). (26)

Since there exists a class K∞ function α
1
(|x1|) ≤ V1(x) we

find that

|x1(t,k)| ≤ M1 := α−1
1

(β1(ζ1,0) + 2b1(c1 + c2)) < ∞ (27)

for all t,k. Note that the bound M1 depends on the norm of

the initial conditions, i.e. ζ1,c1,c2. Thus, the maximal value

of |x1| for all t,k is determined by the norm of the initial

conditions. Furthermore, if ζ1, c1 and c2 tend to zero, then

M1 also tends to zero. A similar bound M2 < ∞ for the

norm of x2 can also be found and thus the system is stable

according to Definition 3.

IV. Examples

To illustrate our main theorem we present two examples.

Example 1: Consider the continuous-discrete 2D system

ẋ1(t,k) = − φ2(x1)x1(t,k) + φ(x1)x2(t,k) (28)

∆x2(t,k) = φ(x1)x1(t,k) − x2(t,k) (29)

with the bounded function 0 < Φ ≤ φ(x1) ≤ Φ < ∞.

Consider the Lyapunov function

V =

(

V1(x1)

V2(x2)

)

=

(

1
2

x2
1
(t,k)

1
2

x2
2
(t,k)

)

. (30)

Thus

V̇1(x1) = −φ2(x1)x2
1(t,k) + φ(x1)x1(t,k)x2(t,k), (31)

∆V2(x2) =
1

2
φ2(x1)x2

1(t,k) − 1

2
x2

2(t,k) and (32)

divV = −1

2
(φ(x1)x1(t,k) − x2(t,k))2 ≤ 0. (33)

Equation (31) yields

V̇1(x1) = − 1

2
φ2(x1)x2

1(t,k) − 1

2
(φ(x1)x1(t,k) − x2(t,k))2

+
1

2
x2

2(t,k)

≤ − 1

2
φ2(x1)x2

1(t,k) +
1

2
x2

2(t,k)

≤ − Φ2V1(x1) + V2(x2). (34)

Equation (32) becomes

∆V2(x2) ≤ −V2(x2) + Φ
2
V1(x1). (35)

Hence, the system with LV and L∞ bounded initial conditions

is stable and there exists an upper bound on |x1| and |x2| for

all t and k. ♥
In our second nonlinear example we will study string

stability of a platoon with variable time headway. A similar

variable time headway with an additional upper saturation

Ch,f(s) =
C(s)

hfix s+1
P(s)

hfix s + 1

H
e y

−

uH yH

Fig. 1: Block diagram of subsystem with variable time

headway

bound was proposed in [11]. Yet, string stability of the

nonlinear system has not been shown analytically but its lin-

earisation was studied and string stability was demonstrated

through simulations.

Example 2: First consider the following plant (i.e. vehi-

cle) model

P(s) =
1

s2 + 2Cdv0s
(36)

where the position of the kth vehicle (i.e. yk(t)) is the output

and the acceleration of the vehicle is used as its actuator

(i.e. uk(t)). The drag coefficient is given by Cd = 7 · 10−4

and v0 = 30 is the steady state velocity (equivalent to the

reference velocity).

Each vehicle is equipped with a PID controller given by

C(s) = kp +
ki

s
+

kds

T s + 1
(37)

with kp = 1.66, ki = 0.17, kd = 4.1 and T = 1/30.

The input of the local controller is the local error

ek(t) = yk−1(t) − yk(t) − hk(t)vk(t) (38)

where vk(t) is the velocity and hk(t) is the time headway of

the kth vehicle. When a constant time headway hk(t) = h is

chosen, it can be shown that the infimal time headway to

guarantee string stability is h0 = 1.18, [30]. Choosing a time

headway h > h0 guarantees that the transfer function Γ(s)

describing how the position of the kth vehicle depends on

the position of its predecessor satisfies |Γ( jω)| ≤ 1 for all

frequencies and |Γ( jω)| = 1 for ω = 0 only.

Instead of a fixed time headway h here we will use a

variable time headway

hk(t) = hvar(t,k) = hfix + h∆(t,k) (39)

where hfix is a constant greater than the critical time headway

h0 = 1.18 and h∆(t,k) ≥ 0 is the variable part of the time

headway. For simplicity the shorthand notation hvar(t,k) =

hvar is used below. An additional pole at − 1
hfix

is added to

each local controller.

In order to analyse the stability of the system we will

transform the system into the scheme with the abstract block

H in Figure 1, where the position of the kth vehicle is the

input for H of subsystem k + 1, i.e. y(t,k) = uH (t,k + 1).

We will use the following state space description for the

additional state x12
(t) of the system H :

ẋ12
(t) = − 1

hvar

x12
(t) +

√
hvar − hfix

hvar

uH(t), (40)

yH(t) =

√
hvar − hfix

hvar

x12
(t) +

hfix

hvar

uH(t). (41)



Note that with hvar fixed, the frozen system H is linear, time

invariant with transfer function H(s) = hfix s+1

hvar s+1
. In general,

we allow hvar to be any time varying function that satisfies

hvar ≥ hfix. Thus, the 2D system is described by





















ẋ11
(t,k)

ẋ12
(t,k)

∆x2(t,k)





















= A(t,k)





















x11
(t,k)

x12
(t,k)

x2(t,k)





















(42)

where

A(t,k) =





















A0 b0

√
hvar − hfix/hvar b0hfix/hvar

0 −1/hvar

√
hvar − hfix/hvar

c 0 −1





















, (43)

with x11
(t,k) are the existing states of the controller C(s) and

the vehicle model P(s) so that A0 and b0 are given by

A0 =











































0 1 0 0 0

0 −2Cdv0 1 0 0

− 1
hfix

(

kp +
kd

T

)

−
(

kp +
kd

T

)

− 1
hfix

1
hfix

− kd

hfixT 2

−ki −hfixki 0 0 0

−1 −hfix 0 0 − 1
T











































,

(44)

b0 =
(

0 0 1
hfix

(

kp +
kd

T

)

ki 1
)T
. (45)

Since x2(t,k) is the position of the preceding vehicle and

x11
(t,k) is chosen such that its first element is the position of

the kth vehicle, c =
(

1 0 0 0 0
)

.

Consider the Lyapunov function candidate V with V1(x1) =

xT
11

(t,k)Px11
(t,k) + x2

12
(with P = PT > 0) and V2(x2) =

xT
2
(t,k)x2(t,k). The divergence then is xTQx where

Q =





























AT
0

P + PA0 + cTc
Pb0

√
hvar−hfix

hvar

Pb0hfix

hvar

bT
0

P
√

hvar−hfix

hvar
− 2

hvar

√
hvar−hfix

hvar

bT
0

Phfix

hvar

√
hvar−hfix

hvar
−1





























. (46)

Using the Schur complement, the requirement Q ≤ 0 yields

















AT
0

P + PA0 + cTc
Pb0

√
hvar−hfix

hvar

bT
0

P
√

hvar−hfix

hvar
− 2

hvar

















+















Pb0hfix

hvar√
hvar−hfix

hvar















[

bT
0

Phfix

hvar

√
hvar−hfix

hvar

]

=



















AT
0

P + PA0 + cTc +
Pb0bT

0
Ph2

fix

h2
var

Pb0(hvar+hfix)
√

hvar−hfix

h2
var

bT
0

P(hvar+hfix)
√

hvar−hfix

h2
var

− hvar+hfix

hvar



















≤0. (47)

Applying the Schur complement once again, (47) is equiva-

lent to

AT
0 P + PA0 + cTc +

Pb0bT
0
Ph2

fix

h2
var

+
Pb0bT

0
P(hvar + hfix)(hvar − hfix)

h2
var

= AT
0 P + PA0 + cTc + Pb0bT

0 P

≤ 0. (48)
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Fig. 2: String with variable time headway: error e(t,k)

Applying the Bounded Real Lemma we can show that

existence of a P > 0 satisfying (48), is equivalent to the

condition
∥

∥

∥c ( jωI − A0)−1 b0

∥

∥

∥∞ ≤ 1. (49)

Note that Γ0( jω) = c ( jωI − A0)−1 b0 is the transfer function

from the kth to the k + 1th vehicle for hvar = hfix. Since the

time headway hfix is greater than the infimal time headway

h0 = 1.18, |Γ( jω)| ≤ 1 for all ω and |Γ( jω)| < 1 for ω ,

0. Thus, a positive definite Matrix P exists such that Q is

negative semi-definite independently of hvar (for hfix > h0,

and h∆(x) ≥ 0) and the system is stable.

Consider the variable time headway

hvar(t,k) =















hss + kh (v(t,k) − v(t,k − 1)) for hmin ≤ hvar(t,k),

hmin else,
(50)

where the time headway in steady state is hss = 1.4,

kh = 0.05 and the variable time headway is saturated at

hfix = hmin = 1.2. The motivation for the choice (50) is that

in case the vehicle is driving slower than its predecessor,

the variable time headway decreases and the vehicle thus

accelerates faster and therefore can reach its desired position

faster. A string of forty vehicles has been simulated. The

local error is shown in Figure 2 and the variable time

headway hvar(t,k) in Figure 3.

When comparing these results to the simulation with a

constant time headway of h = 1.4 (displayed in Figure 4) one

observes that with a variable time headway with hss = 1.4 the

error for the first vehicle increases to a maximal value that

is twice as high as the maximal value of the local error of

the first vehicle in a string with a constant time headway of

h = 1.4. This is because of the decreased time headway, and

consequently the desired distance between the first vehicle

and reference position decreases temporarily and thus the

error increases. However, with the variable time headway

the local errors tend to zero quicker than choosing a constant
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Fig. 4: String with constant time headway h = 1.4: e(t,k)

time headway. ♥

V. Conclusions

It is shown how homogeneous, unidirectional nonlinear

vehicle strings can be modelled as general nonlinear 2D

continuous-discrete systems. A sufficient condition for sta-

bility of general nonlinear 2D continuous-discrete systems

given in a form similar to the Roesser model, [18], is

presented. It is used to analytically prove string stability of

a string with variable time headway.

It should be noted, however, that the methods and condi-

tions for stability are only suitable to discuss unidirectional,

homogenous strings. Also only Lyapunov type stability can

be guaranteed. Additional assumptions might have to be

made to ensure asymptotic stability of general nonlinear 2D

continuous-discrete systems.
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