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Abstract

Poor scalability arises in many vehicle platoon problems. Bidirectional strings appear to show some promise for mitigating these problems.
In some cases these solutions have the undesirable side effect of non-scalable response to measurement errors. We examine this problem
and show how information exchange between neighbouring vehicles may eliminate scalability difficulties due to measurement errors.

Key words: scalability, string stability, vehicle strings, measurement errors, measurement noise

1 Introduction

In the simplest form of formation control, a group of
N vehicles (e.g. “platoon” or “string”) is required to move
in one direction. While the first vehicle follows a reference
trajectory, the remaining vehicles aim to keep a prescribed
distance to neighbouring vehicles. It is desirable to find dis-
tributed control solutions, using local measurements only.
In this paper bidirectional distributed control of a string is
studied. The string is referred to as “bidirectional” when
the local controller uses information of preceding and fol-
lowing vehicles, Barooah et al. (2009), in contrast to “uni-
directional” where only the state of a group of preceding
vehicles is considered, Klinge & Middleton (2009). Using
a bidirectional structure is motivated by ease of implemen-
tation as data from two surrounding vehicles can be easily
measured by onboard sensors. Another main advantage is
that a weaker form of “string stability” can be guaranteed
without using a time headway, Knorn et al. (2014a). (For
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time headway see Chien & Ioannou (1992).)

“String instability” (“slinky effect”, Zhang et al. (1999),
or ‘unscalability’, Lestas & Vinnicombe (2006)) describes
the case when small error signals are amplified when travel-
ling through the string resulting in growth of the local error
norm with the position in the string. The widely used def-
inition of string stability requires the l2 norm of the state
vector to be uniformly bounded in the presence of l2 distur-
bances, Seiler et al. (2004), Barooah & Hespanha (2005).
It was shown in Seiler et al. (2004), Barooah & Hespanha
(2005) that linear symmetric bidirectional strings with two
integrators in the open loop and constant spacing are always
string unstable if no global information is available. Lestas
& Vinnicombe (2007) showed that string stability can be
achieved with sufficiently large coupling with the leader po-
sition. Knorn et al. (2013, 2014a) extended the idea in Eyre
et al. (1998) of modelling a symmetric bidirectional string
as a mass-spring-damper system, and derived sufficient con-
ditions to guarantee a weaker form of string stability.

However, most results assume perfect measurements of
all states. Communication delays between the lead vehicle
and the rest of the string were considered in Huang & Ren
(1997), Liu et al. (2001), Xiao et al. (2008, 2009), Öncü et al.
(2011), Guo & Yue (2012), Peters et al. (2014). Guo & Yue
(2014) proposed string stable controllers for unidirectional
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strings subject to delays and sensor failures. The effects of
communication losses have been studied in Seiler & Sen-
gupta (2001), Glavaški et al. (2003), Cao (2010). But string
stability was not discussed.

We study a system with offsets and noise in the inter ve-
hicle distance measurements. When assuming different mea-
suring errors for the same distance, the errors might lead
to string instability. This problem can be avoided if a sim-
ple consensus algorithm is implemented. Preliminary results
were presented in Knorn et al. (2014b). After the system
description in Section 2, the effects of measurement offsets
and noise will be discussed in Section 3 and 4, respectively.
Numerical examples can be found in Section 5.

Notation: The state, steady state and disturbance vectors
are x(t) = (x1(t), . . . ,xN(t))T, x0 = (x10

, . . . ,xN0
)T and d(t) =

(d1(t), . . . ,dN(t))T. The vector of ones is 1 and e
i

is the ith

canonical vector. The diagonal matrix A ∈ RN×N with entries
a1, . . . aN is A = diag(a1, . . . aN). The L2 vector norm is

|x|2 = |x| =
√

xTx and the l2 and l∞ norms are ‖x(·)‖2 =
√

∫ ∞
0
|x(t)|2dt and ‖x(·)‖∞ = supt≥0 |x(t)|, respectively.

2 System Description

The mass, momentum and position of the ith vehicle
are mi, pi and qi respectively. Hence, for i = 1,2, · · · ,N:
ṗi = Fi + di and q̇i = m−1

i
pi where di is the disturbance and

Fi is the control force. The local control objective is to bring
the local error to zero via distributed control depending only
on local measurements and short range communication. The
local error is defined as a linear combination of position
errors towards a limited group of direct predecessors and
followers. The controller for the first vehicle in the string
aims to follow a given trajectory q0 = v0t and minimise the
local position error towards a group of following vehicles.
Neither the reference position, velocity v0, nor any data of
the leading vehicle are known by other vehicles in the string
apart from a small number of vehicles at the beginning of the
string. The global control objective is to achieve “l2 weak
string stability”:

Definition 1 The equilibrium x∗ of a system with N agents
is l2 weakly string stable with respect to disturbances d(t),
if given any ǫ > 0, there exist δ1(ǫ) > 0 and δ2(ǫ) > 0
such that |x(0) − x∗| < δ1(ǫ) and ‖d(·)‖2 < δ2(ǫ) implies
‖x(·) − x∗‖∞ = supt≥0 |x(t) − x∗| < ǫ for all N ≥ 1.

In the literature, different definitions for “string stability”
are known. For instance the definition in Seiler et al. (2004),
Barooah & Hespanha (2005) requires the l2 norm of x(t)− x∗

to be bounded independently of N. Since it was shown in
Barooah & Hespanha (2005) that strings of the form studied
here are always string unstable (according to the standard
definition), a weaker form of string stability using the l∞
norm of the deviations is defined here.

Choosing the local errors ∆i = qi−1 − qi as system states
yields ∆̇i = q̇i−1 − q̇i = m−1

i−1
pi−1 − m−1

i
pi. Thus,
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, (1)

where ∆ = (∆1, . . . ,∆N)T, p = (p1, . . . ,pN)T, and F =

(F1, . . . ,FN)T, H(p,∆) = 1
2

pTM−1 p, M = diag(m1, . . . ,mN)
and S has the bidiagonal form with “1” as diagonal entries, “-
1” as entries directly below the diagonal and zero entries oth-

erwise. First, consider F = −(B+R)M−1p+e
1
R1v0+S TC−1

∆,
with virtual spring forces between the vehicles (in-
cluding the reference “0”), which are parametrised by
C = diag(c1, . . . ,cN) where ci > 0 is the compliance of the
spring between vehicles i−1 and i; virtual dampers between
the vehicles (including the reference “0”) described by

R =
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(2)

where Ri > 0 is the damping coefficient between vehicles i−
1 and i, and the drag forces described by B = diag(b1, . . . ,bN)
with bi > 0 ∀i. Further, integral action control FIA is added:

F = − (B + R)M−1 p + e
1
R1v0 + S TC−1

∆ + FIA (3)

FIA =MKS TC−1
∆ − (B + R)Kz3 (4)

ż3 = − S TC−1
∆. (5)

FIA was designed using port-Hamiltonian theory, Ortega &
Garcia-Canseco (2004), Donaire & Junco (2009), Ortega &
Romero (2012). z3 is the vector of controller states and the
integral action control parameter is K = diag(k1, . . . ,kN).

Theorem 2 Knorn et al. (2014a): Consider (1), (3)-(5). As-
sume d includes a constant component dc and a dynamical
component dd(t) such that d = dc + dd(t) and there exists a
constant D s.t. ‖dd(·)‖2 ≤ D < ∞ for all N. Then,

(1) (p∗,∆∗,z∗
3
) =

(

M1v0,0,K
−1(B + R)−1

(

dc − B1v0

)

)

is

globally asymptotically stable for dd = 0 (despite dc),

(2) the system is passive with input dd(t), output
y = ∇z1

Hz(z) and storage function Hz(z), and

(3) the system is l2 weakly string stable w.r.t. dd(t).

This implies that the control signals are bounded indepen-
dently of N if all parameters are chosen within some fixed
bounds since the control is a linear function of the states.

3 Constant Measurement Offsets

∆i is measured by vehicles i and i − 1. Vehicle i − 1

measures its back distance ∆m,b,i = ∆i + ∆̂b,i with the offset

∆̂b,i and vehicle i measures its front distance ∆m,f,i = ∆i+∆̂f,i

with the offset ∆̂f,i. The measurement vectors are

∆m,f = ∆ + ∆̂f and ∆m,b = ∆ + ∆̂b. (6)

with ∆̂f =

(

∆̂f,1, . . . , ∆̂f,N

)T
, ∆̂b =

(

0, ∆̂b,2, . . . , ∆̂b,N

)T
. Then,

∆̂ := C−1
∆̂f + (S T − I)C−1

∆̂b. (7)
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If communication between neighbouring vehicles is possi-
ble, both agents can agree on one measurement. The alge-
braic mean of the two measurements can be used (measure-
ment consensus) or the distance can be measured at one ve-
hicle and communicated to the other vehicle. In this case,
∆̂f = ∆̂b and (7) yields ∆̂ = S TC−1

∆̂f = S TC−1
∆̂b.

If the measurements are subject to offsets, the system
settles on a different equilibrium as in Theorem 2. Even
though the equilibrium is asymptotically stable, the distances
in steady state might grow without bound as N → ∞.

Lemma 3 Consider (1), (3)-(5). If the system is void of dy-
namic disturbances dd(t) and the measurements are subject

to offsets as in (6), then
(

p∗,∆∗,z∗
3

)

=

(

M1v0,−CS −T
∆̂,α
)

with α = K−1(B + R)−1 (dc − B1v0

)

(8)

and ∆̂ in (7) is the stable equilibrium of the system.

PROOF. If each vehicle uses its measurement, the spring

forces are C−1
∆m,f+

(

S T − I
)

C−1
∆m,b = S TC−1

(

∆ +CS −T
∆̂

)

,

and (3)-(5) yield F = e
1
R1v0 + S TC−1

(

∆ + CS −T
∆̂

)

− (B +

R)M−1 p+FIA, FIA = MKS TC−1
(

∆ +CS −T
∆̂

)

− (B+R)Kz3,

ż3 = −S TC−1
(

∆ +CS −T
∆̂

)

. Setting z1 = p − M1v0 +

MK(z3 − α) and z2 = ∆ +CS −T
∆̂ yields
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∇Hz(z) with (9)

Hz(z) =
1

2
zT

1 M−1z1+
1

2
zT

2 C−1z2 +
1

2
(z3−α)TK(z3−α). (10)

Using Hz(z) as Lyapunov function, yields Ḣz(z) =

−∇T
z1

Hz(z)(B + R)∇z1
Hz(z) ≤ 0 since (B + R) > 0. The

biggest invariant set included in S = {z|Ḣz(z) = 0} is
(z∗

1
,z∗

2
,z∗

3
) = (0,0,α). Thus, by LaSalle’s Invariance Princi-

ple, (Khalil 2001, Thm 4.4), the equilibrium (z∗
1
,z∗

2
,z∗

3
) is

asymptotically stable. This implies the result. �

Remark 4 The equilibrium of the displacements is

∆
∗
= −CS −T(C−1

∆̂f + (S T − I)C−1
∆̂b). This implies

∆
∗
i
=
∑N

k=i+1
ci

ck
∆̂b,k −

∑N
k=i

ci

ck
∆̂f,k. If ∆̂f,i > ∆̂b,i for all i, then

the distance between the first two vehicles gets smaller
when the string size increases. Thus, for an increasing
string length the cars at the beginning of the string crash.
This effect could be reduced by choosing decreasing ci to-
wards the end of the string. However, ci have to decrease
drastically and in fact approach zero as N increases. This
is clearly undesirable in practise.

Remark 5 One might assume that on average ∆̂b,i = ∆̂f,i.
However, even if the expected value of the steady state error
does not grow, its variance still grows without bound as N
increases: Assume all offsets are uncorrelated, have an ex-

pected value of 0 and a variance of Var
(

∆̂b,i

)

= Var
(

∆̂f,i

)

=

σ2 < ∞ for all i. Then, Var
(

∆
∗
i

)

= Var
(

∑N
k=i+1

ci

ck
∆̂b,k

)

+

Var
(

∑N
k=i

ci

ck
∆̂f,k

)

= σ2

(

2
∑N

k=i+1

(

ci

ck

)2
+ 1

)

. For i = 1 and

ck = c for all k, Var
(

∆
∗
1

)

grows linearly with N.

When simple measurement consensus can be reached
using basic inter-vehicle communication, stability of a
bounded equilibrium can be guaranteed:

Theorem 6 Consider (1), (3)-(5). Assume the measure-
ments are subject to offsets and simple measurement con-

sensus is reached such that ∆̂ := S TC−1
∆̂f = S TC−1

∆̂b. If

there exists a δ < ∞ such that |∆̂f,i| = |∆̂b,i| < δ for all i, then
the equilibrium (p∗,∆∗,z∗

3
) = (M1v0,−CS −T

∆̂,α) is bounded
and asymptotically stable.

PROOF. Due to Lem. 3, (p∗,∆∗,z∗
3
) = (M1v0,−CS −T

∆̂,α).
Thus, ∆∗ = ∆̂f = ∆̂b. Due to δ, there exists an upper bound
on ∆∗. According to (Knorn et al. 2013, Lem. 2) also all
entries of z∗

3
= α are bounded independently of N. �

Hence, a bounded equilibrium can be guaranteed by es-
tablishing a simple consensus algorithm between neighbour-
ing vehicles despite unknown measurement offsets. If the
offsets for both vehicles are equivalent, they do not accumu-
late at the beginning of the string, and the displacements in
steady state are bounded if all offsets are bounded.

4 Time Varying Measurement Noise

Assume the distance measurements are subject to mea-
surement noise with zero mean described by ∆̆f,i(t) or ∆̆b,i(t)
for forward or backwards measurements, respectively. Thus,

∆m,f = ∆ + ∆̆f(t) and ∆m,b = ∆ + ∆̆b(t) (11)

where ∆̆f(t) =
(

∆̆f,1(t), ∆̆f,2(t), . . . , ∆̆f,N(t)
)T

and ∆̆b(t) =
(

0, ∆̆b,2(t), . . . , ∆̆b,N(t)
)T

. Similar to (7), define

∆̆(t) := C−1
∆̆f(t) + (S T − I)C−1

∆̆b(t). (12)

If measurement consensus is not reached, string insta-
bility can be shown:

Lemma 7 Consider (1), (3)-(5). Assume the distance mea-
surements are subject to noise as in (11), where there exists
a µ < ∞ such that | ˙̆∆f,i(t)| ≤ µ and | ˙̆∆b,i(t)| ≤ µ for all i > 0
and t ≥ 0. Then the system is not l2 weakly string stable.

PROOF. Subject to noise, equations (3)-(5) change to
F = −(B + R)M−1 p + e

1
R1v0 + S TC−1(∆ +CS −T

∆̆(t)) + FIA,
FIA = MKS TC−1(∆ +CS −T

∆̆(t)) − (B + R)Kz3, ż3 =

−S TC−1(∆ + CS −T
∆̆(t)) with ∆̆(t) in (12). Choosing

z1 = p − M1v0 + MK(z3 − α) and z2 = ∆ +CS −T
∆̆(t) yields
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with (10). To show that the system subject to noise is string
unstable it suffices to show that there exists at least one
noise vector meeting the allowed specifications such that the
states of the system grow with the string size N. Assume
ci = c and ∆̆b,i(t) = −∆̆,i(t) = µ/ω sin(ωt) for all i. Then, the

ith entry of CS −T ˙̆
∆(t) is (

∑N
k=i+1 cos(ωt) +

∑N
k=i cos(ωt))µ =

(2(N−i)+1) cos(ωt)µ. If the response of vehicle 1 to cos(ωt)µ
is denoted by y1(t), then its response to the noise vector
chosen above is (2N − 1)y1(t). Thus, the deviations at the
beginning of the string grow without bound as N increases.�

l2 weak string stability can be guaranteed if measurement
consensus is reached between neighbouring vehicles:

Theorem 8 Consider (1), (3)-(5). Assume the distance mea-
surements are subject to noise and measurement consensus

is reached such that ∆̆(t) := S TC−1
∆̆f(t) = S TC−1

∆̆b(t). If

the vector of measurement noise ∆̆(t) is in l2 uniformly in N,

that is, there exist a κ < ∞ such that for all N: ‖∆̆(·)‖2 ≤ κ,
then the equilibrium (p∗,∆∗,z∗

3
) =
(

M1v0, 0,α
)

is asymptoti-
cally stable and the system is l2 weakly string stable.

PROOF. Set z1 = p−M1v0+MK(z3−α) and z2 = ∆. Then,
the closed loop dynamics have the port-Hamiltonian form
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ż2

ż3
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(14)

with the Hamiltonian function (10). z(t) can be written as
z(t) = za(t) + zb(t) where za(t) and za(t) are the responses of

the system to (dT
d
(t)+∆̆(t)T,0, 0)T and −(0, 0, ∆̆(t)T)T, respec-

tively. Since ∆̆(t) is in l2, Thm. 2 shows that ‖za(·) − z∗a‖∞
is bounded independently of N for all dd(t) in l2. To bound
the norm of ‖zb(·) − z∗

b
‖∞, note that the autonomous system

is globally asymptotically stable, Thm. 2. Hence, the matrix
in the first right hand term of (14) (below denoted by A) is
Hurwitz. Thus, for all N there exist k < ∞, λ < 0 such that

∣

∣

∣zb(t) − z∗b
∣

∣

∣

2 ≤k
∣

∣

∣zb(0) − z∗b
∣

∣

∣

2
+ k

∫ t

0

∣

∣

∣∆̆(t)
∣

∣

∣

2
dτ. (15)

Using Geršgorin’s Theorem, e. g. Horn & Johnson (1985), it
can be shown that all eigenvalues of A are bounded indepen-
dently of N. Hence, there exists a k < ∞ for all N. Further, as
N grows, the minimal eigenvalue of A approaches 0, which
yields λ → 0 as N → ∞. (15) holds in the limit. Also note

that the last term in (15) is bounded by the l2 norm of ∆̆(t)
squared which is assumed to be bounded for all N. Hence,
|zb(t) − z∗

b
|2 is bounded independently of N for all t. �

5 Example

In the first scenario two homogeneous bidirectional ve-
hicle strings with N = 10 and N = 100 have been simulated.
In both cases the reference trajectory is q0 = v0t and all ve-
hicles start with zero initial values. The measurements are
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Figure 1. Scenario 1: ∆i for i = 1 (red), 2 (orange), · · · , N (purple)
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Figure 2. ∆i for i = 1 (red), 2 (orange), · · · , N = 100 (purple)

subject to random distinct forward and backwards measure-
ment offsets between [−0.5,0.5]. While it seems in Fig. 1
that measurement offsets are accumulating in steady state
for N = 10, close examination of the case N = 100 re-
veals that this is not the case as the string length increases.
However, the span of the steady state displacements grows
from approximately 0− 1.4m for N = 10 to −3.5− 1.5m for
N = 100.

In Scenario 2, an additional offset of 0.1m is added to
each forward measurement error. As expected, the steady
state deviations of ∆ at the beginning of the string increase,
Fig. 2. The effect of noise without measurement consensus
is illustrated in scenario 3. Here, random measurement noise
n(t) in between −0.05m and 0.05m is generated. To illustrate
the worst case, the forward and backward measurement er-
rors are chosen ∆̆f,i = −∆̆b,i = n(t) for i. As shown in Fig. 2
this leads to an increasing variation of the displacements
between the vehicles at the beginning of the string.

In the last scenario, it is assumed that measurement con-
sensus is reached. In this case, the measurement offsets no
longer accumulate at the beginning of the string, and the
variance of the steady state deviations does not increase.
Note that the effects of the measurement noise in Fig. 3 are
much smaller than in Senario 3 but still partly accumulate at
the beginning of the string. This is because n(t) is not in l2.

6 Conclusions

This paper studies the effect of measurement offsets and
noise on string stability of bidirectional vehicle platoons. It
is shown that in case the constant measurement offsets dif-
fer between neighbouring vehicles measuring the same dis-
tance, the errors might accumulate at the beginning of the
string. When assuming time-varying measurement noise, it
can be shown that asymmetry in the measurement noise be-
tween neighbouring vehicles leads to string instability. In
both cases, the negative effects can be avoided by imple-
menting a simple consensus algorithm between the vehicles
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Figure 3. Scenario 4: ∆i for i = 1 (red), 2 (orange), · · · , 100
(purple)

such that l2 weak string stability is guaranteed. A drawback
of the simple consensus algorithms is the fact that wireless
communication is prone to communication losses and de-
lays, whose effects should be investigated in the future.
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Öncü, S., van de Wouw, N. & Nijmeijer, H. (2011), Coopera-
tive adaptive cruise control: Tradeoffs between control and
network specifications, in ‘14th International IEEE Con-
ference on Intelligent Transportation Systems’, pp. 2051–
2056.

Ortega, R. & Garcia-Canseco, E. (2004), ‘Interconnection
and damping assignment passivity-based control: A sur-
vey’, European Journal of Control 10(5), 432–450.

Ortega, R. & Romero, J. (2012), ‘Robust integral control of
port-Hamiltonian systems: The case of non-passive out-
puts with unmatched disturbances’, System&Control Let-
ters 61(1), 11–17.

Peters, A. A., Middleton, R. H. & Mason, O. (2014), ‘Leader
tracking in homogeneous vehicle platoons with broadcast
delays’, Automatica 50(1), 64–74.

Seiler, P., Pant, A. & Hedrick, J. K. (2004), ‘Disturbance
Propagation in Vehicle Strings’, IEEE Trans. Autom. Con-
trol 49(10), 1835–1842.

Seiler, P. & Sengupta, R. (2001), Analysis of communication
losses in vehicle control problems, in ‘American Control
Conference’, pp. 1491–1496.

Xiao, L., Darbha, S. & Gao, F. (2008), Stability of string of
adaptive cruise control vehicles with parasitic delays and
lags, in ‘11th International IEEE Conference on Intelli-
gent Transportation Systems’, pp. 1101–1106.

Xiao, L., Gao, F. & Wang, J. (2009), On scalability of platoon
of automated vehicles for leader-predecessor information
framework, in ‘IEEE Intelligent Vehicles Symposium’,
pp. 1103–1108.

Zhang, Y., Kosmatopoulos, E., Ioannou, P. & Chien, C.
(1999), ‘Using Front and Back Information for Tight Ve-
hicle Following Maneuvers’, IEEE Trans. Veh. Technol.
48(1), 319–328.

5


