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Abstract— This paper studies a closed loop linear control
system. The sensor computes a state estimate and sends it to
the controller/actuator in the receiver block over a randomly
fading packet dropping link. The receiver sends an ACK/NACK
packet to the transmitter over a link. It is assumed that the
transmission energy per packet at the sensor depletes a battery
of limited capacity, replenished by an energy harvester. The
objective is to design an optimal energy allocation policy and
an optimal control policy so that a finite horizon LQG control
cost is minimized. It is shown that in case the receiver to sensor
feedback channel is free of errors, a separation principle holds.
Hence, the optimal LQG controller is linear, the Kalman filter is
optimal and the optimal energy allocation policy is obtained via

solving a backward dynamic programming equation. In case
the feedback channel is erroneous, the separation principle does
not hold. In this case, we propose a suboptimal policy where
the controller still uses a linear control, and the transmitter
minimizes an expected sum of the trace of an “estimated”
receiver state estimation error covariance matrix. Simulations
are used to illustrate the relative performance of the proposed
algorithms and various heuristic algorithms for both the perfect
and imperfect feedback cases. It is seen that the dynamic
programming based policies outperform the simple heuristic
policies by a margin.

I. Introduction

Wireless sensors become more powerful, affordable and

compact, and are thus used in many areas, [1]–[4]. Sensors

are often located in remote places and cannot be connected

to reliable power sources. Thus, sensors are often powered

by batteries and can only use a limited amount of energy for

sensing, processing and communicating information. Hence,

the communication links are unreliable and information

might be lost in a random manner. It is therefore an important

task to study the effects of such unreliable communication

channels on filtering and control. An important line of

research started with [5] studying a Kalman filter relying

on measurements, that are received from the sensor via a

packet dropping channel. The authors show that the resulting

Kalman filter and its error covariance matrix are time-varying

and stochastic. The mean state covariance can be guaranteed

to be bounded if the probability of receiving a packet is above

a certain lower bound. These results were further extended in

[6]–[12] and an overview of the results can be found in [13].

Other researchers studied the performance of the Kalman

filter and different energy allocation techniques can be found

in [14], [15].

The impact of packet dropping links was also studied for
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the closed loop control problem. For example, [16] studied a

closed loop control system with a linear Gaussian quadratic

optimal controller. It was shown that the separation principle

holds in the presence of data losses between the sensor and

the receiver Kalman filter when the sensor receives perfect

feedback about the packet loss process and there exists a

critical arrival probability below which the resulting optimal

controller fails to stabilize the system. [17] extended these

results by assuming that the control signal also is transmitted

via an unreliable communication channel. If the arrival of

the control packet is acknowledged perfectly at the receiving

actuator, the separation principle holds and the optimal LQG

control is linear. However, if no such channel feedback

exists, the separation principle does not hold and the resulting

optimal controller is in general nonlinear, [18].

One way to help overcome the limitations of limited

battery capacities is to use energy harvesting as sensors

are often placed in an environment where energy can be

harvested using solar panels, wind mills or other technical

devices. The harvested energy can then be used for data

transmission or be stored in the battery for future use.

In recent years, a number of authors have addressed the

problem of transmission energy allocation for optimizing

various metrics related to information transmission when the

transmitters are equipped with energy harvesting capability.

In [19], throughput optimal and mean delay optimal energy

allocation policies in a single sensor node are studied. The

optimal energy allocation policies that maximize the mutual

information of a wireless link were derived in [20]. In

[21], the authors investigated an optimal packet scheduling

problem for a single-user energy harvesting wireless commu-

nication system. Optimal off-line transmission policies with

batteries with limited storage capacities are investigated in

[22], where a short-term throughput maximization and the

related problem of minimization of the transmission com-

pletion time for a given amount of data are studied. These

results are further generalized in [23], where fading channels

and optimal online policies are considered. Estimation of a

dynamical system with a packet dropping link under energy

harvesting constraints was first studied in [24], which is

the most closely related paper to the current work. In this

paper, the authors studied a sensor with energy harvesting,

which sends its measurements over a packet dropping link

to the receiver. Transmission energy allocation policies, that

minimize the sum of the expected error covariance in the

presence of perfect or imperfect channel feedback, were

derived.

This paper extends [24] to the case of a closed loop control



system with a packet dropping link between the sensor and

the controller at the receiver, and a feedback channel that

can be prone to intermittent losses. We study the optimal

energy allocation policy at the transmitter and the optimal

control design at the receiver such that a finite-time horizon

LQG control cost is minimized. The “smart” sensor performs

state estimation of the observed linear dynamical system and

transmits the current state estimate to the receiver/controller

unit via a packet dropping link since [25] showned that it is

optimal to send estimates, in contrast to sending measure-

ments, in this case. The receiver sends an acknowledgement

whether it has received the state estimate to the transmitter.

The transmitter at the sensor is equipped with a battery with

finite capacity and an energy harvester. Hence, the transmitter

can choose how much energy should be used to transmit

the current state estimate (limited by the available energy at

the battery, which fluctuates randomly due to the stochastic

nature of harvested energy). The time varying fading channel

gain and the harvested energy amounts are described by inde-

pendent and identically distributed (i.i.d.) random processes.

Since the probability of dropping the packet is time varying,

the transmitter is forced to find a tradeoff amongst spending

energy to transmit the current state estimate, keeping energy

in reserve for future transmissions, as well as reducing energy

overflow due to a finite battery capacity. If the feedback

channel is perfect, it is shown that the separation principle

holds and the optimal controller is linear. The optimal trans-

mission energy allocation policy is obtained solving a finite

horizon backward dynamic programming equation. In case

the feedback channel is erroneous, the separation principle

does not hold. For this case, we propose a suboptimal policy

with a linear controller and a suboptimal transmission energy

allocation policy minimizing a finite horizon expected sum

of the trace of an estimated receiver state estimation error

covariance matrix. Both cases are also studied numerically

and compared to various other strategies, including (i) where

the current measurement instead of the current state estimate

is sent, and (ii) with two suboptimal, heuristic policies for

transmission energy allocation.

Section II describes the system model. The cases of perfect

and imperfect channel feedback are considered in Sections III

and IV. Section V describes two suboptimal heuristic en-

ergy allocation policies and all policies are compared via

numerical studies in Section VI, followed by conclusions in

Section VII.

II. SystemModel and Problem Formulation

This section describes the general structure of the system.

Sections III and IV describe the cases of perfect and im-

perfect channel feedback in more detail. A scheme of the

system model (described in detail below) can be found in

Figure 1.

A. Plant Model and Sensor

The plant is modeled as a simple linear system with state

xk ∈ R
n, process noise wk ∈ R

n (i.i.d. Gaussian noise with
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Fig. 1: Scheme of system model when transmitter sends

estimates

zero mean and covariance matrix M = E{wkwT
k
} ≥ 0), and

a control input uk ∈ Rp, that is xk+1 = Axk + Buk + wk. The

initial state x0 is also Gaussian with mean x̄0, and covariance

P̄0, and A, B are matrices with appropriate dimensions.

The sensor produces a noisy measurement of the state yk =

Cxk + vk where yk ∈ Rq, and vk ∈ Rq is assumed to be i.i.d.

Gaussian noise (independent of x0 and wk) with zero mean

and covariance matrix N = E{vkvT
k
} > 0.

B. State Estimator at the Transmitter

Assume the sensor is smart with computational capability,

and the sensor transmitter forwards a state estimate to the

remote estimator/controller. The sensor measurements are

used at the transmitter to estimate the current state based

on the information set Ik = {x̂0,yl,γ̂l−1 : 1 ≤ l ≤ k}, where

γ̂l is the channel feedback acknowledgment, which will be

discussed in detail in Section II-E. The estimate is given by

x̂k :=x̂k|k = E {xk |Ik}
=x̂k|k−1 + Kk(yk −Cx̂k|k−1) (1)

x̂k+1|k =E {xk+1|Ik} = Ax̂k|k + Bûk (2)

where ûk is the estimated control input which depends on

whether the latest channel feedback signal (explained in

detail below) has been received or not. The matrix Kk should

be chosen such that it minimizes the error covariance matrix

of the state estimation error, which depend on the feedback

communication channel. In case the acknowledgements from

the receiver regarding whether the transmitted state estimate

has been received or not (ACK/NACK), are always received

perfectly, the error covariance matrices follow the standard

Riccati difference equations, discussed further in Section III.

However, in case the ACK/NACK feedback is dropped

intermittently, the separation principle no longer holds. This

leads to a non-standard form of the error covariance matrices,

see Section IV.



C. Energy Harvester and Battery Dynamics

The transmitter has a rechargeable battery equipped with

an energy harvester, that can gather energy from the envi-

ronment. The amount of energy available to be harvested at

time slot k, denoted by Hk and modeled by an i.i.d. process,

is stored in the battery and can be used for data transmission.

We assume that the energy used for computational purposes

at the transmitter are negligible compared to the amount of

energy required for transmission. This is particularly true if

data is transmitted over a wireless channel to a receiver that

is a long distance away. The amount of stored energy in the

battery at time k, Bk, evolves according to

Bk+1 = min{Bk − Ek + Hk+1; B̄} (3)

with 0 ≤ B0 ≤ B̄ and where B̄ is the battery capacity, and Ek

is the energy used for transmission during the k-th slot.

D. Forward Communication Channel

A wireless, packet dropping communication channel is

used to transmit the state estimate x̂k to the receiver such that

the estimate is either exactly received (γk = 1) or completely

lost due to corrupted data or substantial delay (γk = 0), where

γk is the Bernoulli random variable modeling the packet loss

process. The received signal is zk = γk x̂k. The probability of

successfully transmitting the packet is

P(γk = 1|gk,Ek) := h(gkEk) (4)

where gk is the time-varying wireless fading channel gain

and Ek is the transmission energy for transmitting the packet

at k. h : [0,∞] → [0,1] is monotonically increasing and

continuous.

We assume that the channel gain gk is described by an

i.i.d. process, independent of the energy harvesting process

Hk, and known to the transmitter. Based on the channel gain

gk, and the current battery level Bk, the transmitter finds an

optimal energy allocation policy {Ek} in order to minimize

a suitable finite horizon control cost. The details of this

optimal energy allocation scheme will be provided later in

this section.

E. Erroneous Feedback Communication Channel

After receiving zk, the receiver sends an acknowledgment

to the transmitter via a packet dropping feedback channel

such that the received acknowledgement is of the form

γ̂k =















γk if βk = 1

2 if βk = 0
(5)

where the βk is a Bernoulli random variable indicating if

the ACK/NACK packet has been received with P(βk = 0) =

η ∈ [0,1]. In case no ACK/NACK is received, the transmitter

receives the feedback signal γ̂k = 2 indicating the packet

drop.

F. Estimator/Controller and Actuator in the Receiver block

The controller in the receiver block has access to the

information set Ic
k

:= {x̂c
0
,zl, γl : 1 ≤ l ≤ k}. Since the

estimates from the transmitter are dropped intermittently, the

state estimate at the Rx block, x̂c
k
= E[xk|Ic

k
], is

x̂c
k = γk x̂k + (1 − γk)

(

Ax̂c
k−1 + Buk−1

)

. (6)

The task of the controller is to design an optimal control

sequence {uk} based on the information pattern Ic
k

such that

a suitable finite horizon control cost is minimized. It is

assumed that the link between the Rx block and the plant is

lossless, such that the correct control signal uk is applied to

the plant.

G. Optimal Transmission Energy and Control Policy Design

The aim is to find the optimal transmission energy alloca-

tion policy EN−1∗ and the optimal control policy uN−1∗, that

jointly minimize the finite horizon LQG control cost

J(uN−1,EN−1,x̄0, P̄0) = E















xT
N QxN +

N−1
∑

k=0

(

xT
k Qxk + uT

k S uk

)















(7)

where uN−1 = {u0, u1, . . . , uN−1}, and EN−1 =

{E0, E1, . . . , EN−1}, and the dependence of the cost on

the mean and the variance of the initial state is explicitly

shown. We will show in Section III, that if the feedback

channel is perfect, the separation principle holds and the

design of the optimal control input uk and the optimal

transmission energy Ek can be separated. However, in the

case of imperfect channel feedback, the optimal choices of

uk and Ek depend on each other, as shown in Section IV.

Remark 1: The joint optimization of the transmission

energy allocation and the control policy can be done at

the receiver block if the sensor battery level is known at

the receiver, and the optimal energy allocation policy can

be fed back to the transmitter. However, this is difficult

as this information needs to be transmitted wirelessly and

may be lost. Therefore we focus on the scenario where the

transmitter designs the optimal energy allocation policy and

the receiver designs the optimal control policy. It will be

seen below that in the case of perfect channel feedback, the

transmitter can design the optimal energy allocation policy

due to the separation principle. In the case of imperfect

channel feedback, the energy allocation policy design at the

transmitter becomes strictly suboptimal.

III. Perfect Feedback

In case the channel feedback link is perfect, the control of

the closed loop system follows well known principles. After

clarifying the dynamics of the error covariance matrices at

the estimator and the controller, it will be shown that the

separation principle holds. (Since we only consider a finite

horizon problem, the quadratic control cost (7) is always

bounded and a stability proof is not needed.)

A. Error Covariance Matrices at the Transmitter and Re-

ceiver

The estimator at the Tx block calculates an estimate of the

system state via a Kalman filter based on the information

set Ik := {x̂0,yl,γl−1 : 1 ≤ l ≤ k}. The estimate is given



in (2). Since it is assumed that the acknowledgements are

received without faults, the estimator has perfect knowledge

of the state estimate at the controller and hence the applied

control input, ûk = uk. The error covariance matrices at the

transmitter are

Pk|k =E
{

(xk − x̂k|k)(xk − x̂k|k)T|Ik

}

, (8)

Pk+1 :=Pk+1|k = E

{

(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T|Ik

}

. (9)

With ek|k = xk − x̂k|k and ek+1|k = xk+1 − x̂k+1|k = Aek|k + wk,

this yields

Pk+1 =E
{

(Aek|k + wk)(Aek|k + wk)T
}

= APk|kAT + M. (10)

Further, choosing Kk = Pk|k−1CT
(

CPk|k−1CT + N
)−1

leads

to the minimal error covariance matrix after updating the

estimate Pk|k in the standard form

Pk|k =Pk−1 − Pk−1CT
(

CPk−1CT + N
)−1

CPk−1. (11)

The initial covariance matrix is given by P0 = P̄0. Since the

current state estimate is intermittently unavailable at the Rx

block, it is replaced by (6). The corresponding estimation

error covariance matrix Pc
k

:= E

{

(xk − x̂c
k
)(xk − x̂c

k
)T|Ic

k

}

is

Pc
k = γkPk + (1 − γk)

(

APc
k−1AT + M

)

. (12)

For simplicity, we assume Pc
0 := P̄0.

B. Separation Principle

In case the acknowledgements are received without error,

the control input uk is perfectly known at the transmitter.

Hence, the control signal estimate ûk in (2) is replaced

by uk. Thus, the estimation error is independent of the

control input as can be verified in (10) (see also [13]).

Clearly, the separation principle holds in this case. This

implies, that the tasks of obtaining the optimal Kalman

filtered state estimate x̂k, x̂
c
k
, calculating the optimal control

input u∗
k

at the controller, and computing the optimal energy

allocation E∗
k

at the transmitter can be carried out separately.

Consequently, implementing the Kalman filters as discussed

above is optimal.

C. LQG Controller

Since the separation principle holds, the control cost (7)

can be minimized by solely optimizing over uk while keeping

Ek fixed. Further, the optimal controller is linear and has the

form

u∗k = Lk x̂c
k = −

(

BTGk+1B + S
)−1

BTGk+1Ax̂c
k (13)

with Gk = Q+ATGk+1A−ATGk+1B
(

BTGk+1B + S
)−1

BTGk+1A

and the condition GN = Q. Details can be found in [13], [26].

D. Optimal Energy Allocation Policy

Due to the separation principle, the optimal energy alloca-

tion policy at the transmitter can be obtained by minimizing

min
0≤Ek≤Bk∀k

N−1
∑

k=0

E

{

tr(Pc
k)|Ek

}

. (14)

This problem can be cast as a stochastic control problem

where (gk, Bk) forms the state process and Ek forms the con-

trol action. A finite horizon dynamic programming algorithm

can be used to solve the corresponding backward Bellman

dynamic programming equation to minimize (14):

Vk(gk,Bk) = min
0≤Ek≤Bk

{

tr(Pc
k)|Ek +E {Vk+1(gk, Bk)}

}

(15)

with the terminal condition VN(gN ,BN) = tr(Pc
N

)|BN .

IV. Imperfect Acknowledgements

In this section, it will be shown that in case of a packet

dropping channel feedback link, the separation principle

does not hold. Hence, the optimal energy allocation policy,

state estimation algorithm and controller design are not

independent of one another.

A. Assumed State Estimate

Similar to the case of perfect feedback discussed in

Section III, the current state estimate at the Rx block is

given by (6). The calculation of the estimate at the Tx block

depends on the knowledge of the applied input signal uk,

which is not directly known by the estimator, but calculated

by the controller. Hence, the estimator at the transmitter

also has to estimate the current state estimate used by the

controller to calculate uk by using the information of the

imperfect feedback channel:

x̂ce
k =(1 − βk)

(

h(gkEk)x̂k + (1 − h(gkEk))(Ax̂ce
k−1 + Bûk−1)

)

+ βk

(

γk x̂k + (1 − γk)(Ax̂ce
k−1 + Bûk−1)

)

. (16)

In case an acknowledgment was received, the information of

the acknowledgment is used. Otherwise, the state estimate

at the controller is estimated using the package dropping

probability of the forward channel.

B. Estimation Error Covariance Matrices and Kalman Filter

Note that ûk denotes the assumed control input at the

transmitter. For simplicity, it will be assumed that the control

input is a stationary policy of the form uk = Lk x̂c
k
. Hence,

the term ûk can be substituted by Lk x̂ce
k

. Since the transmitter

only has knowledge of ûk−1 and x̂ce
k

instead of uk and x̂c
k
, the

estimation error ek+1|k = Aek|k + BLkee
k
+ wk now depends on

the error ee
k

:= x̂c
k
− x̂ce

k
. Defining Pe

k
:= E

{

ee
k

(

ee
k

)T
}

it follows

Pk+1 =APk|kAT + M + BLkPe
kLT

k BT

+ BLkE

{

ee
k

(

ek|k
)T
}

AT + AE

{

ek|k
(

ee
k

)T
}

LT
k BT. (17)

Choosing again Kk = Pk|k−1CT
(

CPk|k−1CT + N
)−1

in (1)

leads to the error covariance matrix after updating the

estimate Pk|k at the estimator as in the perfect feedback case.

However, note that the Kk in (1) and the error covariance

matrices Pk+1 and Pk|k now depend on the controller matrix

Lk and mixed terms such as E

{

ee
k

(

ek|k
)T
}

.



C. Suboptimal control design and transmission energy allo-

cation

In case of imperfect acknowledgements the separation

principle does not hold since the estimate depends on the

controller matrix Lk. Further, the error covariance matrices

Pk, Pc
k
, Pe

k
and Pce

k
:= E

{

ece
k

(

ece
k

)T
}

depend on each other,

hindering an exact analysis. Since the separation principle

does not hold, it is not optimal to design the estima-

tor, the LQR controller and the energy allocation policy

separately as done in Section III for the case of perfect

channel feedback. However, assuming that the probability

of dropping the acknowledgement is small, one can use a

suboptimal linear controller uk = Lk x̂c
k
, and a suboptimal

energy allocation policy at the transmitter by minimizing the

cost
∑N−1

k=0 E
{

tr(Pce
k

)|Ek

}

. Since Pce
k

depends on other error

covariance matrices, which are unknown at the transmitter,

it is approximated by

Pce
k ≈ (βkγk + (1 − βk)h(gkEk)) Pk|k (18)

+ (βk(1 − γk) + (1 − βk)(1 − h(gkEk)))
(

APce
k−1AT + M

)

By sacrificing optimality, the computational burden is made

much smaller as the optimal nonlinear estimation and control

design and the associated optimal energy allocation policies

do not have to be solved by dynamic programming. Through

numerical results, we see that for small η, the suboptimal

policy performs quite well compared the perfect feedback

case.

Remark 2: Note that one can design other suboptimal

policies based on additional information such as the current

measurement, which can be used to calculate the assumed

estimate x̂ce
k

. The approach here, which is based solely on the

known drop-out probability h(gkEk) is simple to implement.

Alternative suboptimal schemes for estimation and control

design in a slightly different context can be found in [27].

It is also apparent that a rigorous performance analysis for

our suboptimal scheme is difficult, but will be pursued in

future work in the context of a long-term average control

cost minimization over an infinite horizon.

V. Heuristic Policies for Energy Allocation

It is well known that solving the backward dynamic

programming equation to determine the optimal energy

allocation policy requires a large computational overhead.

Hence, it is often desirable to find suboptimal policies, that

require much less computational effort.

One very simple suboptimal policy is a “greedy policy”

which sets Ek = Bk,∀k. Hence, at every time step all

available energy is used to transmit data regardless of the

channel gain.

A second simple heuristic policy is the “inverted chan-

nel policy”. Assume the required transmission energy such

that the expected drop-out probability of the communica-

tion channel with channel gain gk is equal to a desired

probability γ̄, is denoted by Eγ̄(γ̄,gk). Then, the inverted

channel energy allocation policy follows the simple rule

Ek = min{Bk,Eγ̄(γ̄,gk)}.

VI. Numerical Examples

In this section, we evaluate the performance of various

optimal and suboptimal energy allocation and control design

schemes for both perfect and imperfect feedback cases. A

scalar system with parameters A = 1.1, B = 1, C = 1, M = 1,

N = 1 and Px0
= 1 is considered. It is assumed that the

sensor uses a binary phase shift keying (BPSK) transmission

scheme, [28], with b = 4 bits per packet. Here, (4) has the

form

P(γk = 1|gk,Ek) = h(gkEk) =















∫

√
gkEk

−∞

1
√

2π
e−t2/2dt















b

. (19)

The harvested energy Hk and the fading channel gain gk are

assumed to be i.i.d. and exponentially distributed with means

H̄ = 1mWh and ḡ = 1dB, respectively. The battery capacity

is varied between 1mWh and 5mWh.

Eight different scenarios have been simulated: In the first

and second scenario it is assumed that all channel gains and

harvested energies are known a priori (non-causal (‘NC’)

information) and the feedback communication channel is

free of errors. In the first scenario, the transmitter sends

the current measurement (‘send mes.’) to the receiver such

that the Kalman Filter is computed at the controller/actuator

side. In the second scenario, the current state estimate is

communicated to the receiver (‘send est.’). Although both

scenarios are unrealistic as they rely on non-causal infor-

mation, they constitute an important benchmark to compare

the performance of algorithms using causal information.

The third and fourth scenario consider the case of causal

information (‘C’) and sending measurements comparing the

performance of the perfect feedback case (‘PF’) vs. the

imperfect feedback case with η = 20% (’IF’). The fifth and

sixth scenarios consider the case of causal information and

sending state estimates (‘send est.’), again comparing perfect

feedback case (‘PF’) vs. imperfect feedback with η = 20%

(’IF’). The greedy policy (’GP’) and the inverted channel

policy (‘IC’) with γ̄ = 0.8 are used in the seventh and the

eighth scenario, respectively.

The example was simulated 48 times using independent

randomly generated numbers for the channel gains and

harvested energies with the distributions described above

and a finite time horizon of N = 25. In Figure 2, it can

be observed that in all cases the average control cost (of

the 48 simulations) decreases as the battery capacity grows.

Further, sending state estimates clearly outperforms sending

measurements. Assuming a feedback dropout probability of

20% seems to lead to no noticeable change in the perfor-

mance of the system as the average control cost in case of

perfect or imperfect feedback hardly differ. If the feedback

dropout probability increases, it is expected that the average

control cost will increase compared to its perfect feedback

counterpart. It can be further observed that the optimal

policies clearly outperform the heuristic policies by a big

margin. Hence, investing in solving the dynamic program-

ming algorithm yields a considerable advantage compared to
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measurements, ‘est’ = estimates, ‘PF’ = perfect feedback,

‘IF’ = imperfect feedback, ‘GP’ = greedy policy, ‘IC’ =

inverted channel policy

these simple heuristic policies even when feedback channels

are imperfect.

VII. Conclusions

This paper studied a closed loop control system where a

sensor runs a local Kalman filter and sends its state estimate

to the receiver block consisting of the controller/actuator over

a packet dropping link that has a time-varying packet loss

probability due to a randomly time-varying fading channel

gain. The transmitter is powered by a finite battery and can

harvest a random amount of energy from its environment.

The receiver sends an ACK/NACK feedback, which may also

be lost intermittently. The objective is to design a jointly

optimal sensor transmission energy allocation and optimal

control design policy for minimizing a finite horizon LQG

control cost.

In the case of perfect channel feedback, it is seen that the

separation principle holds. Hence, the Kalman filters (at the

transmitter and receiver) and a linear controller are optimal

and the transmission energy allocation policy that minimizes

the sum of the expected estimation error covariance over

a finite time horizon can be obtained by standard dynamic

programming techniques. In the case of erroneous channel

feedback, the separation principle no longer holds. Hence,

the optimal estimator and controller design, and the optimal

energy allocation policy are in general coupled and nonlinear,

and suboptimal designs are presented. Numerical studies are

presented illustrating the control cost performance of the

various schemes discussed above.
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