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Abstract

The theory of port-Hamiltonian systems is used to derive upper bounds for the state deviations in multi-agent systems described by
undirected graphs pinned to a reference signal. The upper bounds for the deviations in networks of first or second order agents, respectively,
depend on the minimal eigenvalue of the extended Laplacian of the system. In networks of first order agents, the deviations decay
exponentially with a rate depending on the same minimal eigenvalue. In case networks of second order systems meet specific design
properties, it can be shown that the deviations also decay exponentially with half the rate compared to first order systems.
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1 Introduction

A Multi-Agent System (MAS) describes a group of au-
tonomous agents operating in a networked environment.
Control engineers are interested in designing strategies for a
MAS to achieve global control objectives through distributed
sensing, communication, computing, and control. A com-
mon control objective is “consensus” where local algorithms
ensure that all agents in the system converge to the same
output or state value. A simple yet robust output-feedback
controller to achieve consensus is designed in Münz et al.
(2011). Consensus algorithms, which are robust to time de-
lays, network size, and modelling errors, can be found in
Moreau (2004), Tian & c. L. Liu (2009), Münz et al. (2010),
Das & Lewis (2010), Yang et al. (2011), Liu et al. (2010).

In the area of “pinning control”, a fraction of the nodes
is connected (i.e., “pinned”) to a reference signal. For pin-
ning control of networks of first-order agents see Chen et al.
(2007), Ren (2007), Chen et al. (2009), Liu et al. (2009),
Wang & Chen (2002). The results show that if the directed
graph has a spanning tree, all agents approach a prescribed
value if some are pinned. Consensus of double integrators
was studied in Ren (2008). If a group reference velocity is
available to each agent, then consensus is reached asymptot-
ically if the directed interaction graph has a directed span-
ning tree and the gain for the velocity matching with the
group reference velocity is above a certain bound. If the ref-
erence state is only available to a subset of the agents, then
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consensus is reached asymptotically if and only if the net-
work is strongly connected. Lu et al. (2009) shows that lin-
early coupled stochastic neural networks can be controlled
by a minimal number of controllers.

One of the most difficult problems in the area of pin-
ning control is to choose the best set of pinned nodes.
For scale-free networks it is much more effective to pin
some highly connected nodes compared to randomly se-
lected nodes, Wang & Chen (2002). In random networks,
there is no significant difference between pinning specific or
random nodes, Li et al. (2004). Yu et al. (2009) revealed that
a network can realise synchronisation under any linear feed-
back pinning scheme by adaptively adjusting the coupling
strength. V-stability was used in Xiang & Chen (2007, 2009)
to develop pinning schemes. The determinants of the princi-
ple minors are used in Xiong et al. (2010) to compute which
nodes should be pinned. An approach to select strongly con-
nected components was developed in Lu et al. (2010). It was
further shown in Song & Cao (2010) that nodes whose out-
degrees are bigger than their in-degrees should be pinned.
Further, the randomly pinning scheme may not guarantee
the synchronisation of directed complex networks. Second-
order nonlinear MASs were studied in Song et al. (2010).

In the area of “string stability”, a group of vehicles drives
in a platoon or string. In a unidirectional string, each vehi-
cle follows its direct predecessor whereas in a bidirectional
string, the distance towards the following vehicle is also
used. The first vehicle follows a reference signal. This can be
seen as a special case of a pinned network. Due to the sim-
ple network structure, it is trivial to ensure that all vehicles
follow the trajectory. The main control objective is to design
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local controllers such that the distances between the vehi-
cles remain bounded, independently of the string size, i.e.
“string stability”. It was shown in Seiler et al. (2004), Ba-
rooah & Hespanha (2005) that both unidirectional and sym-
metric bidirectional linear strings with two integrators in the
open loop and constant spacing are always string unstable.
Approaches to guarantee string stability include using: (i) a
time headway, Chien & Ioannou (1992); (ii) heterogeneous
controllers, Khatir & Davison (2004); (iii) information of
the lead vehicle, Darbha et al. (1994); or, (iv) the reference
velocity, Barooah et al. (2009). In Barooah et al. (2009), a
linear bidirectional string is approximated as a PDE to de-
rive stability bounds. This work was later extended in Hao
& Barooah (2012), Hao et al. (2012). Lately, it was shown
in Knorn et al. (2014) that symmetric bidirectional strings
can be modelled as port-Hamiltonian systems, see van der
Schaft & Jeltsema (2014), van der Schaft & Maschke (2013).

This paper extends Knorn et al. (2014) to undirected
networks of single- or double-integrators, showing that:

(i) The deviations between the states and the reference
signal are bounded and the upper bound depends on the
smallest eigenvalues of the extended Laplacian matrix
describing the pinned network, i. e. λmin(L̄).

(ii) In some classes of systems the deviations can be guar-
anteed to decay exponentially with a rate that also de-
pends on λmin(L̄).

(iii) Examples are presented to illustrate the results.
Work on (i) was inspired by the problem of string stabil-
ity, which aims to design local controllers ensuring the ex-
istence of a uniform bound of the inter vehicle distances. In
contrast, this paper derives bounds on the deviations in gen-
eral undirected graphs. Note further that our results are an
extension of the well-known problem of (leader-following)
consensus and pinning control. But instead of investigat-
ing under which conditions consensus can be achieved or
which nodes should be pinned, it is assumed that the pinned
network will converge, and the behaviour of the deviations
towards the desired equilibrium is studied. Note that some
similar results studying homogeneous systems (i.e., MAS
with identical agents) have been presented in the prelimi-
nary work Hao & Barooah (2011).

Sec. 2 clarifies mathematical preliminaries. Upper
bounds and decay rates for the deviations are derived in
Sec. 3 and 4, respectively. Before concluding in Sec. 6,
illustrative examples are presented in Sec. 5.

2 Notation and Mathematical Preliminaries

2.1 Notation

Consider the static vector x ∈ Rn and the time-varying
vector x(t) ∈ Rn. The L2 vector norm is given by |x|2 = |x| =√

xTx and the L2 and L∞ vector function norms by ‖x(·)‖2 =
√

∫ ∞
0
|x(t)|2dt and ‖x(·)‖∞ = supt≥0 |x(t)|, respectively. For

a scalar function H(x) of a vector x = [x1, x2, . . . , xn]T its

gradient is ∇H(x) = [
∂H(x)

∂x1
, ∂H(x)

∂x2
, . . . , ∂H(x)

∂xn
]T. The column

vector of ones is 1 and ~ei ∈ Rn is the ith canonical vector
of length n. We denote the diagonal matrix A ∈ Rn×n with
diagonal entries a1, . . . an as A = diag(a1, . . .an). Given A

is symmetric positive definite (A > 0), xTAx ≤ λmax(A)|x|2
where λmax(A) is the maximal eigenvalue of A, Bernstein
(2009). λmin(A) denotes the minimal eigenvalue of A. The
identity matrix of dimension n × n is defined as In. Further,

ẋ(t) :=
dx(t)

dt
, ẍ(t) :=

d2 x(t)

dt2 and “iff” = “if and only if”.

2.2 Consensus Networks

In its simplest case, a consensus network consists of a
group of na agents, that are simple integrators

ẋi(t) = ui(t) for i ∈ {1,2, . . . ,na} (1)

where ui(t) is the control input. It is the aim to reach consen-
sus in the network, i.e., the states of each agent to converge
to the weighted average of the states of its neighbours:

ui(t) =

na∑

j=1, j,i

ai j(x j(t) − xi(t)). (2)

where ai j is the weight of the connection between agents i
and j. There is no connection between i and j iff ai j = 0.

Considering double integrator agents leads to

ẍi(t) = ui(t) with (3)

ui(t) =

na∑

j=1, j,i

ai j(x j(t) − xi(t)) +

na∑

j=1, j,i

ri j(ẋ j(t) − ẋi(t)) (4)

where ri j is the weight of the connection between the first
derivatives of agents i and j. We assume ai j , 0 iff ri j , 0.

2.3 Graph Theory

Consider the network (3)-(4). The agents can be regarded
as “nodes” or “vertices” v of a graph. An “edge” e starts
at node i and ends at node j iff ai j , 0. In case the input
equations are symmetric, i. e. ai j = a ji and ri j = r ji, the graph
is undirected. Then, it can be described by the Laplacian
matrix, which is the product of the oriented incidence matrix
B ∈ Rna×ne with its transpose (where na or ne are the number
of agents or edges, respectively), such that L = BBT. B
is obtained by arbitrarily choosing a direction for all e and
setting (B)ve = 1 if e enters v, (B)ve = −1 if e leaves v and
(B)ve = 0 otherwise. (For an example see Sec. 5.)

2.4 Pinning Control and Reference Following

Some applications require the network to converge to a
given reference. Since it is often impossible, undesirable, or
unnecessary to connect all agents to the reference, only some
nodes are pinned. We assume that the network is connected.
Hence, pinning a single node is sufficient, Lu et al. (2009),
but pinning more nodes will lead to a better performance,
Patterson & Bamieh (2010). Consider (1)-(2). Pinning the
first np < na nodes to the scalar reference signal x∗(t) yields

ui(t) =

na∑

j=1, j,i

ai j(x j(t) − xi(t)) + αi(x∗(t) − xi(t)), (5)
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for i ≤ np, where αi is the weight of the connection between i
and the reference. For (3)-(4), adding pinning control yields

ui(t) =

na∑

j=1, j,i

ai j(x j(t) − xi(t)) +

na∑

j=1, j,i

ri j(ẋ j(t) − ẋi(t))

+ αi(x∗(t) − xi(t)) + ρi(ẋ∗(t) − ẋi(t)), (6)

for i ≤ np, where ρi is the weight of the connection between
the first derivatives of i and the reference. Extending the
graph theory above, define the extended oriented incidence
matrix B̄ := (~e1, . . . , ~enp

,B). Following the relationship L =
BBT, we define the extended Laplacian as L̄ := B̄B̄T.
Lemma 1 (Hong et al. (2006)) If one or more nodes of a
connected network are pinned to a reference, then L̄ > 0.
Hence, it suffices to pin a single node to ensure λmin(L̄) > 0.
However, λmin(L̄) will increase when pinning more nodes,
Patterson & Bamieh (2010).

2.5 Port-Hamiltonian Form

Describing (1), (2), (5) as a Hamiltonian system as in
van der Schaft & Maschke (2013), van der Schaft & Jeltsema
(2014) leads to

ẋ(t) = −B̄AB̄T(x(t) − 1x∗(t)) = −B̄AB̄T ∂H(x)

∂x
(7)

where A = diag{α1, . . . αnp
,a1, . . .ane

} with ae = ai j = a ji for

edge e connecting i and j, x(t) = (x1(t), . . . ,xna
(t))T and the

Hamiltonian function 1 is given by

H(x(t)) =
1

2
|x(t) − 1x∗(t)|2. (8)

Allowing the disturbances d(t) = (d1(t), . . . ,dna
(t))T, leads to

ẋ(t) = −B̄AB̄T ∂H(x(t))

∂x
+ d(t). (9)

For second order agents (3), (4), (6), for edge e from i to j,

define ∆̃e(t) := xi(t) − x j(t), and for i ≤ np, ∆̂i(t) := x∗(t) −
xi(t). Then, for ∆(t) := (∆̂1(t), . . . ,∆̂np

(t), ∆̃1(t), . . . ,∆̃ne
(t))T

∆(t) = −B̄T(x(t) − 1x∗(t)). (10)

The vector of inputs u(t) = (u1(t), u2(t), . . . ,una
(t))T yields

u(t) = B̄A∆(t) − B̄RB̄T(ẋ(t) − ẋ∗(t)) (11)

with R = diag{ρ1,ρ2, . . . ρnp
,r1,r2, . . . rne

} where re = ri j = r ji

for edge e from i to j. Denoting ẋ(t) = p(t), assuming a
reference with ẋ∗(t) = p∗ = const. and invoking (10) and

1 For mechanical systems, the Hamiltonian function is usually an
energy storage function describing the kinetic or potential energy
of the system. Examples of Hamiltonian functions can be found
in van der Schaft & Maschke (2013).

(11) yields





ṗ(t)

∆̇(t)




=





−B̄RB̄T B̄
−B̄T 0




∇H(p(t),∆(t)) (12)

with the Hamiltonian function

H(p(t),∆(t)) =
1

2
(p(t) − 1p∗)T(p(t) − 1p∗) +

1

2
∆

T(t)A∆(t).

(13)
Allowing the additional disturbance vector d(t) leads to





ṗ(t)

∆̇(t)




=





−B̄RB̄T B̄
−B̄T 0




∇H(p(t),∆(t)) +





d(t)

0




. (14)

3 Deviation Bounds in Undirected Networks

It will be shown, that the upper bound of the deviations
depends on λmin(L̄).
Theorem 2 Consider the system (9) and (8) with a constant
reference x∗. Then,

(i) the autonomous system is asymptotically stable, and
(ii) for L2 disturbances, the deviations are bounded by

|x(t) − 1x∗|2 ≤|x(0) − 1x∗|2 + ‖d(·)‖2

mini(Aii)λmin(L̄)
. (15)

PROOF. (i): Using H(x(t)) as a Lyapunov function yields

Ḣ(x(t)) = −(x(t) − 1x∗)TB̄AB̄T(x(t) − 1x∗) ≤ 0, which im-
plies Lyapunov stability due to A > 0. Asymptotic stability
follows by the invariance principle, Khalil (2001).

(ii): For (9) and setting y(t) = x(t)− 1x∗, similar steps as

above lead to Ḣ(x(t)) = (x(t) − 1x∗)T(−B̄AB̄T(x(t) − 1x∗) +

d(t)) ≤ −mini(Aii)λmin(L̄)|y(t)|2 + yT(t)d(t). Then,

Ḣ(x(t)) ≤ − mini(Aii)λmin(L̄)

2
|y(t)|2 + 1

2 mini(Aii)λmin(L̄)
|d(t)|2

−mini(Aii)λmin(L̄)

2
·
∣
∣
∣
∣
∣
∣
y(t) − 1

mini(Aii)λmin(L̄)
d(t)

∣
∣
∣
∣
∣
∣

2

≤ 1

2 mini(Aii)λmin(L̄)
|d(t)|2. (16)

Integrating (16) and replacing H(x(t)) yields (15). �

Theorem 3 Consider the system (14) and (13) with a ramp
reference such that ẋ∗(t) = p∗ = const. Then,

(i) the autonomous system is asymptotically stable, and
(ii) the deviation vectors are bounded according to

|p(t) − 1p∗|2 ≤|p(0) − 1p∗|2 +max
i

(Aii)|∆(0)|2

+
‖d(·)‖2

mini(Rii)λmin(L̄)
(17)
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|∆(t)|2 ≤
|p(0) − 1p∗|2 +maxi(Aii)|∆(0)|2 + ‖d(·)‖2

mini(Rii)λmin(L̄)

mini(Aii)
.

(18)

PROOF. (i): Using H(p(t),∆(t)) in (13) as a Lyapunov

function candidate and computing its time derivative yields
Ḣ(p(t),∆(t)) = −∇T

pH(p(t),∆(t))B̄RB̄T∇pH(p(t),∆(t)) ≤ 0.

This implies Lyapunov stability as B̄RB̄T > 0. Asymptotic
stability follows by the invariance principle, Khalil (2001).

(ii): For (14), taking the derivative of H(p(t),∆(t))

and setting y(t) = ∇pH(p(t),∆(t)) yields Ḣ(p(t),∆(t)) ≤
−λmin(B̄RB̄T)|y(t)|2 + yTd(t) ≤ −mini(Rii)λmin(L̄)|y(t)|2 +
yTd(t). Since R,L̄ > 0, following similar steps as in (16)
leads to Ḣ(p(t),∆(t)) ≤ 1

2 mini(Rii)λmin(L̄)
|d(t)|2. With (13),

H(p(t),∆(t)) ≤
|p(0) − 1p∗|2

2
+max

i
(Aii)
|∆(0)|2

2

+
‖d(·)‖2

2

2 mini(Rii)λmin(L̄)
(19)

Substituting H(p(t),∆(t)) leads to (17) and (18). �

Remark 4 (Selection of pinned nodes) Analytical results
showing the impact the pinning of specific nodes on λmin(L̄)
are far from trivial. Hao & Barooah (2013) discussed the
eigenvalues of L̄ for line graphs. Patterson & Bamieh
(2010) showed that the steady state variance of the devia-
tion is governed by the trace of L̄. Lu et al. (2010) shows
that the smallest real part of eigenvalues of the Laplacian
sub-matrix corresponding to the unpinned vertices can be
used to measure the stabilizability of a network.

4 Convergence Rate in Undirected Networks

The decay rate in networks of first order agents with a
constant reference is bounded by λmin(L̄).
Theorem 5 (Wang & Chen (2002)) Consider the system
(9) and (8) with a constant reference x∗. Then, there exists a

M < ∞ s.t. |xi(t)−x∗| ≤ Me−mini(Aii)λmin(L̄)t, ∀i ∈ {1,2, . . . ,na}.
Similar to the first order agents case, the decay rate of

some networks of second order agents is also governed by
λmin(L̄); but the deviations decay with half the rate.
Theorem 6 Consider the system (12) and (13) with a ramp
reference such that ẋ∗(t) = p∗ = const.. Assume that there
exists a finite constant γ > λmin(B̄RB̄T)/4 such that A =
γR. Then, there exists a M < ∞ such that |pi(t) − p∗| ≤
Me−

mini(Rii )λmin(L̄)

2
t and |∆i(t)| ≤ Me−

mini(Rii )λmin(L̄)

2
t for all pi(t) for

i ∈ {1, . . . ,na} and ∆i(t) for i ∈ {1, . . . ,np + ne}.

PROOF. With ξ(t) =: p(t) − 1p∗, the system dynamics are





ξ̇(t)

∆̇(t)




=





−B̄RB̄T B̄A

−B̄T 0





︸           ︷︷           ︸

Φ





ξ(t)

∆(t)




. (20)

It is well known that the convergence rate of the system
depends on the eigenvalue of Φ with the largest real part,
Kailath (1980). Since Φ < 0, the convergence rate is gov-
erned by the eigenvalue closest to the imaginary axis. Note
that B̄RB̄T > 0. Assuming the algebraic multiplicity equals
the geometric multiplicity for all eigenvalues of B̄RB̄T, de-
noted λ1, . . . ,λna

, there exists an invertible matrix T such
that B̄RB̄T

= TΛT−1 with Λ = diag{λ1, . . . ,λna
}. Then,





T−1 0

0 Ine+np




Φ





T 0

0 Ine+np




=





−Λ T−1B̄A

−B̄TT 0




(21)

The roots of the polynomial det(sIna+ne+np
− Φ) are the

eigenvalues of Φ, which are equivalent to the eigenvalues
of the matrix in (21). Hence, using the Schur comple-
ment yields det(sIna+ne+np

− Φ) = det(sIne+np
)det(sIna

+ Λ +

T−1B̄A(sIne+np
)−1B̄TT ) = det(s2Ina

+ sΛ + T−1B̄AB̄TT ) =

det((sIna
+
Λ

2
)2− Λ2

4
+T−1B̄AB̄TT ). It will be shown, that the

eigenvalues of Φ are complex conjugate with the real part

being half the eigenvalues of −B̄RB̄T. Setting s = − λ1

2
+ jω1

and using A = γR yields

det





(

diag

{

−λ1

2
+
λ1

2
, . . . ,−λ1

2
+
λna

2

}

+ jω1Ina

)2

− diag






λ2
1

4
, . . . ,

λ2
na

4





+ T−1B̄AB̄TT





= det



diag

{

0,−λ1

2
+
λ2

2
, . . . ,−λ1

2
+
λna

2

}2

− ω2
1Ina

+ jω1diag
{
0,−λ1 + λ2, . . . ,−λ1 + λna

}

− diag






λ2
1

4
, . . . ,

λ2
na

4





+ γdiag

{

λ1, . . . , λna

}



 . (22)

Since γ > λmin(B̄RB̄T)

4
, γλ1 −

λ2
1

4
> 0. For ω1 =

√

γλ1 − λ2
1
/4

the first row in the matrix above is zero. This implies that

the determinant is zero, which confirms that − λ1

2
+ jω1 is an

eigenvalue ofΦ. This argument can be repeated for all eigen-
values of B̄RB̄T. Thus, the real part of the largest eigenvalue
of Φ is −λmin(B̄RB̄T)/2. Using Kailath (1980) this implies
that the states decay exponentially with rate−λmin(B̄RB̄T)/2.
Then, λmin(B̄RB̄T)) ≥ mini(Rii)λmin(L̄) yields the result. �

Remark 7 Theorems 5 and 6 reveal that the convergence
rates are governed by λmin(L̄). But, given the same graph
structure, networks of second order agents will converge
significantly slower. The minimal eigenvalue, which bounds
the decay rate, is the same that also bounds the deviations
as discussed in Section 3. Hence, choosing to pin a network
such that λmin is as farthest away from the imaginary axis
as possible is beneficial for both important performance
criteria: deviation bounds and convergence speed.
Remark 8 It should be noted that Theorem 6 only holds
if A = γR. In order to bound the convergence rate only
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Figure 1. Example 1: Graph of Network Structure
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Figure 2. Example 1: x(t) for first order agents; and p(t) and ∆(t)
for second order agents (i = 1 in red, i = 2 in orange, . . . , i = na

or i = np + ne, in purple) when pinning node 7 (left) or 4 (right).

on the basis of the underlying graph, it is hence necessary
to choose a fixed ratio between A and R. Further, R must
be sufficiently small ensuring that the system oscillates. In
order to avoid the exponentially decaying oscillations, the
damping has to be chosen large enough implying that the
system does not oscillate but decays with a slower rate.

5 Examples

Example 1: The first example studies the network in
Fig. 1. The incidence matrix of the unpinned network is
B = (1, 0, 0, 0, 0, 0, 0;−1, 1, 1, 0, 1, 0, 0; 0,−1, 0, 1, 0, 0, 0; 0,
0,−1,−1, 0, 1, 0; 0; 0, 0, 0,−1, 0, 0; 0, 0, 0, 0, 0,−1, 1; 0, 0, 0,
0, 0, 0,−1). The worst or best choice is to pin 7 or 4 as
λmin(L̄) = 0.0533 or λmin(L̄) = 0.1067, respectively. First,
consider (9), (8) with A = I and x∗ = 1. Second, consider
(12) (13) with A = R = I and p∗ = 1. The effect of pinning
7 vs 4 can be observed in the simulations shown in Fig. 2:
When pinning 4, the deviations are smaller and decay faster
compared to pinning node 7. Further, the decay rate for first
order systems is higher than in second order systems.

Example 2: The second example examines a string of
11 vehicles. In the first scenario, all vehicles are only con-
nected to their direct neighbours with A = R = I and a
reference with p∗ = 1. The first vehicle is pinned such that
λmin(L̄) = 0.018628. d(t) is a random vector times an expo-
nentially decaying function. In the second scenario, the ref-
erence is connected to the middle vehicle. Then λmin(L̄) =

p
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Figure 3. Example 2 : p(t) and ∆(t) (as defined in (10)) (i = 1
in red, i = 2 in orange, . . . , i = na or i = np + ne, in purple)
when pinning node 1 (top), node 6 (middle) or with additional
connections and pinning node 1 (bottom).

0.045157. Hence, when applying the same disturbance vec-
tor, the resulting deviation are smaller compared to the first
scenario and the convergence rate is improved significantly.
The minimal eigenvalue of the extended Laplacian can also
be increased by adding more links to the string graph: For
instance, in Scenario 3, each vehicle communicates with the
two preceding and the two following vehicles and first vehi-
cle is pinned, such that λmin(L̄) = 0.048566. Hence, the de-
viation bounds and the decay rate in this scenario are similar
to the second scenario. However, the third scenario requires
9 additional links. The simulation result are shown in Fig. 3.

6 Conclusions

We studied deviation bounds and the convergence rate of
pinned undirected networks of first or second order agents.
It was shown that the upper bound of the deviations from
the equilibrium depends on the minimal eigenvalue of the
extended Laplacian matrix of the pinned network, λmin(L̄).
Further, it was shown that the rate of convergence in some
classes of networks of second order agents also depends on
λmin(L̄). In contrast to first order agents, the rate is halved.

Future extensions of this work should include directed
networks, should aim at relaxing the assumption in Theo-
rem 6 and investigate how to efficiently determine which
nodes should be pinned to maximise λmin(L̄). Further, suit-
able local controllers to guarantee the existence of uniform
deviation bounds should be designed.
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