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Overview: Collective Control of Multi-agent Systems
Steffi Knorn, Zhiyong Chen, and Richard Middleton

Abstract—Collective control of a multi-agent system is concerned
with designing strategies for a group of autonomous agents operating
in a networked environment. The aim is to achieve a global control
objective through distributed sensing, communication, computing,
and control. It has attracted many researchers from a wide range of
disciplines, including the literature of automatic control. The present
paper aims to give a general framework that is able to accommodate
many of these outcomes. Within this framework, the development
on this topic is systematically reviewed and the representative
outcomes can be sorted out from four aspects: (i) agent dynamics, (ii)
network topologies, (iii) feedback and communication mechanisms,
and (iv) collective behaviors. Thus, the state-of-the-art approach and
technology is described. Moreover, within this framework, further
interesting and promising directions on this research topic are
envisioned.

Index Terms—Multi-agent systems, networked systems, collective
control, collaborative control, autonomous agents

I. INTRODUCTION

A multi-agent system refers to a group of autonomous agents

operating in a networked environment. Control engineers are

interested in designing strategies for a multi-agent system to

achieve certain global control objective through distributed sens-

ing, communication, computing, and control. Small multi-agent

systems are exemplified by formation of unmanned aircraft ve-

hicles and cooperative microrobots. Large multi-agent systems

include smart grid, traffic networks, sensor networks, biological

systems and social networks. Common global control objectives

include consensus, synchronization, formation, etc.

The most important feature of multi-agent systems is their

autonomous nature, which demands distributed operations. It is

this feature that allows a multi-agent system to be scalable in the

sense that, when the network size increases, similar global control

objectives can still be achieved without increasing the complexi-

ties for sensing, communication, computing and control. In order

to achieve the required global control objective, a communication

network is essential for agents to share information among their

neighbors.

Collective control of multi-agent systems has attracted a great

deal of research over recent decades. Surveys on the topic include

[1], [2], [3], [4] and books include [5], [6], [7], [8], [9], [10], [11],

[12]. The present paper aims to systematically review these results

in a general framework. This framework allows the organisation

of existing results and the identification of important gaps in our

current understanding.

In what follows, the general framework will be introduced and

then the research results within the framework will be elaborated
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from four aspects in Sections II-V. Finally, more interesting and

promising research directions are envisioned in Section VI.

Usually, the dynamic behavior of an individual system is

described by its trajectory in the time dimension denoted by

a vector function x(t) of time t. When a system of multiple

agents is considered, however, a network dimension is added to

its dynamic behavior. Specifically, the system behavior is denoted

by a vector function x1(t, k) of both time t and agent index k.

Here, t ∈ [0,∞) is the time variable in a continuous time setup

or t = 0, 1, 2, · · · represents sequential time instants in a discrete

time setup. The group of agents is labeled by k = 1, 2, 3, · · · .
Additionally, let x2(t, k) be the network influence, i.e., the

external input originated from network, for the agent k. Now, the

dynamic network behavior can be described in terms of x1(t, k)
and x2(t, k) in two dimensions, i.e., the time dimension and the

network dimension. In this sense, the model is termed as a two-

dimensional (2D) model.

On the one hand, the system dynamics in the time dimension

are represented by the following equation

δx1(t, k) = f(x1(t, k), x2(t, k), t, k) (1)

where the operator δ is defined as follows

δx1(t, k) :=

{

dx1(t, k)/dt, continuous time

x1(t+ 1, k)− x1(t, k), discrete time
.

On the other hand, the influence in the network dimension is as

follows

∆x2(t, k) = g(x1(τ(t, k), n(t, k)), t, k) − x2(t, k − 1) (2)

where

∆x2(t, k) = x2(t, k)− x2(t, k − 1).

The vector n(t, k) in (2) denotes the neighbors of k at time t;
and the vector τ(t, k) denotes the (element-wise) corresponding

time at which the state of the agent n(t, k) is measured and

contributes as network influence. In most scenarios, the network

influence x2(t, k) is statically determined by the state of neighbor

agents. In other words, the influence does not propagate in

network dimension. This property is characterized by the term

−x2(t, k − 1) in (2) such that it reduces to

x2(t, k) = g(x1(τ(t, k), n(t, k)), t, k). (3)

For two vectors a = [a1, · · · , ar]
T and b = [b1, · · · , br]

T, we

denote x1(a, b) := [xT

1
(a1, b1), · · · , x

T

1
(ar, br)]

T.

Clearly, in a control design scenario, the system dynamics

in (1) consist of plant dynamics and a designed controller.

In particular, the state x1(t, k) is decomposed by x1(t, k) =
[ξT(t, k), ζT(t, k)]T where ξ(t, k) is the plant state and ζ(t, k) the

controller compensator state. With the corresponding decompo-

sition of f , (1) is equivalent to the plant model

δξ(t, k) = fo(ξ(t, k), x2(t, k), t, k, u(t, k)) (4)
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and the controller

u(t, k) = γ(x1(t, k), x2(t, k), t, k)

δζ(t, k) = η(x1(t, k), x2(t, k), t, k). (5)

Note that the controller (5) explicitly depends on the network

influence x2(t, k) for achieving a desired collective behavior.

However, the function fo in (4) usually does not explicitly depend

on x2(t, k) for an autonomous agent unless passive network

coupling exists among the agents. The control design problem is

to find the functions γ and η in (5), under prescribed constrains,

such that the system state x1(t, k) satisfies desired requirements

in both time and network dimensions.

Within the aforementioned framework, we will review the

research outcomes in the literature from four perspectives: (i)

agent dynamics represented by the function fo in the model (4);

(ii) network topologies, i.e., the neighborhood function n(t, k) in

(2); (iii) feedback and communication mechanisms that describe

how neighbors influence an agent’s dynamics through the mea-

surement function g and the measurement time vector τ(t, k) in

(2); and (iv) desired collective behaviors.

II. AGENT DYNAMICS

In this section, the review focuses on the agent dynamics

represented by the function fo in the model (4). From this aspect,

the research works can be categorized according to linearity and

homogeneity of agents.

A. Linear Homogeneous Network

1) Fundamentals: In the simplest, homogeneous case, a group

of N identical agents is considered in a continuous-time setup

with (4) having a special single-integrator form

dξ(t, k)

dt
= u(t, k), k = 1, · · · , N. (6)

The controller (5) and the network influence (2) typically take

the form

u(t, k) = x2(t, k) =

N
∑

j=1

akj(t) (ξ(t, j)− ξ(t, k)) (7)

where akj(t) is the (k, j)-th entry of the corresponding adjacency

matrix A(t) which describes the connection graph among the

agents. A Laplacian matrix L(t) can be defined based on A(t)
such that

dξ(t)

dt
= −L(t)ξ(t), ξ(t) = [ξ(t, 1), · · · , ξ(t, N)]. (8)

A brief introduction on graphs, adjacency matrix, and Laplacian

matrix can be found for instance in [13], [14]. The motivation to

use (7) is that each agent converges towards the weighted average

of the states of its neighbors. Such a collective behavior, called

consensus, is described in the time dimension, i.e., along the

direction t → ∞ only. It is not concerned with the performance

evolution in the network dimension, in particular, as the length

of the network dimension is finite, denoted by N . A number

of results established consensus of single-integrator systems and

also more general double-integrator systems if the underlying

directed graph satisfies an appropriate connectivity condition, see

for instance [15], [16], [17], [18], [19], [20]. The most general

form of this condition involves a directed spanning tree of a union

of the time varying graph topologies, see for instance [13], [19],

[21].

A number of extensions to this basic problem with single or

double integrator dynamics have been studied for the general

linear homogeneous systems

dξ(t, k)

dt
= Aξ(t, k) +Bu(t, k), y(t, k) = Cξ(t, k), (9)

where A, B and C are constant matrices of appropriate dimen-

sion. A range of references (see for example [22], [23], [24], [25])

focused on finding feedback control laws such that consensus

(in terms of the outputs y(t, k)) can be achieved. Discrete-time

systems were studied in, e.g, [26] and [27].

In the standard consensus problem the network communication

graph is described by an adjacency matrix A with nonnegative

weights. The authors of [28] derived necessary and sufficient

conditions for a network including antagonistic interactions (mod-

elled as negative weights on the communication graph) to reach

bipartite consensus, in which all agents converge to a value which

is the same for all in modulus but not in sign.

2) Controllability and observability: To study reachability and

controllability of a network, assume that a subset of nodes

Ic ⊂ {1, · · · , N} can be controlled by an external input µ(t),
in addition to the local control input in (7). For a network of

single integrators as in (8), adding µ(t) leads to

dξ(t)

dt
= −Lξ(t) + Bµ(t) (10)

where B describes the influence of the external input onto the

vector of agent sates ξ(t). To enable the study of observability,

assume that an external processor collects information from a

subset of nodes Io ⊂ {1, · · · , N}, that is,

η(t) = Cξ(t) (11)

where the output matrix C relates the information gathered from

the processor to the vector of agent states. The processor aims to

reconstruct the state of the entire network from η(t).
Reachability and controllability of a network with first order

dynamics and a single control node case was first introduced in

[29]. This work gives a necessary and sufficient condition for

network controllability by selecting a specific node as leader.

Necessary conditions for controllability based on algebraic graph

tools and the notion of equitable partitions of a graph were

published in [30], [31], [9]. In [32] the same methodologies

were used to study observability of general graphs. The authors

proposed an estimation method based on the consensus algorithm

and linear control theory and gave necessary observability condi-

tions. While these results provide necessary conditions for general

graphs, [33] and [34] provide necessary and sufficient conditions

to characterize all and only the nodes from which the network

system is controllable (reachable) or observable. Controllability

of networks with a switching communication topology, with L
in (10) replaced by L(t) explicitly depending on t, was studied

in [35] showing that a controllable switched network can be

made up of uncontrollable subsystems. Necessary and sufficient

conditions to ensure controllability of systems with time delays

and switching topologies were derived in [36].
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3) Dynamic average consensus: In the model (10), µ(t) can

also be regarded as time-varying reference signals to the agents.

In this case, the problem that the agents aim to track the average

of individually measured reference signals is referred to as

dynamic average consensus in opposition to the static consensus

discussed before. In other words, a snapshot of the input vector

µ(t) is used to initialize the agent states in static consensus, after

which the input is ignored, resulting the dynamics (8).

The early work was found in [37] using frequency domain

analysis to guarantee zero steady-state error for ramp references.

Other continuous-time algorithms can be found in [38], [39], [40]

with robustness with respect to initialization errors. In [41], a dis-

continuous control algorithm was proposed for tracking bounded

signals with bounded derivatives. Discrete-time approaches were

studied in [42], [43] where bounds on the step size are computed

for a desired steady-state consensus error. The further result in

[44] studies robustness to initialization errors.

4) Robustness: Robust stability of multi-agent systems has

been studied in [45] considering three different types of mul-

tiplicative perturbations. The results imply for instance that one

of the worst case perturbations is an identical diagonal pertur-

bation. Robust consensusability of networks of coupled single

integrators subject to communication noise has been studied in

[46]. It is shown that the problem is closely related to H2 norm

measures: systems with lower H2 norms will remain closer to the

consensus despite the presence of noise. A robust synchronization

protocol to synchronize a network of controlled discrete-time

double integrators with unknown model parameters and subject

to additive measurement and process noise was proposed in [47].

Robust synchronization of networks of general linear input-output

systems subject to additive perturbations of the transfer matrices

is studied in [48]. A dynamic protocol that synchronizes the

network for all additive perturbations within a given tolerance

is designed.

Note that the robustness with respect to sampled or quantized

measurement and input or feedback delays is further studied

in Sections IV-B and IV-C. Some results studying robustness

of heterogeneous or nonlinear networks are also discussed in

Sections II-B and II-C.

B. Linear Heterogeneous Network

When studying heterogeneous dynamics, it is assumed that

the dynamics of agent k are described by the local state space

representation Ak, Bk, and Ck (instead of a general A, B,

and C in (9)). This class of problem is usually referred to as

a “synchronization problem”. In the consensus literature, the

system models are usually simple integrators and the focus lies

on the communication graph, the traditional synchronization liter-

ature focusses on the individual dynamics (see the classification

in, e.g., [22]). Recently, researchers aim to jointly study both

individual dynamics (e.g. heterogenous and nonlinear agents) and

communication graphs. Two typical research approaches are listed

below.

1) Cooperative output regulation problem: The problem is

formulated by the heterogeneous version of (9) subject to the

exogenous signal v(t), i.e.,

dξ(t, k)

dt
= Akξ(t, k) +Bku(t, k) + Ekv(t),

y(t, k) = Ckξ(t, k) + Fkv(t). (12)

Specifically, v(t) represents the reference input to be tracked or

the disturbance to be rejected and it is generated by an exosystem

v̇(t) = Sv(t). The objective is to design a distributed controller

to guarantee asymptotic stability for v = 0 and the local tracking

error y(t, k) approaches zero for all k. The problem is different

from a general synchronization/consensus problem in the sense

that the final trajectory for each agent is specified by a real

exosystem. A subset of the N agents are permitted access to

the exogenous signal v for feedback control. The exosystem

acts as the leader which all subsystems of the plant aim to

follow. The cooperative output regulation problem of linear multi-

agent system has been studied using feedforward control in [49],

[50]. However, this method is unsuitable when investigating plant

uncertainties for the agent dynamics. Therefore, the robust version

has been studied in [51], [52] using an internal model approach.

2) Virtual exosystem approach: The general synchroniza-

tion/consensus problem of heterogeneous version of (9), i.e.,

dξ(t, k)

dt
= Akξ(t, k) +Bku(t, k), y(t, k) = Ckξ(t, k) (13)

has been also studied by a virtual exosystem approach. The

controller takes a special form of (5), i.e.,

u(t, k) = Hkζ(t, k) +Kkx2(t, k)

dζ(t, k)

dt
= Fkζ(t, k) +Gkx2(t, k) (14)

where x2(t, k) is in a special form of (3), i.e.,

x2(t, k) = Pk

N
∑

j=1

akj(y(t, j)− y(t, k)). (15)

It was shown in [53], [54] that it is necessary and sufficient for

synchronization that all individual systems are able to track the

same virtual exosystem v̇(t) = Sv(t), that is, the model of each

individual system together with its local controller must embed

an internal model of the virtual exosystem. Since the exosystem

only exists as part of the individual system and its controller

it is therefore referred to as a virtual exosystem. An alternative

development was studied in [55] when system uncertainties are

also taken into consideration. A similar idea was discussed in

[56] that in order to synchronize heterogeneous agents on some

trajectory, all agents together with their local controller must

include the model of the reference trajectory.

C. Nonlinear Dynamics

The early research on synchronization was mainly for sim-

ply coupled nonlinear systems. The complexity is from nonlin-

ear characteristics. Typical examples include synchronization of

chaotic coupled networks; see [57], [58], [59], among a huge

number of others. Relevant works were also found in research

of nonlinear oscillator theories including the Malkin theorem for

phase coupled oscillators [60], multivariable harmonic balance

[61], and the contraction analysis for global convergence[62].
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The complexity of these works is not from network structures.

When more attention is paid on complex networks, there have

arisen a large body of works, e.g., [63], [64], focusing on

synchronization of complex networks (such as scale-free or small

world networks) where network nodes are described by nonlinear

dynamics.

The synchronization/consensus problem studied for nonlinear

multi-agent systems is different from that for conventional “com-

plex networks” although there is no strict division. Specifically,

the former is more concerned with control design methodologies.

For instance, it aims to seek a decentralized controller u(t, k) for

a multi-agent system of time-varying nonlinear dynamics

dξ(t, k)

dt
= φ(ξ(t, k), t) +Bu(t, k), (16)

with a nonlinear function φ, such that collaborative behavior is

achieved under a certain network topology.

A number of results depend on some restrictions on nonlinear-

ities. For example, the consensus problem has been studied under

a class of globally Lipschitz condition

‖φ(ξ1, t)− φ(ξ2, t)‖ ≤ ρ‖ξ1 − ξ2‖, ∀ξ1, ξ2. (17)

It was shown in [65] that a simple linear controller relying only

on information from direct neighbors still guarantees stability for

first order systems. The result also holds for second order systems

[66], [67] and more general systems [68], [69]. Within the same

setup, the globally Lipschitz condition can be removed when

a consensus problem is studied with semi-global stability [70].

Nonlinear protocols were also studied in [71] for the dynamic

average consensus problem discussed in Section II-A3 when the

nonlinearities satisfy a modified Lipschitz condition.

For a network of agents with nonlinear heterogeneous dynam-

ics of the form

dξ(t, k)

dt
= φk(ξ(t, k), t) + ϕk(ξ(t, k), t)u(t, k),

y(t, k) = hk(ξ(t, k)), (18)

velocity consensus controllers based on an input-output passive

assumption were proposed in [72]. The design of simple but

robust output feedback controllers to achieve position consensus

was studied in [73]. The paper deals with nonlinear heterogeneous

agents with relative degree two and stable zero-dynamics, that

satisfy local and global passivity assumptions. Suitable controllers

were proposed in [74] to guarantee that a network with agents

that are input-output passive with a radially unbounded positive

definite storage function and a strongly connected communication

graph reaches output consensus.

There are other approaches for dealing with multi-agents with

nonlinear heterogeneous dynamics. Nonlinear controllers were

designed for second order systems in [75], [76] using adaptive

control and small gain theorem, respectively, without imposing

the aforementioned global Lipschitz or passivity assumption. The

results presented in [77] for a group of linear cooperative systems

can be applied to nonlinear systems [78] if the cooperative

control Lyapunov function designed for the linear systems also

satisfies special differential inequalities. A Lyapunov technique

is used in [79] studying the synchronization of distributed non-

identical unknown nonlinear dynamics to prescribed nonlinear

and unknown target dynamics.

The synchronization problem was also discussed for the special

nonlinear heterogeneous systems described by Euler-Lagrange

equations. For example, [80] developed suitable estimation and

control strategies to track a dynamic leader. The controllers

proposed in [81], [82] guarantee synchronization or flocking of

Euler-Lagrange systems with uncertain kinematics and dynamics

or uncertain parameters, respectively. Distributed adaptive control

algorithms were proposed in [83] to ensure synchronization using

velocity information only. More research on this topic dealing

with delays will be further discussed in Section IV-C.

Recently, more systematic approaches have been proposed for

synchronization of complicated nonlinear heterogeneous multi-

agent systems, e.g., in lower triangular form. For example, the

cooperative output regulation in Section II-B1 has been gen-

eralized to this scenario in, e.g., [84], for a leader-following

network. However, a group of multiple agents is treated as a bulky

multiple-input multiple-output system and the design approach is

centralized.

The virtual exosystem approach in Section II-B2 also has its

development for nonlinear systems. The simple extension beyond

[53] can be found in [85] under some conditions applied to

the nonlinearities. More complicated situations were reported in

[86], [87], [88], [89]. A common procedure for these works is a

two-step manner thanks to properly designed reference models:

(1) regulation of each individual agent’s output to its reference

model, and (2) consensus of reference models. Specifically, each

reference model must embed a virtual exosystem that describes

the desired synchronization pattern. The resulting regulation

problem was studied in [86] using feedforward design. The robust

case was further investigated using the internal model principle. In

[87], the internal model for each agent is based on the centralized

network of all reference models. The beauty of the approach in

[88], [89] is that the internal model for each agent can be done

individually in a completely decentralized manner.

III. NETWORK TOPOLOGIES

Whether a distributed network reaches consensus using a

decentralized control law strongly depends on the topology of

the communication network among the agents. The research on

network topologies is concerned with the characteristics of the

neighboring function n(t, k) in (2). For fixed topologies, the

function n(t, k) does not depend on t; for switching topologies,

the function n(t, k) varies with t but takes values only from a

finite set; and for time-varying topologies, the function n(t, k)
is defined more generally, usually relying on the network sta-

tus. Also, the special leader-follower topology and research on

preservation of connectivity are discussed in this section.

A. Fixed Topologies

It was shown in [15] that, for an undirected network of double-

integrators, velocity consensus can be achieved if the fixed graph

is connected. Later, [18] systematically analyzed the problem that

a network of single-integrators reaches average consensus if the

graph is connected (undirected network) or strongly connected

and balanced (directed network). The problem was also studied

in [13] that with a fixed topology and constant weighting factors,

a directed network of first order dynamics asymptotically achieves
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consensus if and only if the graph has a spanning tree. The result

was extended to a directed network of second order dynamics in

[19], [20].

Some networks with fixed topologies in specific forms were

studied in the literature. The authors of [33], for example,

investigated the reachability and observability properties of a

network system focussing on cases where the communication

graph is a path or a cycle. A necessary and sufficient condition

was published in [90] for diagonal stability for systems with a

“cactus” structure (i.e. a pair of distinct simple circuits have at

most one common vertex). The authors of [91] investigated how

to reconstruct a tree-like topological structure of a network of

linear dynamic systems.

B. Switching Topologies

In a network of distributed agents, a certain number of edges

may be added or removed from the graph under varying cir-

cumstances, which results in non-fixed topologies. In the area of

non-fixed topologies, the term “switching topologies” describes

the case where the topology changes over time but only switches

between a finite, known set of distinct communication graphs. In

contrast, “time-varying topologies” include all networks where an

infinite set of arbitrary graph structures is considered.

The paper [18] also studied directed networks with switching

topologies (apart from a fixed topology, see Section III-A).

Consider a finite collection of strongly connected and balanced

digraphs. A network of simple-integrators with switching topolo-

gies taken from the collection can asymptotically achieve av-

erage consensus for any switching signal. A weaker condition

was proposed in [13] showing that consensus can be achieved

asymptotically if the union of the collection of interaction graphs

across some time intervals has a spanning tree frequently enough.

The result was extended to a network of double-integrators with

an undirected graph in [92].

C. Time-varying Topologies

One of the most interesting (and well studied) scenarios

resulting in time-varying topologies is the so-called “nearest

neighbor rule”. Each agent interacts with all and only all agents

within its limited sensing/communication radius. Such networks

always have an undirected neighborhood graph. (In this sense,

these results were weaker than those for directed networks with

switching topologies discussed above.)

In [93], Vicsek et al. proposed a simple but compelling

discrete-time model of autonomous agents using nearest neighbor

rule. A theoretical analysis of discrete-time (linearized) Vicsek

model can be found in [17]. It shows that consensus is achieved

if there exists an infinite sequence of continuous, nonempty, and

bounded time intervals such that the union of the collection

of time-varying undirected graphs across each time interval is

connected (called joint connectivity condition). Consensus of a

network of continuous-time double-integrators with time-varying

topologies due to a nearest neighbor rule was also studied in [16].

It was proven that as long as the graph remains connected at all

times, the network achieves consensus regardless of switching in

the neighborhood graph.

More complex flocking behavior in lattice-shape was studied

for the same network in [94] also assuming the network is

connected at all times. The problem was further studied in

[95] considering a weaker joint connectivity condition. Some

variations of the joint connectivity condition defined by the

integral of adjacency matrix over a certain time interval were

studied in [96], [97]. Other than the joint connectivity condition,

it was also proved in [98] that convergence (not necessarily to

consensus) can be guaranteed if the time-varying topologies are

cut-balanced: if a group of agents influences the remaining ones,

the former group is also influenced by the remaining ones by at

least a proportional amount.

Time-varying topologies can also be caused by active network

weight tuning. To guarantee stability in complex networks, adap-

tive strategies are proposed to appropriately tune the strengths of

the interconnections among network nodes, see, e.g., [99], [100].

D. Leader-Follower Topology

In the networks discussed above described by directed graphs,

the leader following scenario can be seen as a special case. In

case there exists one agent in the group without any incoming

links, this agent can be regarded as the leader of the network.

The existence of a leader is essential in some scenarios such

as distributed tracking control of multi-agent system where the

reference trajectory is set by an active leader. The authors in

[101], [102] designed a suitable neighbor-based local controller

together with a neighbor-based state-estimator to track an active

leader whose velocity is unknown to the agents. Other researchers

proposed suitable distributed tracking control laws for networks

of first-order agents [103] and general linear systems [104], [105].

The work in [106] studies the tracking problem of a dynamic

virtual leader via a variable structure approach considering that

only partial measurements of the states of the leader and the

followers are available.

Several results are available for robust leader-following algo-

rithm design subject to measurement noise (e.g., [107]), model

uncertainties (e.g., [80], [108]) or delays (e.g., [109]). Note

that in the cooperative output regulation problem studied in

Section II-B1, the exosystem acts as the leader which all the

agents aim to follow.

In leader-follower topologies, some authors developed consen-

sus algorithms based on so-called “pinning control”. This refers

to the approach that only a small fraction of agents have access to

the reference state. These can be regarded as leaders or they are

pinned by other leaders. Some examples of pinning control for

networks of single integrators can be found in [110], [111] and

double integrators in [20]. One of the most interesting problems

in the area of pinning control of complex networks is to choose

the best set of pinned nodes (see, e..g, [112], [67]).

E. Preservation of Connectivity

It has been discussed that different connectivity assumptions

are required to ensure consensus or synchronization of a network.

A more practical problem is how to ensure these assumptions, or,

how to preserve network connectivity. A simple idea is to define

a potential field and a control algorithm forces the network to

move in the direction of the negative gradient of the potential



6

field so that network connectivity can be preserved. A centralized

control approach (requiring global information of the underlying

graph) based on a potential field was developed in [113]. The

connectivity of the system is treated as an imaginary obstacle

in the free space, and artificial potential fields are used to avoid

collisions with it.

In [114], a distributed topology control protocol that decides

on both deletion and creation of communication links between

agents was designed. The distributed control law proposed in

[115] to ensure edge maintenance allows the control forces to

go towards infinity if the distance between two agents get close

to a critical distance (above which the link would break). To

avoid the infinite forces, bounded control laws were developed in

[116], [117], [118], [106]. Preservation of connectivity was also

studied as a part of network integrity (defined as the ability of

the network to support a desired communication rate) in mobile

robotic networks in [119].

Often, preservation of connectivity is studied together with

collision avoidance as both problems can be dealt with using

the same techniques. For example, potential functions can also

be used for designing a “repulsive potential force” for collision

avoidance. In [120], a control law was achieved by combining

a repulsive potential (to ensure collision avoidance) and an

attractive potential (to ensure convergence). A protocol was pre-

sented in [121], [122] to achieve flocking only requiring suitable

conditions on the initial states of the flock while, at the same

time, guaranteeing collision avoidance. The control law proposed

in [95] achieves uncrowded flocks with collision avoidance during

the entire evolution process through a repulsion mechanism.

However, for stationary obstacle avoidance, using repulsive po-

tential fields is usually a challenging task. A navigation function

using artificial potential fields was developed in [123], [124] to

navigate a robot through a field with spherical obstacles. The

navigation function framework was then extended to multi-agent

systems for obstacle avoidance in results such as [125], [126].

The navigation function in [127] is also suitable for stationary

obstacle avoidance while at the same time maintaining global

network connectivity. Potential fields or navigation functions are

also used in [128], [129] to achieve obstacle avoidance while

the agents must achieve a cooperative network objective such as

formation control or consensus.

Instead of applying the control laws discussed above to ensure

connectivity preservation, externally applied boundary conditions

(e.g. periodic boundary conditions and rebounding conditions)

can also be used for the same purpose. It was shown in [130]

that by applying periodic boundary conditions to a Vicsek model,

connectivity can be achieved. More general theoretical and ex-

perimental analysis can be found in [131], [132]. It was shown

that a group of agents in a bounded plane can be almost always

jointly connected and therefore form a complete flock.

IV. FEEDBACK AND COMMUNICATION

Feedback and communication mechanisms describe how neigh-

bors influence an agent’s dynamics through the measurement

function g and/or the measurement time vector τ(t, k) in

x2(t, k) = g(x1(τ(t, k), n(t, k)), t, k). Measurement output feed-

back control is concerned with the circumstances when an agent

state x1 is not completely measured or transmitted in the network.

So, the function g selects the available measurement output.

For sampled data control, the function τ(t, k) takes isolated

sampling instances; and for quantized control, the function g is

of a quantization form. A more general selection of τ(t, k) also

accommodates communication delays.

A. Measurement Output Feedback Control

In many realistic multi-agent systems, usually not all states

of all agents are measurable due to practical limitations or to

save costs. In these cases measurement output feedback control

becomes an important research topic. Usually an observer design

strategy for the agents is required. In the early paper [133], a

Nyquist criterion was used to study the observer design of a

linear homogeneous consensus problem. One special scenario of

measurement output feedback control covers networks of double

integrator dynamics without velocity information. In [101], [102]

a leader-follower system was studied when the leader velocity

is unknown. A more general undirected communication topology

was considered in [20] assuming that the double integrator agents

cannot access relative velocity measurements.

Two different design methods for double integrator systems

without velocity measurements and the additional requirement

that control inputs must be a priori bounded were proposed

in [134]. Connectivity preserving algorithms for networks with

switching topologies based only on position measurement outputs

were studied in [135]. The containment control problem (i.e. to

drive the followers into the convex hull spanned by the dynamic

leaders) was studied using only position measurements in [136].

The synchronization problem was also studied for spacecraft

systems without velocity measurements in [137], [138].

Research interest in consensus problem has also been devoted

to high-order agents. Some results such as [139], [140] require

the knowledge of all the states of neighboring agents. In [141]

the proposed control input has the same dimension as the cor-

responding state space. The output feedback consensus problem

was considered in [22]. Even though the exact measurements of

all states are not necessary, the proposed controller requires the

knowledge of all state estimates of the neighbors. Hence, the

quantity of the transmitted information needed is identical to the

state feedback case.

Various conditions guaranteeing consensus of linear homo-

geneous systems by static output feedback can be found in

[142]. How to construct a suitable dynamic output feedback

controller for more general consensus problems was studied

in a unified manner using observer-based compensator in [23]

(for homogeneous systems) and [54], [55] (for heterogeneous

systems).

B. Sampled and Quantized Control

In multi-agent systems sampled data are often only sent to the

neighbors periodically at discrete time instances. A framework for

studying consensus problem of multi-agent systems via sampled

control was introduced in [143] and [144] for a fixed topology

and switching topologies, respectively. Two sampled data based

discrete-time coordination algorithms were studied in [145] and

[146] which gave necessary and sufficient conditions on the

interaction graph, the damping gain and the sampling period to
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guarantee coordination. Independent and asynchronous sampling

times in a directed network of continuous-time second-order

agents were considered in [147], [148]. Hybrid dynamic system

theory was used in [149] to propose an allowable upper bound

of the sampling period for a network with random switching

topologies.

In fact, due to the bandwidth constraints in communication,

the data must not only be sampled but also quantized before

transmission. The authors of [150] proposed a quantized gossip

algorithm, that forces the network to converge to a set of quan-

tized consensus distributions for an arbitrary initial vector and

arbitrary connected graph. The term gossip algorithm describes

a control protocol where at each time instant exactly one agent

updates its state based on the information transmitted from only

one of its neighbors. The integer-valued gossip algorithm was also

studied in [151]. An extension of the gossip algorithm covering

cases where the quantization is uniform, and the initial values of

the agents are reals (as opposed to being integers) was studied

in, e.g., [152], [153].

The average-consensus problem with real-valued states and

quantized communications was also considered in other literature.

For instance, a critical quantizer accuracy (independent from

the network dimension) was also derived in [154] to guarantee

convergence, the finite-level quantization problem was discussed

in [155], a quantized-observer based encoding-decoding scheme

was designed in [156], and necessary and sufficient conditions on

sampling period and design parameters were obtained in [157].

C. Communication Delays

In realistic system settings, the exchange of information on a

network introduces delays between agents. These delays are often

disregarded in the analysis. Hence, it is an important question

whether known algorithms also achieve consensus in the presence

of delays, i.e. if the consensus is robust to delays. The three most

commonly studied delay models are constant delays, time-varying

delays and distributed delays.

The robustness of consensus in discrete-time single-integrator

multi-agent systems to arbitrarily large delays (bounded by some

arbitrary bound) was discussed for instance in [158] showing

that consensus is reached exponentially fast if the graphs are

repeatedly jointly rooted. In a similar problem setting [159]

proved that if there exists an arbitrary upper bound for which in

this time the union of graphs has a spanning tree, then consensus

is achieved.

For continuous-time networks with continuous-time communi-

cation, delay robustness has been investigated in the frequency

domain using small gain arguments or the generalized Nyquist

criterion. For instance, in [160] consensus is ensured if the

closed-loop transfer function of each agent has unit gain at DC

and gain strictly less than 1 elsewhere, the information graph

has a globally reachable node, and the information delays are

finite constants. In [161] necessary and sufficient conditions were

provided ensuring local or global exponential convergence for

finite delays and a closed form expression was derived for the

final consensus. In [162] scalable, simple, and accurate set-valued

conditions were provided for consensus and conditions were

derived for the convergence rate of a single integrator network

with feedback delays. The results are also suitable for nonlinear

coupling functions and switching topologies in [163].

In the time-domain, small-µ analysis has been used to study

delay robustness in [164] while [165] based their analysis on

integral quadratic constraints and [166] modelled a multi-agent

network as PDEs to mimic PDEs. However, these results consider

exclusively networks with fixed topologies.

Heterogeneous agents with heterogeneous delays were dealt

with in existing results. It was shown in [167] that for identi-

cal integrators with heterogeneous delays, consensus is robust

against any finite constant delays. The work in [168] presented

conditions for consensus of heterogeneous linear systems with

heterogeneous delays which are robust and scalable to unknown,

arbitrary large topologies and unknown, bounded delays. Net-

works of Euler-Lagrange systems with heterogeneous delays were

investigated in [169], [170], [171], etc.

Many researchers working in the field of consensus of multi-

agent systems with delays use sums of Lyapunov-Krasovskii

functionals or Lyapunov-Razumikhin functions. The former has

been applied to investigate single integrator networks in [172],

[173], multi-agent networks of passive agents or nonlinear agents

with relative degree one in [174], [175], and multi-agent systems

with relative degree two in [73]. The main disadvantage of

using Lyapunov-Krasovskii functionals is that the underlying

graph needs to be undirected or weight-balanced. Lyapunov-

Razumikhin functions are used to obtain results for more general

multi-agent systems of single integrators and directed, uniformly

quasi-strongly connected graphs in, e.g., [176].

V. COLLECTIVE BEHAVIORS

The discussion in the previous three sections focused on vari-

ations of consensus or synchronization behaviors of multi-agent

systems. Such behaviors are described in the time dimension,

i.e., along the direction t → ∞ only (in particular, the size of

the network dimension is finite, N ). In the time dimension, more

complicated collective behaviors, e.g., in formation, are discussed

in this section. Moreover, there exist some other research works

which are concerned with collective behaviors in both the time

dimension and the network dimension assuming the network size

may approach infinity.

A. Formation Control

In formation control one seeks to design a suitable controller to

ensure a group of agents move through space in an ordered man-

ner along a desired reference trajectory or path while sometimes

avoiding collisions with obstacles or other agents. For instance,

seeking to navigate a group of robots to waypoints, while avoiding

hazards and keeping formation, three different formation forms

(line, diamond, wedge) and two reference techniques (leader

reference, unit center) were compared in [177]. Three approaches

in formation control (leader following, behavioral approach and

virtual structure) were combined in [178] to control a formation

of spacecrafts.

In [179] it was shown that formation stabilization to a point is

feasible if and only if the sensor digraph is globally reachable.

Similar results were also obtained for formation stabilization to

a line and to more general geometric arrangements. Geometric
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conditions for feasibility of formations of non-holonomic vehicles

were presented in [180]. Later, a decentralized gradient control

law to stabilize a group of point mass robots to any formation

corresponding to an infinitesimally rigid framework was proposed

in [181].

In [182] and [183] formations of unicycles in cyclic pursuit

were considered. The objective is to find control laws such that a

group of agents rotates around a common beacon with the same

angular velocity and identical distances between neighboring

agents. Further discussions on problems of synchronization for

systems of particles modelled as kinematic unicycles can be

found in [184]. The results relay on an all-to-all communication

assumption. In [185], the same authors generalize their design

of artificial potentials such that the resulting control laws re-

spect the communication constraints. A similar formation control

problem was also studied in [186], where the formation has a

precise geometric description in terms of the desired ordering

and the spacing between the vehicles. Instead of assuming all-

to-all communication the authors in [187] developed a control

algorithm to guarantee the global asymptotical stability of the

circular motion around a virtual reference beacon with prescribed

direction of rotation. Later, no-beacon collective circular motion

of jointly connected multi-agents was studied in [188] and [189].

In particular, an algorithm was proposed not relying on global

information including a reference beacon, a common reference

frame, agent labels, or agent homogeneity. The approach has

been further extended to more complicated motion patterns in

[86], [190].

The multi-agent rendezvous problem is another important

research topic in formation control which requires all agents to

meet at one point. An early formulation and algorithmic solution

of the rendezvous problem was introduced in [191] for the robots

of a limited sensor range. The results were extended to stop-

and-go strategies in [192] and [193]. In [194] proximity graphs

were used to solve an n-dimensional rendezvous problem in the

presence of link failures. A simple quantized control law was

designed in [195] for Dubins car agents of limited sensors which

reports only the presence of another agent within some sector

of its windshield. It was shown that agents achieve rendezvous

given a connected initial assignment graph without relying on any

estimation procedure to reconstruct coordinate information.

Another fundamental task in the area of formation control

is formation shape control. The aim is to design decentralized

control laws for each agent to restore a formation shape in

the presence of small perturbations from the desired shape.

In case agents can actively control the distances towards their

neighbors the graph rigidity of the information graph becomes

the crucial concept for the formation shape maintenance problem.

For instance, [196] discussed how to add or remove vertices to

ensure that the graph stays rigid and was further extended in [197]

which developed methods to construct rigid point formations. An

algebra was introduced in [198] that formalizes performing some

basic operations on graphs and allows creation of larger rigid-

by-construction graphs by combining smaller rigid subgraphs.

The work in [199] demonstrated how control based on distance

preservation can be achieved in the presence of a cycle. An

analysis of the characteristics of global convergence properties

of a directed rigid formation (acyclic directed formations) can be

found in [200]. A decentralized control law was introduced in

[201] that maintains the formation shape by controlling certain

inter-agent distances, where only one agent is responsible for

maintaining each distance.

B. Scalability of Networks

Scalability of networks is concerned with collective behaviors

in both the time dimension and the network dimension (i.e.,

2D) assuming that the network size may approach infinity. The

existing research works are relatively rare compared to the mature

investigation of collective behaviors in time dimension only. A

typical formulation in this research area is string stability of

vehicle platoon. The terms vehicle platoon or vehicle string

usually refer to a group of N vehicles (e.g. platoon or string)

that is required to follow a given reference trajectory while the

vehicles keep a prescribed distance to neighboring vehicles.

In most cases, it is straightforward to design decentralized con-

troller to achieve stability of a string in the time dimension. Thus,

small initial deviations or disturbances cause small perturbations.

However, it is well known that error signals can amplify when

travelling through the string, in network dimension, resulting in

growth of the local error norm with the position in the string.

This effect is referred to as ‘string instability’ [202], [203], or

‘slinky effect’ [204], [205].

In unidirectional strings (information propagates through the

string in one direction only), [204] showed that using a distance

that depends on the velocity (e.g., time headway policy) instead

of a fixed distance between the vehicles can ensure string stability

if the time headway is chosen sufficiently large. Another strategy

was presented in [206] and [207], where the authors design a

local controller that depends on the position. When the velocity

or the acceleration of the lead vehicle or the reference velocity

is propagated to each vehicle within the platoon, string stability

can also be guaranteed, see e.g. [203] or [208].

The authors of [203] examined a bidirectional string (wherein

the neighborhood function includes the preceding and following

agents) with constant spacing and showed that string stability

can be achieved with sufficiently large coupling with the leader

position. The authors of [208] approximate a linear, bidirectional

string of N vehicles as a PDE. It is shown that the least stable

eigenvalue of the PDE approaches the origin with O(1/N2) if the

string couplings are symmetric and O(1/N) if the couplings are

asymmetric. These results were later extended in [209] where the

least stable eigenvalue of the overall system matrix is studied. A

similar approach in [210] using local controller revealed that the

best performance is achieved with the optimal localized controller

that is both non-symmetric and spatially-varying. Sufficient con-

ditions for string instability of bidirectional, heterogeneous strings

were derived in [211]. The authors of [212] proposed distributed

receding horizon control algorithms for platoons of vehicles with

nonlinear dynamics.

A range of different methods has been used in the literature

so far to analyze vehicle platoons. The Laplace transform with

respect to time was used in [213], [214], [211] to analyze the

system dynamics in the frequency domain. Lyapunov Theory

was applied in [205] and graph theory was used in [215] to

analyze a string of vehicles with a general interconnection or
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communication structure. In [208] a bidirectional string was

approximated as a PDE. Some classes of bidirectional vehicle

strings can also be conveniently modelled using port-Hamiltonian

system theory as shown in [216], [217]. A unidirectional vehicle

string was systematically formulated as a 2D system in [218].

Some researchers also investigated the influence of time delays

in vehicle platoons (e.g., [219]) and the effects of communication

losses (e.g., [220]). But how these control laws perform with

increasing string sizes (string stability) was not discussed.

Scalable robust stability analysis is also an interesting topic that

aims to find conditions guaranteeing system-wide robust stability.

In case these conditions are satisfied it can be guaranteed that

the resulting analysis and design tools can easily be scaled as the

network size increases. This is also referred to as “scalable robust

stability criterion”. Results for linear heterogeneous systems were

presented in [203], [221], [222]. For instance, the criterion pro-

posed in [221] shows that if all subsystems are SISO systems, the

stability criterion has a graphical interpretation which resembles

the classical Nyquist criterion.

VI. FUTURE WORKS

The research on collective control of multi-agent systems is a

broad area. From the four aspects discussed in this paper, there

are many open research topics. Here, we would like to propose

three major research directions.

First, there still exist many challenges in investigating the

synchronization problem of multi-agent systems of nonlinear and

heterogeneous dynamics in a complicated network. For example,

different UAVs may exist in a flight formation control, and sub-

stations in a smart grid may have very different load and supply

characteristics. Developing distributed control methodologies for

nonlinear and heterogeneous multi-agent systems is of paramount

importance for real-world applications. In fact, for multi-agent

systems of homogenous dynamics, when synchronized, all agents

have their behaviors automatically governed by the “homogenous

kernel”. But for multi-agent systems of heterogenous dynamics,

the situation changes as such a “homogenous kernel” does not

exist. In all existing results (see those reported in Sections II-B

and II-C), it is required that all agents synchronize either to the

trajectory specified by a leader or to a specified motion pattern

determined by a virtual exosystem in a leaderless scenario. It is

interesting but challenging to see how heterogenous agents are

able to achieve a synchronization pattern that is not prescribed

but automatically matching to agent dynamics and adaptive to

environmental variations. It is not difficult to image that the

problem becomes more complicated if nonlinear dynamics are

concerned. An effective approach has yet to be developed.

Secondly, most existing works assume that every agent is au-

tonomous. The coupling among agents is only introduced with the

designed cooperative control. However, in many real scenarios,

direct physical coupling exists among agents. It is represented

by the dependence of fo on x2(t, k) in (4). In a power network,

each bus is coupled to neighboring buses through the so-called

tie lines. Therefore, the group behavior is influenced by both the

physical coupling and the designed cooperative connection. In

the literature, the research on physical coupling of multi-agents

is rare. The research on this topic is closely related to that on

large-scale systems, but the research may have more focuses on

network behaviors.

Thirdly, the most important feature of multi-agent systems is

their autonomous nature (unless coupling exists as formulated in

the previous case), which demands distributed operations. It is

this feature that allows a multi-agent system to be scalable in

the sense that, when the network size increases, similar global

control objectives can still be achieved without increasing the

complexities for sensing, communication, computing and control.

Therefore, it is a promising topic to further study the behavior

of a multi-agent system in both the time dimension and the

network dimension. As reviewed in this paper, 2D collective

behaviors have been studied in very rare scenarios in Section V-B.

It deserves thorough investigation in the future for more general

perspectives.

Finally, we would like to acknowledge that the research on

multi-agent systems has experienced rapid development over the

past two decades. Only a small proportion of literature was

discussed in this paper. Among those publications not mentioned

in this paper, some results are of importance to the development

of the area. In particular, this paper only focuses on collective

control methodologies and it does not touch some closely relevant

areas including decentralized optimization and cooperative local-

ization. Also, it is worth mentioning that the research discussed

in this paper is intersected with other research disciplines such as

neuronal network in biology, big data in computer science, social

network in sociology, and so on.
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