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Abstract

Sufficient conditions guaranteeing Lyapunov stability, asymptotic stability and expo-

nential stability of nonlinear two-dimensional continuous-discrete systems are pro-

posed. Special attention is paid to neutrally stable systems such as some two-dimensional

system descriptions of vehicle platoons, which may be stable or asymptotically stable

but never exponentially stable. Our conditions for Lyapunov stability and asymptotic

stability only require the corresponding two-dimensional Lyapunov function to have

a negative semidefinite divergence. They are thus suitable for the analysis of non-

exponential versions of 2D stability. Examples are given to illustrate the results.

Keywords: two-dimensional (2D), nonlinear systems, stability, continuous-discrete

1. Introduction

In this paper different notions of stability of two-dimensional (2D) nonlinear sys-

tems will be examined. 2D refers to the fact that signals depend on two indepen-

dent variables. Since both independent variables can be continuous or discrete, most

analyses distinguish between discrete-discrete, continuous-continuous and continuous-

discrete 2D systems. The majority of the past research on linear systems focuses on

discrete-discrete 2D systems due to the range of applications for this case. Compared

to the large variety of results on the stability of linear 2D systems, little work seems to

be available concerning the stability of nonlinear 2D systems.

1.1. Results on nonlinear 2D systems

Most research appears to focus on particular types of nonlinearities. A range of

papers, for example, analyse overflow nonlinearities in general and saturations in par-

ticular. See for instance [5, 14, 7, 8, 18, 19, 20, 21, 23, 15]. Sufficient conditions
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for stability based on LMIs for systems with more general nonlinearities in the sector

[0,gk] were shown in [6].

Very few results are available studying general nonlinear 2D systems. Stability of

a general nonlinear discrete-discrete 2D system was first analysed in [12]. The au-

thors used a scalar Lyapunov function to guarantee local stability and local and global

asymptotic stability. A similar time-varying model was studied in [13].

In [25] the general discrete-discrete 2D Fornasini-Marchesini second model was

considered. Using Lyapunov arguments based on the theory of input to state stability

(ISS), sufficient conditions for local and global asymptotic stability, in the presence of

bounded, decaying initial conditions were derived. Using a scalar Lyapunov function,

(global) stability is guaranteed if its 2D difference is nonpositive. If the difference is

negative definite, the system is (globally) asymptotically stable. These results were ex-

tended in [26] to time (or parameter) varying systems. Sufficient conditions for uniform

stability based on the difference being nonpositive are given. In case the difference is

less or equal to the negative weighted sum of the state norms, exponential stability

can be guaranteed.This is in fact the only result on exponential stability of general 2D

discrete-discrete systems known to the authors.

It should be noted that all results of the Lyapunov type for asymptotic stability

of nonlinear 2D systems known to the author require the divergence or deviation of

the Lyapunov function to be strictly negative. Some classes of vehicle platoons can

be modelled as 2D continuous-discrete systems. Their special dynamics do not allow

simple extension of existing stability results since this class does not admit a Lyapunov

function with strictly negative difference or derivative. The study of suitable conditions

for stability and asymptotic stability of these systems motivated this research and is

further explained in the following subsection.

1.2. A motivating example of nonlinear 2D continuous-discrete systems: string stabil-

ity of vehicle platoons

There exist classes of asymptotically stable nonlinear 2D continuous-discrete sys-

tems that do not admit a Lyapunov function with a strictly negative divergence or dif-

ference. One such class arises in vehicle platoons with unidirectional decentralised

control. To achieve tight spacing between vehicles travelling in a string (or “platoon”),

suppose the vehicles have an automatic controller for longitudinal position. This con-

troller uses local measurements to regulate the distance to the predecessor, or in the

case of the lead vehicle, to follow a given trajectory. The overall objective is to achieve

“string stability” of the system. This refers to a system where the trajectories remain

bounded for all vehicles independently of the position within the string and the string

length, i.e. the number of vehicles.

Assume that the system is modelled as a 2D continuous-discrete system driven by

the continuous time t ∈ R≥0 and the discrete position within the string k ∈ N. String

stability then corresponds to global Lyapunov stability of the corresponding 2D system

as it requires all states to remain bounded for all t and k. Note that, in practise, vehicle

platoons consist of a finite number of vehicles N. Every unidirectional string of length

N can be seen as a truncation of an infinite string. Since string stability requires the
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states to be bounded independently of k or N, this is equivalent to stability of the related

2D system. The local state space variables of the kth vehicle (such as position, velocity

and controller states) are summarised in the sequence of vector valued functions of

time xc(t,k) ∈ R
nc . Further, assume the position of the preceding vehicle, that is used

as a reference for the kth vehicle, is set to be the scalar xd(t,k) ∈ R. The system can

thus be modelled similar to the Roesser model as

(

ẋc(t,k)

∆xd(t,k)

)

=

(
d
dt

xc(t,k)

xd(t,k + 1) − xd(t,k)

)

=

(

fc(xc(t,k),xd(t,k))

fd(xc(t,k),xd(t,k))

)

. (1)

The corresponding boundary or initial conditions consist of the initial states of each

vehicle in the string xc(0,k) = xc0(k) and the reference signal xd(t,0) = xd0(t) that the

lead vehicle must follow.

Assume further that when the reference signal is a unit step, the objective is for the

positions of each vehicle in the string to approach 1 as t→ ∞. Therefore, at best, such

systems generically converge to an equilibrium that depends on the boundary condi-

tions, specifically, xd0(∞) where this limit exists. This kind of behaviour is sometimes

referred to as consensus or synchronisation of the individual behaviours. We show be-

low that for important classes of systems, under the assumption that the overall system

satisfies the asymptotic consensus condition, it cannot be exponentially stable.

To illustrate this difficulty, consider a class of platoon systems with vehicle dy-

namics of the kth car described by the homogeneous simple linear model ẋ(t,k) =

−ax(t,k) + bx(t,k − 1). Setting a = b is essential for consensus, that is, to allow the

vehicle to follow its predecessor with zero steady state error. The transfer function

between the two vehicles is then G(s) = a
s+a

. Assume further that the initial con-

ditions for all vehicles in the string are zero, i.e. x(0,k) = 0 ∀k, and the reference

trajectory for the first vehicle is x(t,0) = e−atu(t). The trajectory of the kth vehicle

is x(t,k) = L−1
{

ak

(s+a)k+1

}

=
aktke−at

k!
. To find the local maximum of x(t,k), note that

d
dt

x(t,k) = aktk−1e−at

k!
(k − at), which is zero for t = k

a
. Hence, the value of the local

maximum of x(t,k) is x
(

k
a
,k
)

=
kke−k

k!
. Using Stirling’s formula, k! ≤ e

√
k
(

k
e

)k
[3, Fact

1.11.20], it follows that the local maximum of x(t,k) is greater or equal to 1

e
√

k
. (Fig. 1

illustrates the value of the local maxima vs the position within the string for a = 1.)

Hence, there exists no exponentially decaying upper bound, that is uniform in k, for

the local maxima of x(t,k) and the system cannot be exponentially stable in the 2D

sense. Hence, such systems cannot admit a Lyapunov function with strictly negative

divergence as this would be sufficient for exponential stability.

Note further that this difficulty is not restricted to systems with first order continu-

ous dynamics. More generally, any linear homogeneous 2D system which satisfies the

consensus property, must have a 2D characteristic polynomial with a pole locus that

touches the stability boundary at s = 0, z = 1 (denoted “singularity on the stability

boundary”(SSB) in [10, 9]). It therefore follows that such systems cannot be 2D expo-

nentially stable (see for example [17] for the discrete-discrete case, and [9, Chap. 4]),

even in the sense of 2D exponential convergence to a non-zero equilibrium.
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Figure 1: Local maximum vs. position within the string

1.3. Contributions

This paper gives sufficient conditions for asymptotic stability of the origin of gen-

eral nonlinear 2D systems that do not require the divergence of the Lyapunov function

to be strictly negative. Hence, the stability conditions are suitable to guarantee asymp-

totic stability of the origin of stable system, that cannot be exponentially stable, such as

some classes of vehicle platoons discussed above. Further, nonlinear 2D continuous-

discrete systems are considered. The derived stability conditions will be used to show

stability and asymptotic stability of a vehicle string with variable time headway. Fur-

ther, we will close a gap in the existing literature on stability of general nonlinear 2D

continuous-discrete systems by providing sufficient conditions for exponential stability.

This paper is organised as follow: Section 2 clarifies the notation and mathematical

preliminaries. Sections 3 and 4 deal with asymptotic stability and exponential stability

of the origin of nonlinear 2D Roesser models, respectively. Illustrative examples are

given in Section 5 before concluding in Section 6. Note that a shorter version on the

stability of 2D nonlinear systems was published in [11].

2. Notation and Mathematical Preliminaries

Consider the nonlinear 2D continuous-discrete system (1) with the initial condition

xc0(k) = xc(0,k) and the meassureable boundary condition xd0(t) = xd(t,0) where t is the

continuous variable and k is the discrete variable. The solution x(t,k) of (1) is formally

given in Definition 1 in the appendix.

It will be assumed that fc and fd in (1) satisfy fc(0,0) = 0 and fd(0,0) = 0 and are

globally Lipschitz1.

∥
∥
∥
∥
∥
∥

(

fc(xa
c ,x

a
d
)

fd(xa
c ,x

a
d
)

)

−
(

fc(xb
c ,x

b
d
)

fd(xb
c ,x

b
d
)

)∥
∥
∥
∥
∥
∥
≤ K

∥
∥
∥
∥
∥
∥

(

xa
c

xa
d

)

−
(

xb
c

xb
d

)∥
∥
∥
∥
∥
∥

(2)

Throughout this paper, the notion of “positive definite”, K , and K∞ functions will be

used: A function f : R≥0 → R≥0 is positive definite if it is continuous and satisfies

1Details on the Lipschitz condition and the existence and uniqueness of solutions can be found for in-

stance in [22].
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f (0) = 0 and f (x) > 0 for all x > 0. A function α is of class K (α ∈ K) if it is positive

definite and strictly increasing. A function α is of classK∞ (α ∈ K∞) if it is of classK
and in addition α(x)→ +∞ as x→ +∞.

In [2] the authors presented the definition of a iISS-Lyapunov functions for contin-

uous systems. A similar definition for discrete systems was given in [1]. In order to

adapt these notions to 2D continuous-discrete systems, both definitions were combined

to yield the notion of “2D Lyapunov function”, see [11] or Definition 2 in the appendix,

which will be used to show Lyapunov stability of 2D continuous-discrete systems (see

Definition 6. Lyapunov stability will be shown for systems, whose initial states are

bounded. To be precise, the initial conditions have to be “LV and L∞ bounded” (see

[11] or Definition 3). This can be seen as a adaptation of Lp and L∞ initial conditions

for general nonlinear systems. Then, Lyapunov stability of 2D continuous-discrete

systems can be shown:

Corollary 1 ([11] Stability of Nonlinear 2D Systems). The nonlinear 2D system (1)

has a stable equilibrium at the origin if there exists a 2D Lyapunov function as in

Definition 2.

The proof is based on Lemma 4 in Appendix B. The complete proof can be found in

[11].

As discussed in the introduction, there exist 2D continuous-discrete systems, which

are not exponentially stable (see Definition 8) but satisfy a notion of asymptotic stabil-

ity, which can be found in Definition 7 in the appendix. This definition of asymptotic

stability implies that the solutions of an asymptotically stable system converge to zero

for t + k → ∞ (not necessarily exponentially fast). This includes the cases t → ∞,

and k → ∞ alone. Note that in the literature a different form of asymptotic stability is

also defined where convergence is required for t,k → ∞, e.g. [4]. To enable the proof

of asymptotic stability later in the paper, the definition of 2D Lyapunov function was

strengthened to “regular 2D Lyapunov functions” (see Definition 2). Further, instead

of only requiring that the initial conditions are (LV and L∞) bounded, their derivatives

have to be sufficiently smooth to allow to show asymptotic stability. See Definition 4

for details.

The proof of asymptotic stability in Section 3 uses Corollary 1 (stability of non-

linear 2D systems) above, and Corollary 5, Lemma 6 and Lemma 7 in Appendix B.

Corollary 5 shows that, if a regular 2D Lyapunov function for a nonlinear 2D system

exists and its initial conditions are LV and L∞ bounded, then the integral of Vc with

respect to t and the accumulation of Vd with respect to k are bounded. Lemma 6 proves

that under suitable conditions (e.g. the existence of a regular 2D Lyapunov function and

L′p and L′′∞ smooth bounded initial conditions), the states also satisfy certain smooth-

ness conditions. Given those smoothness conditions shown in Lemma 6, a version of

Barbarlat’s Lemma (Lemma 7) can be derived.

Further strengthening the definition of 2D Lyapunov function yields the notation of

“strict 2D Lyapunov function” (see Definition 2). It will be shown in Section 4, that if

such a strict 2D Lyapunov function exists and the initial conditions are exponentially

decaying (see Definition 5), the origin is exponentially stable according to Definition 8.
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3. Asymptotic Stability

In this section, asymptotic stability of the origin is shown for nonlinear 2D conti-

nuous-discrete systems. In contrast to the conditions known in the literature, the suffi-

cient conditions proposed here can be applied to systems that only allow a Lyapunov

function with a nonpositive divergence — rather than a strictly negative divergence.

Additional smoothness assumptions on the initial conditions and the state space sys-

tem have to be made.

Theorem 2 (Asymptotic Stability of the Origin of Nonlinear 2D Systems). Consider

the nonlinear 2D system (1) and the related time-varying linear system (B.7). If there

exists a regular 2D Lyapunov function V according to Definition 2 for system (1) and

in addition there exist two Lyapunov functions Wc and Wd and scalars 1 ≤ p < ∞ and

0 < α′c,α
′
d
,α′

c
,α′

d
,α′c,α

′
d, ac,ad,bc,bd < ∞ such that the initial conditions are L′p and L′′∞

smooth bounded according to Definition 4 and equations (B.8),(B.9) and B.11 are sat-

isfied for all t,k > 0, then the origin is asymptotically stable according to Definition 7.

Proof. Note that every regular 2D Lyapunov function is also a 2D Lyapunov function

and L′p and L′′∞ smooth bounded initial conditions are by definition also LV and L∞
bounded initial conditions. Hence, the origin is stable by Corollary 1.

To show attractivity of the origin, consider the integral of Vc(t,k) + Vd(t,k) along

Ω(l) := (t,k) ∈ {[0,l] × {⌈l⌉}} ∪ {{l} × [0,⌈l⌉]} for l ∈ R+ as:

U(l) :=

∫ l

0

(Vc(xc(t,l)) + Vd(xd(t,l))) dt +

l∑

0

(Vc(xc(l,k)) + Vd(xd(l,k))) .

There exists a φ such that U(l) ≤ φ for all l due to the results in Lemma 4 and Corol-

lary 5 in Appendix B. Since the first derivatives of x(t,k) with respect to t and the first

differences with respect to k are L∞ bounded (see Lemma 6 in Appendix B) and since

the Lyapunov function components Vc and Vd are differentiable as stated in Defini-

tion 2, define for i ∈ {c,d}

dic(l) := sup
0≤t≤l

∣
∣
∣V̇i(xi(t,l))

∣
∣
∣ , did(l) := sup

0≤k≤l

|∆Vi(xi(l,k))| . (3)

Note that for the derivatives with respect to t the above bounds follow immediately

from the results in Lemma 6 and the chain rule of differentiation. For the differences

with respect to k, similar arguments can be made. For details see [9, Sec. 5.5].

Again using the 2D version of Barbalat’s Lemma (see Lemma 7 in Appendix B),

we can conclude that the first derivatives and differences tend to zero as t,k → ∞ and

are uniformly convergent in both directions. That allows to interchange the order of

supremum and limit and thus to conclude liml→∞ dcc(l) ≤ supt≥0 liml→∞
∣
∣
∣V̇c(xc(t,l))

∣
∣
∣ =

0. The same argument can be made to show that dcd(l), ddc(l) and ddd(l) tend to zero.

Define the maximum of Vc(t,k) along Ω(l) by Vc(l) := max(t,k)∈Ω(l) Vc(t,k). To find

a lower bound on U(l), note that if Vc(l) occurs along the part of Ω(l) where (t,k) ∈
[0,l] × {⌈l⌉}, we can bound the integral of Vc(t,k) over Ω(l) from below by the area of

a triangle. The height of the triangle is given by Vc(l). Given that Vc(t,l) can decay at

most with slope −dcc(l), the base of the smallest possible triangle is equal to Vc(l)
/

dcc(l)
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Vc(t,l)

Vc(l)/dcc(l)

Vc(l)

Figure 2: Illustration of lower bound of U(l) using a triangle

(if Vc(l) occurs at the integration boundary) or the length of the integration interval l,

see also Figure 2.

In case Vc(l) occurs at (t,k) ∈ {⌈l⌉} × [0, l] a similar argument can be followed.

Details can be found in [9, Sec. 4.5 and 5.5]. Thus, following similar arguments for the

component depending on Vd, U(l) can be bounded from below by

U(l) ≥min






V
2

c(l)

2dcc(l)
,

V
2

c(l)

2dcd(l)
,

Vc(l)l

2





+min






V
2

d(l)

2ddc(l)
,

V
2

d(l)

2ddd(l)
,

Vd(l)l

2





.

Since Vc(l) ≤ Vc(Mc) and Vd(l) ≤ Vd(Md) where Vc(l) and Vd(l) are the maximum of

Vc and Vd in the region Ω(l), this implies

V
2

c(l) ≤ 2φ ·max

{

dcc(l), dcd(l),
Vc(Mc)

l

}

. (4)

Note that as l→ ∞ each component of the maximum in (4) goes to 0. Thus, it follows

that limt+k→∞ |Vc(xc((t,k))| = 0 and limt+k→∞ |xc(t,k)| = 0. The convergence of xd can

be shown following similar steps as for the convergence of xc. More details can be

found in [9].

It should be noted that the assumptions used to guarantee asymptotic stability of

the origin seem to be rather restrictive. However, requiring smoothness of the initial

conditions, the state space description and the Lyapunov functions allows us to for-

mulate sufficient conditions for asymptotic stability even if the divergence, divV , is

negative semi-definite. It should also be noted again that according to the definition

of asymptotic stability used here, the conditions in Theorem 2 guarantee the stronger

convergence to zero under t + k → ∞ in contrast to only t,k → ∞.

4. Exponential Stability

The previous section presented sufficient conditions to guarantee asymptotic sta-

bility of general nonlinear 2D continuous-discrete Roesser models. It is important to

notice that these conditions do not rely on the divergence of the Lyapunov function to

be strictly negative. This is a major advantage when discussing asymptotic stability

of models, that can never admit a Lyapunov function with strictly negative divergence,

such as 2D descriptions of vehicle platoons. However, the convergence to the asymp-

totically stable origin might be very slow. In contrast, if a strict 2D Lyapunov function
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with a strictly negative divergence exists, the result above can be strengthened and

exponential stability can be guaranteed:

Theorem 3 (Exponential Stability of Nonlinear 2D Systems). The nonlinear 2D sys-

tem (1) is exponentially stable, if there exist a strict 2D Lyapunov function as defined

in Definition 2 and positive pc,pd < ∞ such that α
c
(|xc|) ≥ |xc|pc and α

d
(|xd|) ≥ |xd|pd .

Proof. First, consider the Lyapunov function candidate

Ṽ =

(

Ṽc(xc)

Ṽd(xd)

)

=

(

eηctηk
d
Vc

eηctηk−1
d

Vd

)

(5)

with positive constants ηc and ηd > 1. It will be shown that when choosing ηc and ηd

sufficiently small, Ṽ is a 2D Lyapunov function according to Definition 2. This will

imply that an exponentially scaled version of the 2D system (1) is stable by Corollary 1,

which will show that the original system must be exponentially stable.

Note that

˙̃Vc =eηctηk
dV̇c + ηcṼc (6)

∆Ṽd =eηctηk
d∆Vd + (ηd − 1) Ṽd. (7)

Applying condition (A.7) of the definition for a strict 2D Lyapunov function yields

˙̃Vc ≤ − eηctηk
dacVc + eηctηk

dbcVd + ηcṼc

≤ (ηc − ac) Ṽc + bcηdṼd (8)

∆Ṽd ≤ − eηctηk
dadVd + eηctηk

dbdVc + (ηd − 1) Ṽd

≤ (ηd − 1 − adηd) Ṽd + bdṼc (9)

Choosing ηc < ac and ηd <
1

1−ad
guarantees that Ṽc and Ṽd satisfy conditions (A.2) and

(A.3), respectively. Consider now the divergence and condition (A.9):

divṼ =eηctηk
ddivV + ηcṼc + (ηd − 1) Ṽd

≤eηctηk
d (−γcVc − γdVd) + ηcṼc + (ηd − 1) Ṽd

= (ηc − γc) Ṽc + (ηd − 1 − ηdγd) Ṽd. (10)

If ηc < γc and ηd <
1

1−γd
, Ṽ satisfies (A.4). Note that the initial conditions of V decay

exponentially and thus Ṽc(xc0) and Ṽd(xd0) are bounded by

Ṽc(xc0(k)) = ηk
dVc(xc0(k)) ≤ (ηdµd)k κc (11)

Ṽd(xd0(t)) = eηctη−1
d Vd(xd0(t)) ≤ e(ηc−µc)t κd

ηd

. (12)

Choosing ηc < µc and ηd <
1
µd

also guarantees that the initial conditions of Ṽ are in L∞
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x̂0(t) x̂1(t) x̂2(t) x̂3(t) x̂N(t)

dm
1

(t) l1 + dm
2

(t) l2 + dm
3

(t)

Figure 3: Platoon of N vehicles

and LV . Hence, choosing

ηc <min{ac, γc, µc}, and (13)

ηd <min

{

1

1 − ad

,
1

1 − γd

,
1

µd

}

(14)

allows us to apply Corollary 1, which guarantees that there exists a C < ∞ such that

Ṽc,Ṽd ≤ C. Since |xc|pc ≤ α
c
(|xc|) ≤ Vc(xc) and |xd|pd ≤ α

d
(|xd|) ≤ Vd(xd) we can

conclude that

|xc| ≤e
− ηc

pc
t
η
− k

pc

d
C1/pc (15)

|xd| ≤e
− ηc

pd
t
η
− k−1

pd

d
C1/pd . (16)

Thus, the system is exponentially stable according to Definition 8.

Note that the rates with which |xc| and |xd| decay depend on the Lyapunov functions

Vc and Vd, and constants pc and pd.

5. Example

We discuss stability and asymptotic stability of a nonlinear vehicle string with a

variable time headway. (This is a nonlinear extension of [10, Example 1] where a fixed

time headway is used.)

System Description. The 2D system studied in this example is used to model a simple

vehicle platoon as depicted in Figure 3 where the absolute position of vehicle k and its

velocity are denoted x̂k(t) and v̂k(t), respectively.

The leading vehicle is driven by an automatic controller which aims to follow a

given reference signal. Each other vehicle monitors the distance towards the preced-

ing vehicle’s rear bumper bar using radar or lidar. Hence, the distance between the

neighbouring vehicles, that is xk−1(t) − xk(t), is described by the measured distance to-

wards the read of the preceding vehicle dm
k

(t) and the length of the preceding vehicle

lk−1. Each vehicle (apart from the leading vehicle) is driven by an automatic controller,

which aims to maintain the prescribed distance dk
k
+ hk(t)v̂k(t) between vehicles k and

k − 1, where ds
k

is the static safety distance. In order to guarantee string stability of

the platoon, it is desirable that the distances between the vehicles (ignoring the static

9



Ch,f(s) =
C(s)

hfix s+1
P(s)

hfix s + 1

H
ê x̂

−

ûH ŷH

Figure 4: Block diagram of subsystem with variable time headway

distance) is proportional to the vehicles’ speed leading to the introduction of the time

headway hk(t). (It is known that string stability can be achieved if the time headway is

chosen as a constant greater than the ‘critical’ time headway h0, [10, Example 1].) In its

simplest form, the time headway is constant and uniform, that is h in seconds, ensuring

that in steady state each vehicle follows h seconds behind its predecessor. However,

in case of high vehicle speed, the steady state distances grow considerably. Here, the

variable time headway hk(t) = hvar (which depends on the states of vehicle k) is used.

Then, when ignoring the static terms lk−1 and ds
k
, the local position error, which vehicle

k aims to minimise, is given by êk(t) = xk−1(t) − xk(t) − hk(t)v̂k(t). The form of hvar

considered here (given in (20)) was proposed in [24] (including an additional upper

saturation bound). Yet, string stability of the system has not been shown analytically

but through simulations.

Consider the plant model P(s) = 1
s2+2ηv0 s

and the local PID controller C(s) = kp +

ki

s
+

kd s

T s+1
. The variable time headway can be written as a sum of a fixed part hfix and

variable part ∆hvar(x) depending on the state x, i. e. hvar = hfix + ∆hvar(x). Note that

hfix is a constant greater than the critical time headway of h0 = 1.18 for this particular

setting. A pole at − 1
hfix

is added to each local controller.

Stability. The stability of the system can be analysed by transforming it into the scheme

with the abstract block H in Fig. 4, where the position of the kth vehicle is the input

for H of subsystem k + 1, i. e. x̂(t,k) = ûH (t,k + 1). We will use the following state

space description for the additional state x12
(t) of the systemH :

ẋ12
(t) = − 1

hvar

x12
(t) +

√
hvar − hfix

hvar

uH(t), (17)

yH(t) =

√
hvar − hfix

hvar

x12
(t) +

hfix

hvar

uH(t). (18)

Note that with hvar fixed, the frozen system H is linear, time invariant with transfer

function H(s) = hfix s+1

hvar s+1
. In general, we allow hvar to be any time varying function that

satisfies hvar ≥ hfix.

The vehicle string can now be modelled as a 2D system where the first independent

variable is continuous time t, the second is the discrete position in the string k. Thus,
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the system is described by





ẋc1
(t,k)

ẋc2
(t,k)

∆xd(t,k)




=





A0 b0

√
hvar − hfix/hvar b0hfix/hvar

0 −1/hvar

√
hvar − hfix/hvar

c 0 −1





︸                                                     ︷︷                                                     ︸

A(t)





xc1
(t,k)

xc2
(t,k)

xd(t,k)





where xc1
(t,k) are the existing states of the controller and the vehicle model and, there-

fore, there exists a state space realisation with

A0 =





0 1 0 0 0

0 −2ηv0 1 0 0

− 1
hfix

(

kp +
kd

T

)

−
(

kp +
kd

T

)

− 1
hfix

1
hfix

− kd

hfixT 2

−ki −hfixki 0 0 0

−1 −hfix 0 0 − 1
T





, (19)

b0 =

(

0 0 1
hfix

(

kp +
kd

T

)

ki 1
)T

and c =
(

1 0 0 0 0
)

. Note that the eigen-

values of Acc =

[

A0 b0

√
hvar − hfix/hvar

0 −1/hvar

]

have negative real parts for hfix,hvar > 0.

Consider the Lyapunov function V with Vc(xc) = xT
c1

(t,k)Pxc1
(t,k)+x2

c2
and Vd(xd) =

xT
d
(t,k)xd(t,k) such that divV = xTQx with

Q =





AT
0

P + PA0 + cTc Pb0

√
hvar − hfix/hvar Pb0hfix/hvar

bT
0

P
√

hvar − hfix/hvar −2/hvar

√
hvar − hfix/hvar

bT
0
Phfix/hvar

√
hvar − hfix/hvar −1




.

Applying the Schur complement twice, the requirement Q ≤ 0 is equivalent to AT
0
P +

PA0 + cTc + Pb0bT
0
P ≤ 0. Applying the Bounded Real Lemma we can show that this

is equivalent to the condition
∥
∥
∥c ( jωI − A0)−1 b0

∥
∥
∥∞ ≤ 1. Γ0( jω) = c ( jωI − A0)−1 b0 is

the transfer function from the kth to the k + 1th vehicle for hvar = hfix. Since the time

headway hfix is greater than the infimal time headway h0 = 1.18, |Γ( jω)| ≤ 1 for all

ω and |Γ( jω)| < 1 for ω , 0. Thus, a positive definite Matrix P exists such that Q is

negative semi-definite independently of hvar (for hvar > h0) and the origin is stable.

Asymptotic Stability. Consider the variable time headway

hvar(t,k) =






hss + kh (v̂(t,k) − v̂(t,k − 1)) for hmin ≤ hvar(t,k),

hmin else,
(20)

where the time headway in steady state is hss = 1.4, kh = 0.05 and the variable time

headway is saturated at hfix = hmin = 1.2. The motivation for the choice (20) is that

in case the vehicle is driving slower than its predecessor, the variable time headway

decreases and the vehicle thus accelerates faster and reaches its desired position faster.

To ensure asymptotic stability, we seek two Lyapunov functions Wc and Wd satis-
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Figure 5: Local error for a string with variable time headway (left) and constant time headway of h = 1.4

(right)

fying (B.8)-(B.9). The Jacobian matrix is given by

F = A(t) + kh





b0

(

hfix−hvar/2√
hvar−hfixh2

var

v̂(t,k) − hfix

h2
var

v̂(t,k − 1)

)

(

v̂(t,k)

h2
var
+

hfix−hvar/2√
hvar−hfixh2

var

v̂(t,k − 1)

)

0





·
[

0 1 0 · · ·
]

.

As Fdd = Add(t) = −1 it is straight forward to find a suitable function Wd. Note also that

the difference between Fcc and Acc(t) is a perturbation of rank 1. As Acc(t) is strictly

Hurwitz for hfix,hvar > 0 it is always possible to choose a sufficiently small kh such that

Fcc is strictly Hurwitz for a given range of velocities to ensure a suitable Lyapunov

function Wc exists. To ensure condition B.11 is satisfied, note that according to [3, Fact

6.4.20] rankQ = rank(1) + rank
(

hvar+hfix

hvar

)

+ rank
(

AT
0

P + PA0 + cTc + Pb0bT
0

P
)

. There

exists a P such that the last term drops one rank. Thus, Q drops one rank and there

exists a positive definite matrix R such that Q = −ATRA. Post and pre multiplying this

with x yields B.11. Hence the origin is asymptotically stable.

Simulations. A string of forty vehicles has been simulated. The local error is shown

on the left of Fig. 5. When comparing these results to the simulation with a constant

time headway of h = 1.4 (see the right of Fig. 5) one observes that with a variable

time headway with hss = 1.4 the error for the first vehicle increases to a maximal value

that is twice as high as in case of the constant time headway h = 1.4. This is due to

the decreased time headway, and consequently the desired distance between the first

vehicle and reference position decreases temporarily and the error increases. However,

with the variable time headway, the local errors decrease more rapidly than choosing a

constant time headway.

6. Conclusion

Sufficient conditions guaranteeing Lyapunov stability, asymptotic stability and ex-

ponential stability of nonlinear 2D systems have been presented based on the theory of

12



integral input-to-state stability. Since for guaranteeing Lyapunov stability and asymp-

totic stability the divergence of the 2D Lyapunov function is only required to be non-

positive, additional assumptions have to be made. To guarantee stability of nonlin-

ear 2D continuous-discrete systems, the only additional assumption is that the iISS-

Lyapunov function derivative V̇c and the difference ∆Vd depend on the Lyapunov func-

tion in a certain form. However, the proof for asymptotic stability also requires certain

smoothness conditions on the initial conditions, the state space equations and the Lya-

punov function. In some ways this had to be expected as it was noted in [25, Remark 3]

in order to show global asymptotic stability for nonpositive differences, at least the as-

sumptions on the initial conditions need to be stronger than merely boundedness. When

strengthening the 2D Lyapunov function by requiring a strictly negative divergence, the

smoothness conditions of the initial conditions can be relaxed and exponential stability

can be guaranteed.

AppendixA. Definitions

Definition 1. {xc(·,·), xd(·,·)} : (R+,N) → (Rnc ,Rnd ) is a solution of (1) for t ∈ [0,∞)

and k ∈ {1,2, . . . } if xc(t,k) is differentiable with respect to t everywhere and equation

(1) holds for all t and k.

Definition 2. A 2D function VT
=

(

Vc(xc) Vd(xd)
)

is called a 2D Lyapunov function

for system (1) if Vc(xc) is a continuous-time iISS-Lyapunov function (which is continu-

ously differentiable with respect to xc as in [2]) for subsystem ẋc(t,k) = fc(xc(t,k),xd(t,k))

and Vd(xd) is a discrete-time iISS-Lyapunov function (which is continuous in xd as in

[1]) for subsystem∆xd(t,k) = fd(xc(t,k),xd(t,k)), that is there exist functionsαc, αc
, αd, αd

∈
K∞, positive definite functions αc, αd and constants 0 ≤ bc, bd < ∞ such that

α
c
(|xc|) ≤Vc(xc) ≤ αc(|xc|), αd

(|xd|) ≤ Vd(xd) ≤ αd(|xd|), (A.1)

V̇c(xc) ≤ − αc(Vc(xc)) + bcVd(xd), (A.2)

∆Vd(xd) ≤ − αd(Vd(xd)) + bdVc(xc), and (A.3)

divV =V̇c(xc) + ∆Vd(xd) ≤ 0 ∀xc,xd. (A.4)

A 2D Lyapunov function V is called a regular 2D Lyapunov function for system (1) if it

satisfies (A.1) and (A.4), Vd is continuously differentiable with respect to xd and there

exist constants 0 ≤ ac < ∞ and 0 ≤ ad < 2 such that

V̇c(xc) ≤ − acVc(xc) + bcVd(xd), and (A.5)

∆Vd(xd) ≤ − adVd(xd) + bdVc(xc) ∀xc,xd. (A.6)

A 2D Lyapunov function V is called a strict 2D Lyapunov function for system (1) if

there exist positive constants ac,bc, bd, γc < ∞ and ad, γd < 1 such that

V̇c(xc) ≤ − acVc(xc) + bcVd(xd), (A.7)

∆Vd(xd) ≤ − adVd(xd) + bdVc(xc), and (A.8)

divV ≤ − γcVc(xc) − γdVd(xd) ∀xc,xd. (A.9)
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Note that the main difference between the 2D Lyapunov function and the regular

2D Lyapunov function above is that the first term on the right hand side of (A.5) is

acVc(xc) instead of the more general form αc(Vc(xc)) in (A.2). Further, component Vd

of a regular 2D Lyapunov function must be differentiable with respect to xd rather than

just continuous as in the case of 2D Lyapunov functions. The main difference between

the above definitions and the definitions for iISS-Lyapunov functions in [2] and [1] are

that the last terms in (A.2), (A.3), (A.5) and (A.6) explicitly contain Vc(xc) and Vd(xd)

instead of general class K∞ functions.

Definition 3 (LV and L∞ Bounded Initial Conditions, [11]). Given positive definite func-

tions Vc and Vd, the initial conditions of the nonlinear two-dimensional system (1) are

LV and L∞ bounded, if there exist ξc, ξd,ζc, ζd < ∞ such that

‖xc0(·)‖V :=

∞∑

k=0

Vc (xc0(k)) ≤ ξc, ‖xd0(·)‖V :=

∫ ∞

0

Vd (xd0(t)) dt ≤ ξd,

‖xc0(·)‖∞ = sup
k>0

|xc0(k)| ≤ ζc and ‖xd0(·)‖∞ = sup
t≥0

|xd0(t)| ≤ ζd.

Definition 4 (L′p and L′′∞ Smooth Bounded Initial Conditions (SBIC)). Given positive

definite functions Vc and Vd and an integer 1 ≤ p < ∞, the initial conditions of the non-

linear 2D system (1) are smoothly bounded if they are LV and L∞ bounded according

to Definition 3 and in addition there exist ξ′c,ξ
′
d
,ζ′c,ζ

′
d
,ζ′′c ,ζ

′′
d
< ∞ such that

‖∆xc0(·)‖pp =
∞∑

k=0

|∆xc0(k)|p ≤ ξ′c, ‖ẋd0(·)‖pp =
∫ ∞

0

|ẋd0(t)|p ≤ ξ′d,

‖∆xc0(·)‖∞ = sup
k≥0

|∆xc0(k)| ≤ ζ′c, ‖ẋd0(·)‖∞ = sup
t≥0

|ẋd0(t)| ≤ ζ′d,

‖∆2 xc0(·)‖∞ = sup
k≥0

|∆2xc0(k)| ≤ ζ′′c , ‖ẍd0(·)‖∞ = sup
t≥0

|ẍd0(t)| ≤ ζ′′d .

Definition 5 (Exponentially Decaying Initial Conditions). Given positive definite func-

tions Vc, Vd, the initial conditions of the nonlinear 2D system (1) are exponentially

decaying, if there exist positive constants µc and µd < 1 and κc,κd < ∞ such that

Vc(xc0(k)) ≤ κcµk
d

and Vd(xd0(t)) ≤ κde−µct.

Definition 6 (Stability of Nonlinear 2D Systems). Consider the autonomous nonlin-

ear 2D system (1). The origin is globally Lyapunov stable if for each M > 0 there

exist ξc(M), ξd(M), ζc(M), ζd(M) > 0 such that if the initial conditions are LV and L∞
bounded with bounds ξc(M),ξd(M)ζc(M),ζd(M), then all solutions satisfy |x(t,k)| ≤ M

for all t,k > 0.

Definition 7 (Asymptotic Stability of Nonlinear 2D Systems with SBIC). Consider

the autonomous nonlinear 2D system (1). The origin is globally asymptotically stable,

if for any L′p and L′′∞ Smooth Bounded Initial Conditions (according to Definition 4) it

is stable, and the limit limt+k→∞ x(t,k) = 0 holds for all solutions x(t,k).

Definition 8 (Exponential Stability of Nonlinear 2D Systems). Consider the autono-

14



mous nonlinear 2D system (1). The origin is globally exponentially stable, if for any

exponentially decaying initial conditions there exist positive constants ηc and ηd < 1,

and Mc,Md < ∞ such that the conditions |xc(t,k)| ≤ Mce−ηctηk
d

and |xd(t,k)| ≤ Mde−ηctηk
d

hold for all solutions x(t,k).

AppendixB. Lemmas

The following Lemma is needed to show Lyapunov stability of nonlinear 2D continuous-

discrete systems.

Lemma 4. [11] Consider the 2D space of two variables t and k and the 2D vector field

VT(t,k) = (Vc(t,k),Vd(t,k)) with Vc ≥ 0 and Vd ≥ 0 for all t and k. If the divergence of

the vector field satisfies divV ≤ 0 for all t and k, then

k∑

l=0

Vc(t,l) ≤
k∑

l=0

Vc(0,l) +

∫ t

0

Vd(τ,0)dτ and (B.1)

∫ t

0

Vd(τ,k)dτ ≤
k∑

l=0

Vc(0,l) +

∫ t

0

Vd(τ,0)dτ ∀t,k > 0. (B.2)

The following corollary shows that if a suitable regular 2D Lyapunov function ex-

ists, the integral
∫ ∞

0
Vc(xc(t,k))dt and the sum

∑∞
k=0 Vd(xd(t,k)) are bounded. This result

together with Lemmas 6 and 7 facilitates the proof of asymptotic stability in Section 3.

Corollary 5. Consider the nonlinear 2D system in (1). If there exists a regular 2D

Lyapunov function V according to Definition 2 and the initial conditions are LV and

L∞ bounded according to Definition 3, then there exist Mc,Md < ∞ independent of k

and t, such that

∫ ∞

0

Vc(xc(t,k))dt ≤ Mc, and

∞∑

k=0

Vd(xd(t,k)) ≤ Md. (B.3)

Proof. From the definition of the regular 2D Lyapunov function

Vc(xc(t,k)) ≤ e−actVc(xc(0,k)) + bc

∫ t

0

e−acτVd(xd(t − τ,k))dτ (B.4)

and thus

∫ ∞

0

Vc(xc(t,k))dt ≤Vc(xc(0,k))

∫ ∞

0

e−actdt

+bc

∫ ∞

0

∫ t

0

e−acτVd(xd(t − τ,k))dτdt. (B.5)

Since the initial conditions are L∞ bounded and ac > 0, the first term of the right hand

side of (B.5) can be bounded from above by
Vc(ζc)

ac
. Using the fact that the convolution

is commutative and interchanging the order of integration in the second term of the
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right hand side of (B.5) yields

bc

∫ ∞

0

∫ ∞

τ

e−ac(t−τ)Vd(xd(τ,k))dtdτ

≤bc

∫ ∞

0

Vd(xd(τ,k)) ·
(∫ ∞

τ

e−ac(t−τ)dt

)

dτ ≤ bc

ac

∫ ∞

0

Vd(xd(t,k))dt. (B.6)

Since the divergence is nonpositive we can apply Lemma 4. As the initial conditions

are in LV , the bound Mc is Mc :=
Vc(ζc)

ac
+

bc

ac
(ξc+ξd). The existence of Md can be shown

in the similar way.

It is further shown below that the first derivatives of the states xc and xd with respect

to t and the differences with respect to k are bounded if the state space equations, the

initial conditions and the Lyapunov function fulfil certain differentiability criteria.

Lemma 6. Consider the nonlinear 2D system (1) and the related time-varying linear

system with

(

ẏc(t,k)

∆yd(t,k)

)

=

[

Fcc(yc,yd) Fcd(yc,yd)

Fdc(yc,yd) Fdd(yc,yd)

] (

yc(t,k)

yd(t,k)

)

(B.7)

with the Jacobian matrices Fil :=
∂ fi(xc ,xd)

∂xl

∣
∣
∣
∣
xc=xc(t,k),xd=xd(t,k)

for i,l ∈ {c,d}. If there exists

a regular 2D Lyapunov function V according to Definition 2 for system (1) and in

addition there exist two Lyapunov functions Wc and Wd and scalars 1 ≤ p < ∞ and

0 < α′c,α
′
d
,α′

c
,α′

d
,α
′
c,α
′
d, ac,ad,bc,bd < ∞ such that the initial conditions are L′p and L′′∞

smooth bounded according to Definition 4 and

α′
c
|yc|p ≤Wc(yc) ≤ α′c|yc|p, α′d|yd|p ≤ Wd(yd) ≤ α′d|yd|p, (B.8)

Ẇc(yc) ≤ − acWc(yc) + bcWd(yd), (B.9)

Ẇd(yd) ≤ − adWd(yd) + bdWc(yc) (B.10)

divV(t,k) ≤ − α′c |ẋc(t,k)|pp − α′d |∆xd(t,k)|pp (B.11)

for all t,k > 0, then

1. the first derivative and difference of xc(t,k) and xd(t,k) are in L∞ [0,∞) × [0,∞)

and Lp [0,∞)× [0,∞), i.e. there exist Mic,Mid,Mic,Mid < ∞ such that for i ∈ {c,d}

sup
(t,k)∈R≥0×N

|ẋi(t,k)| ≤ Mic, sup
(t,k)∈R≥0×N

|∆xi(t,k)| ≤ Mid, (B.12)

∞∑

k=0

∫ ∞

0

|ẋi(t,k)|pdt ≤ Mic,

∞∑

k=0

∫ ∞

0

|∆xi(t,k)|pdt ≤ Mid, (B.13)

2. the second derivatives and differences of xc(t,k) and xd(t,k) are in L∞ [0,∞) ×
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[0,∞), i.e. there exist Micc,Micd,Midd < ∞ such that for i ∈ {c,d}

sup
(t,k)∈R≥0×N

|ẍi(t,k)| ≤ Micc, sup
(t,k)∈R≥0×N

|∆2xi(t,k)| ≤ Midd, (B.14)

sup
(t,k)∈R≥0×N

|∆ẋi(t,k)| = sup
(t,k)∈R≥0×N

∣
∣
∣
∣
∣

d

dt
∆xi(t,k)

∣
∣
∣
∣
∣
≤ Micd. (B.15)

Proof. (a): The origin is stable by Corollary 1 and therefore the states are bounded.

The bounds Mcc and Mdd are equal to the bounds on fc and fd for all |xc| ≤ Mc and

|xd| ≤ Md.

Combining B.11, the fundamental theorem of calculus and the fact that the initial

conditions are in LV yields

α′c ‖ẋc(·,·)‖pp + α′d ‖∆xd(·,·)‖pp ≤ −
∞∑

k=0

∫ ∞

0

divV(t,k)dt ≤ ξc + ξd.

Thus, ẋc(t,k) and ∆xd(t,k) are also in Lp [0,∞) × [0,∞).

To show that the first difference ∆xc is also in Lp and L∞, use

d

dt
∆xc(t,k) = Fcc∆xc + Fcd∆xd = Fcc∆xc + Fcd fd. (B.16)

Therefore, assumptions (B.8) and (B.9) lead to

α′c |∆xc|p ≤ e−actWc(∆xc(0,k)) + bc

∫ t

0

e−ac(t−τ)Wd(∆xd(τ,k))dτ. (B.17)

Hence,

∞∑

k=0

∫ ∞

0

α′
c
|∆xc|pdt ≤

∞∑

k=0

∫ ∞

0

e−actWc(∆xc(0,k))dt

+bc

∞∑

k=0

∫ ∞

0

∫ t

0

e−ac(t−τ)Wd(∆xd(τ,k))dτdt. (B.18)

Using the fact that the initial conditions are L′p the first term on the right hand side of

(B.18) is bounded by
α′dξ

′
c

ac
. To calculate an upper bound for the second term on the right

hand side of (B.18) follow similar steps as in (B.6) to obtain the upper bound
bcα

′
d

ac

ξc+ξd
α′

d

.

Thus, the first difference ∆xc is in Lp. The same arguments can be followed to show

that ẋd is in Lp. Note that (B.17) — together with the fact that the initial conditions’

first derivatives and differences are in L∞ and fc and fd are bounded — also proves that

∆xc and ẋd are in L∞.

(b): To show that Mccc exists observe that ẍc(t,k) = Fcc(xc,xd) fc(xc,xd)+Fcd(xc,xd)ẋd(t,k).

As all terms on the right hand side are bounded, Mccc exists. The bound Mccd exists

since all terms on the right hand side of (B.16) are bounded. Similar arguments show

that the remaining second derivatives and differences are in L∞.
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Lemma 6 proves that the system trajectories are sufficiently smooth given suffi-

ciently smooth initial conditions. It will be shown next that a 2D version of Barbalat’s

Lemma, [16], applies to such systems with bounded trajectories and derivatives and

differences. Both results are needed to prove asymptotic stability of 2D continuous-

discrete systems in Section 3.

Lemma 7. [10, Lemma 5] Consider the 2D function f : R×Z→ R. If f (t,k) is both in

Lp [0,∞)×[0,∞) and L∞ [0,∞)×[0,∞) and its derivative ḟ (t,k) and its difference∆ f (t,k)

are in L∞ [0,∞) × [0,∞), then limt,k→∞ f (t,k) = 0 and f (t,k) is uniformly convergent in

both directions, i.e. for all ǫ > 0 there exists a T (ǫ) < ∞ such that

∀(t,k) ∈ {R × [T (ǫ),∞)} ∪ {[T (ǫ),∞) ×Z} : | f (t,k)| < ǫ.
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