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Average Cost Distortion Minimization in Multi
Sensor Estimation over Wireless Channels using

Energy Harvesting and Energy Sharing
Steffi Knorn, Subhrakanti Dey, Anders Ahlén and Daniel E. Quevedo

Abstract—In this paper, we investigate an optimal energy
allocation problem for multi sensor estimation of correlated
random Gaussian sources. A group of wireless sensors obtains
a local measurement and transmits their measurements to
a remote fusion centre (FC) via orthogonal fading wireless
channels using uncoded analog transmissions. The vector of
measurements is reconstructed at the FC using the minimum
mean-square error (MMSE) estimator. All sensors are equipped
with an energy harvesting module to gather energy from their
environment to replenish their batteries or transmit data to the
FC. Sensors are also fitted with a transceiver unit for sharing
energy, which allows to transmit energy wirelessly between
neighboring sensors in a directed fashion. The sensor batteries
are of finite storage capacity and may be subject to energy
leakage as well. Our aim is to find optimal energy allocation
strategies, which determine the energies used to transmit data
to the FC and shared between sensors, that minimize the long
term average distortion over an infinite horizon. We assume
centralized causal information of the harvested energies and
channel gains, which are generated by independent finite-state
stationary Markov chains. We derive these optimal policies
using a stochastic control formulation, resulting in a Bell-
man dynamic programming equation. The requirement of full
statistical information regarding the channel and harvested
energy dynamics at the FC can be impractical, and we also
investigate a Q-learning based sub-optimal energy allocation
policy that does not need to know such statistical information a
priori. In order to avoid the computational burden imposed by
the curse of dimensionality associated with implementation of
dynamic programming, we also investigate two computationally
simple heuristic policies. All these energy allocation policies are
explored and their performances compared via suitably chosen
numerical examples.

Index Terms—multi sensor estimation, energy harvesting,
energy sharing, energy allocation, fading channels, Q-learning,
networks

I. Introduction

Wireless sensors have become much more powerful and

affordable in recent years. Hence, they are used in a growing

number of areas such as environmental data gathering [1],

industrial process monitoring [2], mobile robots and au-

tonomous vehicles [3], and for monitoring of smart electricity

grids [4]. Often, several sensors are used to construct a

wireless sensor network. Each sensor wirelessly transmits its

measurements over a network to a remote fusion center (FC),

which further processes the received data, e.g. by reconstruct-

ing the measured sources or computing an actuation signal.
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A significant challenge in this area is the powering of

wireless sensors. Since some sensors cannot be connected

to a reliable energy source or the connection to the power

grid is not desirable, alternative power sources have to be

considered. One such alternative are battery powered sensors.

To maximize the lifetime and minimize the costs due to

battery exchange it is crucial to spend the limited available

energy stored in the battery in an optimal fashion. See for

instance [5]–[7] and the references therein.

Another promising alternative might be to harvest en-

ergy. With appropriate hardware, such as e.g. solar panels,

windmills, thermoelectric elements, radio frequency energy

harvesting units or vibration harvesters, sensors can gather

energy from their direct environment and hence potentially

make battery changes obsolete. However, since harvesting

is an often unpredictable and unreliable energy source and

the rechargeable batteries have limited capacity, spending

the available energy in an optimal fashion is a challenging

task. Several optimal energy allocation policies for different

system settings with energy harvesting and optimizing a

variety of performance criteria have been proposed in the

recent literature.

For instance, energy allocation policies to maximize the

throughput or minimize the mean delay for a single transmit-

ting device were presented in [8]. The authors of [9] derived

optimal energy allocation policies that maximize the mutual

information of a wireless link considering either causal or

non-causal side information. An optimal packet scheduling

problem for a single-user communication system with an

infinite battery and energy harvesting considering, that data

packets and energy packets arrive at the transmitter in a

random manner, was investigated in [10]. The authors of

[10] develop optimal off-line scheduling policies for mini-

mizing the delivery time for all packets to the destination

in a deterministic setting, where the energy harvesting times

and the amounts of energy harvested are all known before

transmission starts. In contrast to assuming a battery with

infinite capacity as in [10], the work [11] studied the optimal

off-line transmission policies with batteries with limited stor-

age. Finite horizon throughput maximization and the related

problem of minimizing the transmission completion time for

a given amount of data were studied, [11]. These results were

further generalized in [12] to include transmission over fading

channels and optimal online policies. The effect of energy

harvesting in optimal energy allocation for source acquisi-

tion/compression and transmission was studied in [13], [14].

Recently, optimal and suitable suboptimal energy allocation
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policies for a network of multiple sensors, which share a

single energy harvester, have been studied in [15].

Apart from energy harvesting, wireless energy transfer

is another promising option to overcome the limitations of

finite energy resources due to finite battery capacities. Since

wireless energy transfer is becoming more efficient and less

costly, it can potentially be used to recharge batteries of

wireless sensors. The authors of [16] showed through exper-

iments that energy can be efficiently transferred between two

resonant objects of the same resonant frequency; efficiencies

of over 50% were achieved for distances up to 2 meters. By

choosing different resonant frequencies between each pair,

which are coupled by an energy transfer link, it is hence

possible to allow for highly efficient energy transfer. Similar

energy transfer techniques were also discussed in [17]. An-

other promising experiment conducted by Mitsubishi Heavy

Industries demonstrated effective wireless energy transfer of

10kW over 500m, see [18].

Indeed, there is an increasing commercial interest in devel-

oping wireless energy transfer products, [19], [20], ranging

from charging small devices such as cell phones in coffee

shops [21] to charging electric vehicles [22]. It seems that it

is merely a question of time when the application of wireless

energy transfer becomes feasible in a wider range of technical

areas [23]. Optimal design of energy and information trans-

mission through wireless communication channels has also

been of interest. Important works along this direction include

[24]–[28], where the energy is assumed to be broadcasted in

all directions, in contrast to the techniques discussed in [16],

[17].

The important question of what benefits wireless energy

transfer could bring to wireless sensor systems has already

attracted some attention. The conference contributions [29]

and [30] considered a wireless sensor network with a fixed

base station and a wireless charging vehicle driving from sen-

sor to sensor assuming wireless energy transfer as discussed

in [16].

An optimal power allocation policy was derived and

multiple necessary conditions for optimality are given for

throughput maximization for a two-hop relay channel with

one-way energy transfer from the source to the relay in [31].

The authors of [31] also investigated throughput maximiza-

tion for a Gaussian two-way channel with one-way energy

transfer. The optimal energy allocation policy is shown to

be a directional two-way water filling algorithm, where

one dimension relates to time while the second dimension

describes the relationship between users.

A significant hurdle when using batteries, or other energy

storage options such as capacitors, to power wireless sensors

is the fact that these devices are not perfect. To address

such issues, capacitor leakage aware algorithms for energy

harvesting wireless devices were developed and successfully

evaluated in [32], [33]. The work [34] considered a single

communication link with a hybrid power source including a

constant energy supply and energy harvesting prone to energy

leakage. The authors in [35] studied throughput maximization

of a single communication link, where the transmitter has

full noncausal information of the fading channel gains and

harvested energy but harvested energy is randomly lost. A

slightly different approach was studied in [36], where saving

harvested energy in the battery is assumed to be prone to

losses whereas storing and retrieving the energy from the

battery is considered lossless. In this situation, the policy that

maximizes the communication rate, is found to be a double-

threshold policy.

Following a different line of research, our recent work

documented in [37] investigated a multi sensor estimation

problem via a star network of wireless sensors that report

their measurements over temporally independent block fading

channels to a central FC, which reconstructs the random

source observed by the sensors. All sensors are equipped with

individual energy harvesting modules and can in addition

transfer energy via directed wireless links to neighboring

sensors. Optimal energy allocation policies for information

transmission and energy sharing1 were derived to minimize

the overall distortion at the FC over a finite horizon using

non-causal, causal centralized and causal local information

at the sensors.

The present manuscript extends the results reported in

[37] in several important ways: First, instead of assuming

that all sensors measure the same source as in [37], the

sensors in this paper are assumed to measure a field of

correlated sources. Further, here, the fading channels and

harvested energies are described by finite state Markov chains

instead of assuming independent and identically distributed

channel gains and harvested energies. In contrast to [37]

and [38], we here consider sensor batteries/energy storage

devices that may be prone to energy leakage. Also, this paper

studies the infinite-time horizon case instead of the finite-

time horizon considered in [37] and our conference contri-

bution [38]. Choosing an infinite-time horizon approach has

a significant advantage compared to implementing finite-time

horizon solutions. Most networked sensor systems deployed

for remote monitoring and estimation tasks are expected

to operate over a long period of time. Thus, finding a

stationary optimal energy allocation policy as a solution to

an infinite horizon average distortion minimization problem

is more practical. The solution is independent of the time

horizon of application, can be implemented based on causal

information only, and does not require recalculations as long

as the statistics of the underlying random processes remain

unchanged.

In particular, the current work contributes in the following

ways:

1) We investigate optimal energy allocation policies for

information transmission and energy sharing in a multi

sensor estimation problem with a correlated field of data

and minimizing a long-term average distortion cost over

an infinite horizon, with centralized causal information

and Markovian fading channels and harvested energies.

2) We allow the sensor batteries / energy storage devices

to be imperfect and subject to energy leakage.

3) The optimal stationary energy allocation policy is found

by a stochastic control approach using a Markov de-

1Note that the term ‘energy sharing’ in [37] refers to wireless energy
transfer between neighboring sensor nodes. This is in contract to ‘energy
sharing’ in [15], where multiple sensors have to share a single energy
harvester.
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cision process (MDP) formulation, where the optimal

energy values for information transmission and sharing

are found by solving a Bellman dynamic programming

equation using relative value iteration, see [39].

4) Motivated by practical scenarios, where full statistical

information about the harvested energy and fading chan-

nel dynamics may not be available, we present a Q-

learning algorithm, that yields a suboptimal solution for

the energy allocation policies without requiring exact

knowledge of all system parameters.

5) We conduct a comparative performance investigation

of the optimal solution obtained by using the relative

value iteration algorithm with the suboptimal Q-learning

algorithm and two simple heuristic policies via suitably

chosen numerical examples, illustrating the advantages

and disadvantages of each scheme. The benefits of

energy sharing, and how the average distortion depends

on various parameters such as cross correlation terms,

energy transfer efficiency and energy leakage is dis-

cussed in detail.

The rest of the paper is organized as follows: The system

model is presented in Section II. Section III studies the

infinite-horizon optimal energy allocation problem. Three

suboptimal energy allocation policies, namely Q-learning and

two heuristic policies, are discussed in Sections IV and

V, respectively. The performances of all considered energy

allocation policies are compared by means of numerical

examples presented in Section VI, followed by concluding

remarks in Section VII.

II. SystemModel

We consider a star-network with M sensors and a FC.

Each sensor m individually measures a signal of interest

θm(k), at discrete-time instants k ∈ {1,2,3, . . . } subject to

measurement noise. The measurements are spatially cor-

related between the sensors. The remote sensors transmit

their information to the FC, which estimates the vector

θ(k) = (θ1(k),θ2(k), . . . ,θM(k))T given the measurements re-

ceived. We consider an analog amplify and forward uncoded

transmission strategy subject to additive noise. Each sensor

is equipped with a local battery/energy storage device, an

energy harvester, and a unit to transmit and receive energy

from other sensors, along with a transceiver for information

transmission and reception, subject to transmission losses.

A scheme showing a simple system with three sensors is

depicted in Fig. 1. The description of the individual parts is

given below.

A. Source Model and Sensor Measurements

We consider θm(k) to be an independent and identically dis-

tributed (i.i.d.) (with respect to time) band-limited Gaussian

process with zero mean. The measurements of the sensors are

spatially correlated such that its covariance matrix (possibly

non-diagonal) is Rθ = E

{

θθT
}

. We assume that Rθ > 0

(positive definite). The measurements of sensor m, denoted

xm(k), are subject to measurement noise, nm(k), such that

xm(k) = θm(k) + nm(k) (1)

Sensor 1E1H1

B1

Sensor 2
E2H2

B2

Sensor 3

E3

H3
B3

Fusion
Centre

(η1,2)T1,2 (η2,1)T2,1

(η1,3)T1,3

Figure 1: System setting (icons taken from [40])

for 1 ≤ m ≤ M and k ≥ 1. The measurement noises nm(k)

are assumed to be i.i.d. Gaussian, mutually independent and

also independent of θ(k). Further, it is assumed that they have

zero mean and variances σ2
m.

B. Energy Harvester, Energy Sharing and Battery Dynamics

Each sensor is equipped with an energy harvester to gather

energy from the environment. The harvested energy at sensor

m at time k, denoted by Hm(k), is described as a first-order

homogeneous finite-state irreducible and aperiodic Markov

chain, motivated by empirical measurements reported in [41].

We further assume that the Markov chain is unichain, that

is, it has a single recurrent class and a possibly empty set

of transient states. It is assumed that the harvested energies

are mutually independent and independent from the process

θ(k) and the measurement noise. We consider a slotted

time model. For simplicity, each time-slot is assumed to be

equal to the sampling period between two discrete sampling

instants. The energy harvested at time slot k is stored in the

battery, and can be used for data transmission to the FC or

for energy sharing with neighboring sensors in time slot k+1.

The energy used to transmit data from sensor m to the FC

at time k is denoted Em(k). The transmission model will be

described in detail in the next subsection.

Each sensor can transmit energy to neighboring sensors

and also receive energy from neighboring sensors via directed

wireless energy transfer. This can be realized, for instance,

by energy transfer between two resonant objects such as

discussed in [16], [17], the use of laser beams, or by the

use of beamforming radiowaves. The set of neighboring

sensors from which sensor m can receive energy is denoted

by NR,m and the set of neighboring sensors to which sensor

m can transmit energy is denoted by NT,m. The energy

transferred from sensor m to sensor n at time k is denoted by

Tm,n(k). The efficiency of the energy transfer link from sensor

m to sensor n, which accounts for losses in the wireless

energy transfer process, is given by ηm,n < 1. In general,

the efficiencies ηm,n can be functions of time, i.e., ηm,n(k).

Unless explicitly mentioned, we will assume time-invariant

efficiencies throughout this work.

Further, we assume that during each time interval, some
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stored energy in the battery is lost due to leakage, [32], [33].

Thus, if no energy is added or used at time k, at time step k+1

only a fraction µ ∈ [0,1] of the energy stored in the battery at

time k is available for use. Hence, using the notation above,

the dynamics of the battery level of sensor m at time k + 1

is similar to the model in [34] and is given by

Bm(k + 1) =min


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
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




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
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
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
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∑
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ηn,mTn,m(k)



















µ; B̂m


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







, (2)

where B̂m denotes the maximal battery capacity of sensor m.

However, the energy storage model (2) differs from the model

in [34] in two ways: (i) the model in [34] does not consider

energy transfer, and (ii) the energy harvesting term is not

affected by energy leakage. However, by simply rescaling

the harvested energy levels accordingly, both models can be

converted into each other when the energy transfer terms are

ignored.

C. Transmission Model

Each sensor has a transmitter using an analog amplify and

forward uncoded strategy.2 Hence, at each time-slot k, sensor

m transmits its measurement xm(k) amplified by a factor of√
αm(k). The energy needed for transmission is then given by

Em(k) = αm(k)
(

(Rθ)m,m + σ
2
m

)

(3)

where (Rθ)m,n denotes element m,n of matrix Rθ. The channel

power gain of the m-th channel between sensor m and the

FC, gm(k), is assumed to be a first-order stationary and

homogeneous finite-state Markov block-fading process [43].

We assume that the channel gains are mutually independent

and independent of the harvested energies. Similar to the

harvested energies, we assume that the Markov chain is

unichain. We further assume that within each block, the

channel remains constant. For simplicity, the duration of each

fading block is assumed to be the same as the duration of

each transmission slot. We consider an orthogonal multiple

access scheme between the sensors and the FC, which can be

implemented for instance via orthogonal frequency division

multiple access (OFDMA). The received signal at the FC

from sensor m at time k is zm(k) =
√

αm(k)gm(k)xm(k)+ζm(k)

where ζm(k) is assumed to be i.i.d. additive white Gaussian

noise with variance ξ2m.

D. Distortion Measure at the Fusion Centre

At the FC, the minimum mean-square error (MMSE)

estimator (see [44]) provides the vector of estimates

θ̂(k) =
(

θ̂1(k),θ̂2(k), . . . ,θ̂M(k)
)T

given the vector of re-

ceived signals z(k) = (z1(k), . . . ,zM(k))T = Hθ(k) + v(k)

with H = diag
(√
α1g1,

√
α2g2, . . . ,

√
αMgM

)

and v =
(√
α1g1n1 + ζ1,

√
α2g2n2 + ζ2, . . . ,

√
αMgMnM + ζM

)T
(where

2Optimality of analog transmission for multi sensor estimation of a
memoryless Gaussian source over a coherent multiaccess channel was shown
in [42]. Further, this scheme is very simple to implement since it does not
require complex coding/decoding, and incurs no other delay than propagation
delay.

we dropped the dependence on k for brevity).3 Then, the

distortion measure at the FC is

D(k) :=trace
(

E

{

(

θ(k) − θ̂(k)
) (

θ(k) − θ̂(k)
)T

})

=trace
(

(

H
TR−1

v H + R−1
θ

)−1
)

(4)

where Rv = diag
(

α1g1σ
2
1
+ ξ2

1
, . . . ,αMgMσ

2
M
+ ξ2

M

)T
.

E. Information Patterns

In this paper, we will consider a causal information pattern

where only information of current and past channel gains

and harvested energies is assumed. In particular, we consider

centralized information, where the FC has causal information

of all the channel gains, harvested energies and battery levels

of all sensors. This can be achieved in practice by the

FC transmitting periodic pilot signals to the sensors at the

beginning of each transmission slot, from which the sensors

estimate their channels and report back their channel gains

and previously harvested energies or current battery levels

to the FC via orthogonal control channels. We assume the

channels between the sensors and the FC are reciprocal,

such as in a time-division-duplex (TDD) framework. The FC

computes the optimal energy allocation policies and informs

the sensors at each slot.4

III. Infinite-Time Horizon Optimal Energy Allocation

In this section, we formulate an infinite-time horizon opti-

mal energy allocation problem subject to energy constraints

(2) to minimize the overall long-term average distortion (4)

at the FC. It is considered that only causal information is

available. Hence, the unpredictable future wireless fading

channel gains and harvested energies are not known a priori

and the information available at time k ≥ 1 is

Ik = {g(k),H(k),B(k),Ik−1} (5)

where g(k) = (g1(k), g2(k), . . . , gM(k)) is the complete vec-

tors of all channel gains, H(k) = (H1(k),H2(k), . . . ,HM(k))

is the vector of harvested energies and B(k) =

(B1(k), B2(k), . . . , BM(k)) is the vector of battery levels at time

k, and I1 = {g(1),H(1),B(1)}. The information Ik is used at

each time slot k at the FC to decide the amount of energy used

for data transmission from the sensors to the FC, i.e., Em(k)

for all m = 1,2, . . . ,M, and the amount of energy transferred

between sensors, i.e., Tn,m(k) for all m = 1,2, . . . ,M and

n ∈ NT,m. An energy allocation policy is a set of functions

to determine ({Em(k)},{Tm,n(k)}) : m ∈ {1, 2, . . . ,M}, and

n ∈ NT,m}. A policy is feasible if the energy constraints

Em(k) ≥ 0, Tm,n(k) ≥ 0, Em(k) +
∑

n∈NT,m

Tm,n(k) ≤ Bm(k)

(6)

3It is also assumed that the sensor noise parameters σm, and the channel
noise variances ξm are known at the FC.

4The communication overhead between the sensors and the FC for
reporting channel gains and battery levels does, of course, also consume
energy at the sensors. This is not explicitly taken into account in this work.
However, if this energy consumption is constant for each transmission slot,
then it can be easily taken into account by subtracting this energy from the
maximum battery level and defining a modified maximum battery level for
each sensor.
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are almost surely (a.s.) satisfied for all 1 ≤ m,n ≤ M

and k ≥ 1. The admissible control set is the set of all

possible energy allocation policies, which are based only

on the causal information set Ik and do not violate the

energy constraints (6). Define T(k) as the matrix with entries

(T(k))m,n = Tm,n(k) for n ∈ NT,m and (T(k))m,n = 0 otherwise.

A. Infinite-Time Horizon Stochastic Control Problem

We aim to find the optimal energy allocation policy that

minimizes the expected average distortion measure over an

infinite-time horizon. The optimization problem is described

as the following stochastic control problem: Find an energy

allocation policy, which determines E(k) and T(k), such that

the following cost function is minimized

lim sup
K→∞

1

K

K
∑

k=1

E {D(k)} , (7)

(6) is satisfied a.s. for 1 ≤ m,n ≤ M and 1 ≤ k ≤ K, and

Bm(k) satisfies (2).

B. Stationary Optimal Energy Allocation Policy

The stochastic control problem (7) with centralized infor-

mation (5) can be regarded as a Markov Decision Process

(MDP) formulation {S,A,P} with state space S = {B,g,H}
and action space A = {E,T}. The transition probability from

state S to S′ under action A, i.e., P(S′|S,A) can be derived

from the battery dynamics (2) while considering the Markov

chains describing the channel gains and harvested energies.

See [39], [45] for further details.

To simplify notation, the vector of channel gains, harvested

energies, battery levels and energy consumption and the

matrix of energy shared at time k are denoted g = g(k),

H = H(k), B = B(k), E = E(k) and T = T(k), respectively,

and the corresponding vectors of channel gains, harvested en-

ergies and battery levels at time k+1 are denoted g̃ = g(k+1),

H̃ = H(k + 1) and B̃ = B(k + 1), respectively.

Under the given assumptions, one can show the existence

of a stationary optimal energy allocation policy computed

offline from a Bellman dynamic programming equation given

in Theorem 1 below.

Theorem 1. Suppose that a unichain energy allocation pol-

icy5 exists. Then the infinite-time horizon stochastic control

problem (7) has a unique solution.

Further, if the set of possible policies includes at least

one policy under which energy is used for data transmission

or energy transfer to neighboring nodes, such that the asso-

ciated Markov chain of battery levels is unichain, then the

value of the infinite-time horizon stochastic control problem

(7) is given by ρ, which is the unique solution of the average-

cost optimality Bellman equation

ρ + V(g,H,B) =min
E,T

{

D +E
{

V
(

g̃,H̃,B̃
∣

∣

∣ g,H,E,T
)}}

(8)

where E and T satisfy the energy constraints given in (6) and

V is the relative value function. The optimal average cost ρ

is independent of the initial conditions g(0), H(0) and B(0).

5A unichain policy is a stationary policy under which the associated
Markov chain has a single recurrent class, that is, all states are visited an
infinite number of times with probability 1.

Proof. Since it is assumed that the Markov chains of the

harvested energies and the channel gains are unichain and

that a stationary unichain policy exists, it can be shown that

(8) has a unique solution by following similar steps as in [46,

Chap. 4.2, Prop. 2.5]. Then, by [46, Chap. 4.2, Prop. 2.6],

the solution of (8) is independent of the initial state. �

Remark 1. The stationary optimal solution to the stochastic

control problem (7) is given by

{Eo(g,H,B),To(g,H,B)}
= argmin

E,T

{

D + E
[

V(g̃, H̃, B̃)|g,H,E,T
]}

(9)

such that E and T, which satisfy the energy constraints (6)

with battery dynamics (2) for all m, and V constitute the

solution to the average cost Bellman equation (8).

Remark 2. If a control policy {Eo,To}, a measurable function

V , and a constant ρ exist, which solve equations (8) and (9),

then the control {Eo,To} is optimal and ρ is the optimal cost

ρ = lim sup
K→∞

1

K

K
∑

k=1

E {D(k)} (10)

and, for any other feasible and causal control policy {E,T},
we have

ρ ≤ lim sup
K→∞

1

K

K
∑

k=1

E {D(k)} . (11)

More details can be found in [39].

Remark 3. Since the processes g and H are mutually in-

dependent (also across sensors) finite state Markov chains,

the second right hand term involving the expectation in (8)

becomes

∫

g̃,H̃

V
(

g̃, H̃,B̃
)

M
∏

m=1

(

P(g̃m|gm)P(H̃m|Hm)
)

dg̃dH̃ (12)

where P(x|y) is the probability of x given y.

If the processes g and H are i.i.d. over time and across the

sensors, then the same term in (8) simplifies to

∫

g̃,H̃

V
(

g̃, H̃,B̃
)

M
∏

m=1

(

P(g̃m)P(H̃m)
)

dg̃dH̃. (13)

The Bellman equation (8) can be solved using the relative

value iteration algorithm. Details can be found in [39]. In

order to facilitate the numerical computation, the Bellman

equation (8) is solved by discretizing the state and action

space, in particular the battery levels and the energy allo-

cation space. Recall that the state components involving the

fading channels and the harvested energy levels are already

assumed to be discrete due to the finite-state Markov chain

assumption. It is expected that the solution of the discretized

Bellman equation approaches the solution of the continuous

valued Bellman equation as the number of discretization

levels grows [47].
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IV. Q-Learning

Solving the average-cost optimality Bellman equation (8)

requires full knowledge of the underlying transition prob-

ability matrix P. In practice, the transition probabilities of

the Markov process generating the channel gains and the

harvested energies may not be perfectly known. In this case,

the optimal energy allocation solution cannot be determined

by solving the Bellman dynamic programming equation

presented in the previous section. Hence, finding suboptimal

algorithms, which do not rely on the complete knowledge

of the underlying system, is an important task. In case the

state, S, and action space, A, are discrete or discretized

(that is, the channel gains, the harvested energies, the battery

levels and the allocated energy usage and energy transfer

values belong to finite-discrete sets) and the fading channels

and harvested energies are independent finite-state Markov

chains, the average-cost optimality Bellman equation (8) can

be simplified to the Q-Bellman equation

Q∗(g,H,B,E,T) = D+
∑

g̃,H̃,B̃

P(g̃|g)P(H̃|H)P(B̃|B,H,E,T) min
Ẽ,T̃∈A(B̃)

Q∗(g̃,H̃,B̃,Ẽ,T̃)

(14)

where Ẽ or T̃ are the chosen values for E or T at the next

time step, respectively, and A(B̃) is the set of all feasible

choices of Ẽ or T̃ given B̃. The iterative learning algorithm

referred to as Q-learning, approximates the average cost for

a given set of states and actions, i.e., Q, by adjusting its

value according to the recent observed cost, which is here

the distortion D. See also [48] and [49], for more details on

the stochastic approximation Q-learning algorithm. Assuming

that the probabilities P(g̃|g), P(H̃|H) and P(B̃|B,H,E,T) are

unknown we obtain

Q1(g,H,B,E,T) = 0 ∀g,H,B and E,T ∈ A(B) (15)

and for all k ≥ 1

Qk+1(g,H,B,E,T) = Qk(g,H,B,E,T)

+ γ(k)

(

D + min
Ẽ,T̃∈A(B̃)

Qk(g̃,H̃,B̃,Ẽ,T̃) − Qk(g,H,B,E,T)

)

(16)

where now {g̃,H̃,B̃,Ẽ,T̃} is the next state after g,H,B,E,T

when E,T ∈ A(B) is selected according to the ǫ-greedy

method:

{E,T} =














argminE,T∈A(B) Qk(g,H,B,E,T) with prob. 1 − ǫ
chosen randomly ∈ A(B) with prob. ǫ

(17)

The algorithm in (16) converges to the optimal Q values if the

step sizes γ(k) for all k ≥ 1 satisfy γ(k) > 0,
∑

k γ(k) = ∞ and
∑

k γ
2(k) < ∞, [48], [49]. Note that convergence is guaranteed

for all ǫ > 0, [48], [49]. If ǫ is large, then the algorithm

spends more computational effort in exploring the effect of

possible choices of E and T. However, a small value of ǫ

is usually preferred as it often allows to better exploit the

knowledge of which choice of E and T leads to the minimal

expected cost based on the current Qk.

V. Heuristic policies

The proposed solutions to find energy allocation policies

in the two previous sections, i.e., finding the optimal solution

via (8) or solving the iterative learning algorithm (14), require

a considerable computational effort. In practice, it is often

beneficial to investigate simple policies, that are providing

suboptimal solutions, but require very little computational

effort.

A. Heuristic 1: Modified greedy policy

A very simple policy is the greedy policy, where each

sensor just uses all available energy to transmit its data to

the FC. Hence, Em(k) = Bm(k) for all m independently of the

channel gain or any other states. When implementing this

policy, there is considerable risk of not having any energy

available to transmit data from some sensor m to the FC at

some time k if no energy has been harvested in the previous

step. Thus, the greedy policy is slightly modified such that

Em(k) = Bm(k)
2

, which ensures that at each time step, some

energy is available to transmit data from every sensor to the

FC, if the initial battery levels are not zero.

B. Heuristic 2: Ad hoc policy

The second heuristic policy was derived for a related

but slightly different problem in [37], where instead of a

correlated field, all sensors measure the same scalar signal

of interest θ(k). We recapitulate the basic principles next.

Assume a simple system with two sensors, where both

agents can share energy between each other and have access

to full causal information, such as the maximal battery level,

mean channel gains and harvested energies, energy transfer

efficiencies as well as current channel gains and battery

levels.6 Aiming to minimise the overall distortion at the FC,

leads to the problem described in [37], for which necessary

optimality conditions is derived. Those have to be simplified

in order to reduce the computational complexity and to

require only causal information. The simplified necessary

conditions for using energy for data transmission to the FC

(E1(k) ≥ 0), for storing energy in the battery for future

use (F1(k) ≥ 0)7 and for transferring energy to sensor 2

(T1,2(k) ≥ 0) are as follows:

E1(k) ≥ 0 if g1(k) ≥ ḡ1 and g1(k) ≥ η1,2ḡ2 (18)

F1(k) ≥ 0 if ḡ1 ≥ g1(k) and ḡ1 ≥ η1,2ḡ2 (19)

T1,2(k) ≥ 0 if η1,2ḡ2 ≥ g1(k) and η1,2ḡ2 ≥ ḡ1 (20)

In case of unlimited battery capacity, these simplified neces-

sary conditions could be used to allocate the energy at time

step k. However, since both batteries have limited capacities,

storing all energy at time k or transferring all energy from

sensor 1 to sensor 2 at time k might be undesirable despite

the necessary conditions (19) or (20) being satisfied because

it could lead to preventable battery overflow. Instead of

6Note that in case of assuming Markovian channel gains or harvested
energies, the mean channel gains ḡ1 and ḡ2 and the mean harvested energies
H̄1 and H̄2 are calculated as the dot product of the channel gain levels
or harvested energy levels, respectively, and the corresponding stationary
distribution.

7That is, F1(k) is the total amount of energy left in battery 1 for future
use.
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determining the energy allocation policy solely on the neces-

sary condition, all three options (data transmission, storage,

energy sharing) are prioritized and energy is then allocated

accordingly with the aim to minimize battery overflow.

This suggests the following basic rules:

(i) Prioritize the three possible energy usage alternatives,

i.e., data transmission E1(k), storage F1(k) and energy

sharing T1,2(k), by sorting g1(k), ḡ1 and η1,2ḡ2 from

highest to lowest.8 In case g1(k) = ḡ1 or g1(k) = η1,2ḡ2,

using energy for data transmission has higher priority

than storing energy or transferring it to sensor 2, re-

spectively. In case ḡ1 = η1,2ḡ2 storing energy has higher

priority than transferring it to sensor 2. Then allocate

the available energy according to these priorities.

(ii) If transmitting data to the FC is the next highest priority,

use all remaining energy to transmit data to the FC.

(Thus, no energy is allocated to a task with a lower

priority.)

(iii) If storing energy has the next highest priority, energy

should be stored. To avoid battery overflow (i.e., energy

waste), one should never store more energy than nec-

essary to fill the battery to its maximal capacity minus

the mean harvested energy. That is

F1(k) = min
{

max
{

B̂1(k) − H̄1; 0
}

; B1(k)
}

.

In case there is more energy available in the battery

than should be stored, the remaining energy should be

used according to the next following priority, that is,

following the instructions in (ii) or (iv).

(iv) If transferring energy to sensor 2 has the next highest

priority, transfer as much energy to sensor 2 to have

its battery full for the next time step. To avoid battery

overflow, again no more energy should be transferred

than the battery capacity minus the mean harvested

energy of sensor 2. Therefore, T1,2(k) for η1,2 > 0 is

given by

min
{

max
{(

B̂2 − B2(k) + E2(k) − H̄2

)

/η1,2; 0
}

; B1(k)
}

.

If η1,2 = 0, then T1,2(k) = 0. In case there is more energy

in the battery than should be transferred, the remaining

energy should be used according to the next following

priority, that is, following the instructions in (ii) or (iii).

Remark 4. The necessary conditions reported in [37], which

lead to the heuristic algorithm given above, have been derived

for a system without battery leakage, that is, with µ = 1.

However, when assuming little battery leakage, that is, µ

close to 1, it can be expected that the heuristic policy can

still be applied.

Remark 5. It should be noted that this heuristic policy favors

transmitting data to the FC if the current channel gain is

higher than the mean. This policy works well for cases

where the overall amount of energy available is low. If only

little energy is available, it is beneficial to minimize the

overall distortion by transmitting data whenever the channel

gain is better than the mean. In contrast, if a lot of energy

8For instance, if ḡ1 > g1(k) > η1,2 ḡ2, storing energy has the highest
priority followed by data transmission to the FC; and transferring energy to
the second sensor has the lowest priority.

is already available due to higher mean harvested energy

or higher battery capacity, increasing the energy for data

transmission further in case of high channel gains leads to

a small reduction of the distortion. In these cases it would

be better to store energy to be able to transmit data at time

steps with poorer channel gains. However, this simple policy

cannot distinguish between these two fundamentally different

scenarios. It is designed to work well for scenarios with

overall little energy availability but its performance may not

be as good when higher amounts of energy are available.

Despite this heuristic policy being derived from optimality

conditions in our earlier study for the different problem on

decentralized estimation of a point source θ(k), the same

simple rules for energy allocation will be evaluated for the

case of individual measurements θm(k) and compared to other

energy allocation policies below.

VI. Numerical Results

In this section, we provide a collection of numerical results

that illustrate the performance of the optimal dynamic pro-

gramming based algorithm, the Q-learning based algorithm

and the two heuristic policies against various important pa-

rameters such as cross correlation, energy transfer efficiency

and battery leakage.

Example 1 (Effect of Cross Correlation). A system with two

sensors is simulated where η1,2 = η2,1 = 0.8, µ = 0 (no

battery leakage), B̂1 = B̂2 = 4mWh and Rθ = (1, ϕ;ϕ,1),

where ϕ describes the cross correlation between the two

measurements θ1 and θ2 and is varied between 0 and 0.9.

The fading channel gains and harvested energies are mod-

eled as 3-level discrete Markov chains with the common

transition matrix

T =





















0.2 0.3 0.5

0.3 0.4 0.3

0.1 0.2 0.7





















. (21)

Two cases have been simulated: In the ‘balanced scenario’,

the state space for g1, g2 is {0,0.5,1} and for H1 and H2 is

{0,1,2}. In the ‘unbalanced scenario’ g2 and H1 are 4 times

lower than g1 and H2, respectively. That is, the state space

for g1 and g2 are {0,0.5,1} and {0,0.125,0.25}, respectively,

while the state spaces of H1 and H2 are {0,0.5,1} and {0,2,4},
respectively.

To facilitate the implementation of the dynamic program-

ming algorithm and the Q-learning algorithm, the space for

the battery levels and the space for energy allocation for

data transmission or energy transfer to the neighboring sen-

sor were quantized uniformly. Despite these discretizations,

the dynamic programming based algorithm can be time-

consuming for calculating the optimal energy allocation look-

up tables, due to the well known curse of dimensionality. In

addition, the discretization of the decision variables leads to

numerical inaccuracies, which can be addressed by averaging

the results over a sufficiently long time span. The Q-learning

algorithm was evaluated by the use of two different train-

ing time horizons, i.e. 104 and 106, respectively, and with

ǫ = 0.1. After calculating the corresponding Q-values for

both training horizons, the performance of the algorithms

were evaluated for a given simulation time span by using
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Figure 2: Example 1: average distortion (left) and average

energy usage (right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in

blue), vs. cross correlation term ϕ for the ‘balanced case’

(top) and the ‘unbalanced case’ (bottom)

the Q-values as a look-up table to determine the best choice

of E and T without adapting Q-values further. Third, the

heuristics described in Section V were implemented.

The average distortion and the average energy usages for a

simulation time span of 104 time steps for the optimal solu-

tion based on dynamic programming (‘DP’), the Q-learning

algorithm with the two different training time horizons 104

and 106 (‘Q1’ and ‘Q2’, respectively), and the two heuristics

(‘h1’ and ‘h2’) are illustrated in the plots in Fig. 2.

It is evident that increasing the cross correlation term

ϕ leads to an overall reduced distortion. As expected, the

average distortion is the smallest for the optimal algorithm

based on dynamic programming. The performance of the

Q-learning algorithm is quite poor if a short training time

horizon of 104 time steps is used (‘Q1’). However, when

increasing the training horizon to 106 (‘Q2’) the average

distortion is significantly reduced since the optimal policy

is better approximated. It is expected that the performance

can be further improved using even longer training time

horizons. Observe also, that the modified greedy policy (‘h1’)

performs almost as good as the optimal solution (‘DP’) for

the balanced case. In contrast, the ad hoc heuristic (‘h2’)

derived for the related setting in [37] (every sensor measures

the same θ) clearly outperforms the modified greedy policy

in the unbalanced case.

Example 2 (Effect of Energy Transfer Efficiency for Low

Cross Correlation). The system settings from Example 1

were modified in the following way: Instead of varying the

cross correlation term, it is set to ϕ = 0.2 while η = η1,2 = η2,1

is varied between 0 and 1.

The simulations are shown in Figure 3. In the balanced

case, the average distortion hardly decreases when increasing

the energy transfer efficiency despite the increase of average

energy transferred between the sensors. In the unbalanced

case, the average distortions obtained for the optimal solution

(‘DP’) and the Q-learning (‘Q2’) decrease for higher η. As
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Figure 3: Example 2: distortion (left) and average energy

usage (right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in blue), vs.

energy transfer efficiency η for the ‘balanced case’ (top) and

the ‘unbalanced case’ (bottom) for low cross correlation

in the previous example, the modified greedy policy (‘h1’) is

more suitable for the balanced case while the ad hoc heuristic

(‘h2’) achieves better results in the unbalanced case. Note

that the average distortion for the optimal solution slightly

increases between η = 0 and η = 0.1. This can be explained

by the loss of optimality due to discretization, which is

necessary to implement the solution of the Bellman equation

on a digital computer resulting in small deviations from the

true optimal solution.

In the unbalanced case, it should also be noted that the

optimal shared energy increases when the energy transfer

efficiency increases from 0 to approximately 0.3. If the energy

transfer efficiency is increased further, the optimal amount

of energy shared among the sensors remains roughly the

same. Since the measurements from the two sensors carry

information about two different sources (although correlated)

the FC needs to receive data from both sensors in order

to estimate both sources. Hence, in the unbalanced case,

one sensor needs to share some energy to allow the other

sensor to transmit data that can be received at the FC with

an acceptable quality. In case wireless energy transfer is

possible with a sufficiently high efficiency (such that at least

30% of the transmitted energy is actually received at the

receiving sensor), sharing more energy is not beneficial since

the other sensor has enough energy already for information

transmission with an acceptable distortion level at the FC.

It can also be observed that the curve of the average energy

used for data transmission has a “bowl shaped” behavior: Due

to the increase in average shared energy when increasing

the energy transfer efficiency from 0 to 0.3, on average,

less energy is available for data transmission to the FC.

Hence, the average energy usage decreases for low energy

transfer efficiencies. However, for higher energy transfer

efficiencies, the amount of shared energy remains almost the

same, leading to an increase in average available energy to

be used for data transmission.
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Figure 4: Example 3: distortion (left) and average energy

usage (right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in blue), vs.

energy transfer efficiency η for the ‘balanced case’ (top) and

the ‘unbalanced case’ (bottom) for high cross correlation

Example 3 (Effect of Energy Transfer Efficiency for High

Cross Correlation). The system settings from Example 2

were solely modified by setting ϕ = 0.8.

The simulations in Figure 4 show similar results as in

Example 2 for the case of low cross correlation (ϕ = 0.2).

Due to the higher cross correlation, the average distortion

is generally lower in Figure 4 compared to the results in

Figure 3. Further, it seems that in case of higher cross

correlation, energy transfer offers a higher benefit, since the

average energy transferred between the sensors increases

more for ϕ = 0.8 than for ϕ = 0.2.

Example 4 (Effect of Battery Leakage). Here, the system

settings are similar to the examples above with setting ϕ =

0.8 and η = 0.8. In contrast to above, the battery leakage

parameter µ is varied between 0 (no leakage) to 0.5.

The simulations in Figure 5 show that for all energy

allocation policies, in both cases (balanced and unbalanced

case), a higher battery leakage parameter µ leads to an

increase in the average distortion. It is also evident that

energy sharing offers more benefits in the unbalanced case

despite energy leakage compared to the balanced scenario.

For increasing energy loss due to battery leakage energy

shared among the sensors approaches the average amount of

energy used for data transmission. As in the examples above,

the modified greedy policy (‘h1’) is outperformed by the ad

hoc policy (‘h2’) in case of unbalanced networks. In case of

balanced networks, the ad hoc heuristic (‘h2’) outperforms

the modified greedy policy (‘h1’) for sufficiently high battery

leakage. This is despite the ad hoc policy being developed

for systems without battery leakage.

VII. Conclusions

This paper studied the distortion minimization problem

of a multi sensor system, where each sensor transmits its

measurement to a FC over a fading channel using uncoded

analog forwarding for remote estimation at the FC. The FC
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Figure 5: Example 4: distortion (left) and average energy

usage (right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in blue), vs.

battery leakage factor µ for the ‘balanced case’ (top) and the

‘unbalanced case’ (bottom)

computes the optimal energy allocation policy to minimize a

long term average distortion cost when using the minimum

mean-square error (MMSE) estimator under the following

energy constraints: (i) the batteries at the sensors have a

limited capacity and are prone to energy leakage, (ii) the

sensors can harvest energy from their environment but only

causal information about the harvested energies is available,

and (iii) the sensors are fitted with transceiver units, that

allow them to share energy with their neighbors subject to

some loss. Random harvested energies and channel gains are

modeled as independent finite-state Markov chains. The FC

has causal information about the sensors’ channel gains and

harvested energy levels.

The optimal solution is obtained via a stochastic con-

trol approach resulting in a Bellman dynamic programming

equation. A suboptimal Q-learning algorithm, which does

not require a priori knowledge of all system parameters,

is also studied. Further, to avoid the computational burden

of the optimal solution based on dynamic programming

techniques, two heuristic ad hoc energy allocation policies are

presented and the performances of all policies are compared

via numerical examples. The simulations reveal that the

average distortion decreases as the cross correlation and the

energy transfer efficiency increase. Further, in most scenarios,

the optimal solution (obtained by dynamic programming)

clearly outperforms the two sub-optimal policies. It can also

be seen that an increase in energy transfer efficiency (for

energy sharing) and an increase in the cross correlation term

have a significantly higher impact on the average distortion

if the system is unbalanced, that is, if a sensor has a

substantially higher average harvested energy and a poorer

channel compared to its neighbor.

The results in this paper reveal important insights into

wireless sensor networks with energy harvesting and energy

sharing. Despite this paper focusing on relatively simple star

networks, the results show that even for those simplistic
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network settings, the optimal energy allocation policy is

far from trivial. Indeed, the findings presented here, form

an important base for further investigation in this area as

they provide a benchmark for more complicated network

topologies. As a next step, more advanced sensor networks

should be considered.
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