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SUMMARY

We investigate the power control problem for multi sensor estimation of correlated random Gaussian sources.

A group of wireless sensors obtains a local measurement and transmits their measurements to a remote fusion

centre (FC), which reconstructs the measurements using the minimum mean-square error (MMSE) estimator.

All sensors are equipped with an energy harvesting module and a transceiver unit for wireless, directed

energy sharing between neighboring sensor. The sensor batteries are of finite storage capacity and may be

subject to energy leakage as well. Our aim is to find optimal power control strategies, which determine the

energies used to transmit data to the FC and shared between sensors, and that minimize the long term average

distortion over an infinite horizon. We assume centralized causal information of the harvested energies and

channel gains, which are generated by independent finite-state stationary Markov chains. The optimal power

control policy is derived using a stochastic predictive control formulation. We also investigate a Q-learning

based sub-optimal power control scheme and two computationally simple heuristic policies. Copyright c©

0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wireless sensors have become much more powerful and affordable in recent years. Hence, they

are used in a growing number of areas such as environmental data gathering [1], industrial process

monitoring [2], mobile robots and autonomous vehicles [3], and for monitoring of smart electricity

grids [4]. Often, several sensors are used to construct a wireless sensor network. Each sensor

wirelessly transmits its measurements over a network to a remote fusion center (FC), which further

processes the received data, e.g., by reconstructing the measured sources or computing an actuation

signal.

When using battery powered sensors, a significant challenge is to spend the available power in an

optimal fashion. This is usually refereed to as “power control” in the control literature, see [5–11].

Some works also investigated the benefits of power control in combination with coding schemes as

in [12].

Another promising alternative might be to harvest energy, which has attracted mostly researchers

in the are of wireless communications. Energy can be harvested from the sensors’ environment

using, e.g., solar panels, windmills, thermoelectric elements, radio frequency energy harvesting

units or vibration harvesters. However, since harvesting is an often unpredictable and unreliable

power source and the rechargeable batteries have limited capacity, spending the available energy in

an optimal fashion is a challenging task. Several optimal power control policies for different system

settings with energy harvesting and optimizing a variety of performance criteria have been proposed.

For instance, power control policies to maximize the throughput or minimize the mean delay for a

single transmitting device were presented in [13]. The work in [14] derived power control algorithms

that maximize the mutual information of a wireless link considering either causal or non-causal

side information. An optimal packet scheduling problem for a single-user communication system

with infinite battery and energy harvesting capabilities considering that data packets and energy

packets arrive at the transmitter in a random manner was investigated in [15]. More precisely, [15]

develop optimal off-line scheduling policies for minimizing the delivery time for all packets to
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the destination in a deterministic setting with non-causal information. Finite horizon throughput

maximization and the related problem of minimizing the transmission completion time for a given

amount of data were studied in [16]. The effect of energy harvesting in optimal power control

for source acquisition/compression and transmission was studied in [17, 18]. The work reported

in [19] studied how to jointly control the data queue and battery buffer to maximize the long-term

average sensing rate of a wireless sensor network with energy harvesting. The problem of designing

optimal sensor transmission power control schemes under energy harvesting constraints has also

been investigated in [20].

The authors of [21] considered an energy harvesting sensor, that sends it measurements towards

a remote estimator, and developed a communication scheduling strategy for the sensor and an

estimation strategy for the estimator that jointly minimize the expected sum of communication and

distortion costs over a finite time horizon. A setting where sensor measurements are wirelessly sent

from an energy harvesting sensor to a remote estimator has also been investigated in [22], where the

authors developed an optimal energy allocation strategy such that under energy constraints due to

the harvesting sensor, the distortion at the receiver is minimised. The recent work in [23] extended

those results to a closed control loop, where the state estimates from the Kalman filter at the smart

wireless sensor are sent via a wireless packet dropping link to the controller.

Apart from energy harvesting, wireless energy transfer is another promising option to overcome

the limitations of finite power resources. Since wireless energy transfer is becoming more efficient

and less costly, it can potentially be used to recharge batteries of wireless sensors. The authors

of [24] showed through experiments that energy can be efficiently transferred between two resonant

objects with efficiencies of over 50% for distances up to 2 meters. By choosing different resonant

frequencies between each pair, which are coupled by an energy transfer link, it is hence possible

to allow for highly efficient energy transfer. Similar energy transfer techniques were also discussed

in [25]. Optimal control of energy and information transmission through wireless communication

channels has also been of interest. Important works along this direction include [26–30], where
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the energy is assumed to be broadcasted in all directions, in contrast to the techniques discussed

in [24,25].

The important question of what benefits wireless energy transfer could bring to wireless sensor

systems has already attracted some attention. In particular, [31] and [32] considered a wireless

sensor network with a fixed base station and a wireless charging vehicle driving from sensor to

sensor assuming wireless energy transfer as in [24]. An optimal power control scheme was derived

and multiple necessary conditions for optimality are given for throughput maximization for a two-

hop relay channel with one-way energy transfer from the source to the relay in [33].

A significant hurdle when using batteries, or other energy storage options such as capacitors, to

power wireless sensors is the fact that these devices are not perfect. To address such issues, capacitor

leakage aware algorithms for energy harvesting wireless devices were developed and successfully

evaluated in [34, 35]. The approach in [36] considered a single communication link with a hybrid

power source including a constant energy supply and energy harvesting prone to energy leakage.

The authors in [37] studied throughput maximization of a single communication link, where the

transmitter has full noncausal information of the fading channel gains and harvested energy but

harvested energy is randomly lost. A slightly different approach was studied in [38], where saving

harvested energy in the battery is assumed to be prone to losses whereas storing and retrieving the

energy from the battery is considered lossless. In this situation, the optimal power control scheme

is found to be a double-threshold policy.

Following a different line of research in [39] we investigated a multi sensor estimation problem

via a star network of wireless sensors that report their measurements over temporally independent

block fading channels to a central FC, which reconstructs the random source observed by the

sensors. All sensors are equipped with individual energy harvesting modules and can in addition

transfer energy via directed wireless links to neighboring sensors. Optimal power control policies

for information transmission and energy sharing were derived to minimize the overall distortion at

the FC over a finite time horizon. Considering a finite time horizon in [39] allowed to derive several

necessary optimality conditions and led to a suitable heuristic power control scheme. However,
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implementing such finite time solutions in practice is usually undesirable. It is often not known

how long a system has to function or the time horizon is very long, which leads to prohibitively

big computations. The results in [39] are further unrealistic as they consider perfect batteries and/or

capacitors. Moreover, for simplicity, the channel gains and harvested energies were assumed to be

independent and identically distributed (i.i.d.) in [39] and only a single source was considered.

The present manuscript extends the results reported in [39] along the following lines:

• We study the more practical relevant and realistic case of infinite time horizon power control,

which leads to a stationary power control scheme. For any application, the solution is

independent of the time horizon, can be implemented based on causal information only, and

does not require recalculations as long as the statistics of the underlying random processes

remain unchanged.

• The sensors in this paper are assumed to measure a field of correlated sources (instead of the

same point source).2

• The fading channels and harvested energies are described by finite state Markov chains

(instead of i.i.d. channel gains and harvested energies).

• The sensor batteries/energy storage devices are prone to energy leakage.

The current work contributes in the following ways:

1. We investigate optimal power control schemes for information transmission and energy

sharing in a multi sensor estimation problem with a correlated field of data and minimizing a

long-term average distortion cost over an infinite horizon, with centralized causal information

and Markovian fading channels and harvested energies.

2. We allow the sensor batteries / energy storage devices to be imperfect and subject to energy

leakage.

2Temperature measurements across a large tank or humidity measurements across a paper path in a paper mill, which are

necessary to guarantee specified quality levels, are examples of such fields.
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3. The optimal stationary power control scheme is found by a stochastic control approach

using a Markov decision process (MDP) formulation, where the optimal energy values for

information transmission and sharing are found by solving a Bellman dynamic programming

equation using relative value iteration, see [40].

4. Motivated by practical scenarios, where full statistical information about the harvested energy

and fading channel dynamics may not be available, we present a Q-learning algorithm, that

yields a suboptimal solution for the power control problem without requiring exact knowledge

of all system parameters.

5. We conduct a comparative performance investigation of the optimal solution obtained by

using the relative value iteration algorithm with the suboptimal Q-learning algorithm and two

simple heuristic policies via suitably chosen numerical examples, illustrating the advantages

and disadvantages of each scheme. The benefits of energy sharing, and how the average

distortion depends on various parameters such as cross correlation terms, energy transfer

efficiency and energy leakage are discussed in detail.

The rest of the paper is organized as follows: The system model is presented in Section 2.

Section 3 studies the infinite-horizon optimal power control problem. Three suboptimal power

control policies, namely Q-learning and two heuristic policies, are proposed in Sections 4 and 5,

respectively. The performances of all considered power control policies are compared by means of

numerical examples presented in Section 6, followed by concluding remarks in Section 7.

2. SYSTEM MODEL

We consider a star-network with M sensors and an FC. Each sensor m individually measures

a signal of interest θm(k), at discrete-time instants k ∈ {1,2,3, . . . } subject to measurement noise.

The measurements are spatially correlated between the sensors. The remote sensors transmit

their information to the FC, which estimates the vector θ(k) = (θ1(k),θ2(k), . . . ,θM(k))T given the

measurements received. We consider an analog amplify and forward uncoded transmission strategy
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Figure 1. System setting (icons taken from [41])

subject to additive noise, [43]. Each sensor is equipped with a local battery/energy storage device,

an energy harvester, and a unit to transmit and receive energy from other sensors, along with a

transceiver for information transmission and reception, subject to transmission losses. A scheme

showing a simple system with three sensors is depicted in Fig. 1. The description of the individual

parts is given below.

2.1. Source Model and Sensor Measurements

We consider θm(k) to be an i.i.d., band-limited Gaussian process with zero mean. The measurements

of the sensors are spatially correlated such that its covariance matrix (possibly non-diagonal) is

Rθ = E

{

θ(k)θT(k)
}

. We assume that Rθ > 0 (positive definite). The measurements of sensor m,

denoted xm(k), are subject to measurement noise, nm(k), such that

xm(k) = θm(k) + nm(k) (1)

for 1 ≤ m ≤ M and k ≥ 1. The measurement noises nm(k) are assumed to be i.i.d. Gaussian, mutually

independent and also independent of θ(k). Further, it is assumed that they have zero mean and

variances σ2
m.
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2.2. Energy Harvester, Energy Sharing and Battery Dynamics

Each sensor is equipped with an energy harvester to gather energy from the environment. The

harvested energy at sensor m at time k, denoted by Hm(k), is described as a first-order homogeneous

finite-state irreducible and aperiodic Markov chain, motivated by empirical measurements reported

in [42]. We further assume that the Markov chain is unichain, that is, it has a single recurrent class

and a possibly empty set of transient states. It is assumed that the harvested energies are mutually

independent and independent of the process θ(k) and the measurement noise. We consider a slotted

time model. For simplicity, each time-slot is assumed to be equal to the sampling period between

two discrete sampling instants. The energy harvested at time slot k is stored in the battery, and can

be used for data transmission to the FC or for energy sharing with neighboring sensors in time slot

k + 1. The energy used to transmit data from sensor m to the FC at time k is denoted Em(k). The

transmission model will be described in detail in Subsection 2.3.

Each sensor can transmit energy to neighboring sensors and also receive energy from neighboring

sensors via directed wireless energy transfer. This can be realized, for instance, by energy transfer

between two resonant objects such as discussed in [24, 25], the use of laser beams, or by the use of

beamforming radiowaves. The set of neighboring sensors from which sensor m can receive energy

is denoted by NR,m and the set of neighboring sensors to which sensor m can transmit energy

is denoted by NT,m. The energy transferred from sensor m to sensor n at time k is denoted by

Tm,n(k). The efficiency of the energy transfer link from sensor m to sensor n, which accounts for

losses in the wireless energy transfer process, is given by ηm,n < 1. In general, the efficiencies ηm,n

can be functions of time, i.e., ηm,n(k). Unless explicitly mentioned, we will assume time-invariant

efficiencies throughout this work.

Further, we assume that during each time interval, some stored energy in the battery is lost due

to leakage, [34, 35]. Thus, if no energy is added or used at time k, at time step k + 1 only a fraction

µ ∈ [0,1] of the energy stored in the battery at time k is available for use. Hence, using the notation

above, the dynamics of the battery level of sensor m at time k + 1 is similar to the model in [36] and
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is given by

Bm(k + 1) =min





































Bm(k) + Hm(k) − Em(k) −
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, (2)

where B̂m denotes the maximal battery capacity of sensor m.3

2.3. Transmission Model

Each sensor has a transmitter using an analog amplify and forward uncoded strategy.4 Hence, at

each time-slot k, sensor m transmits its measurement xm(k) amplified by a factor of
√
αm(k). The

energy needed for transmission is then given by

Em(k) = αm(k)
(

(Rθ)m,m + σ
2
m

)

(3)

where (Rθ)m,n denotes element m,n of matrix Rθ. The channel power gain of the m-th channel

between sensor m and the FC, gm(k), is assumed to be a first-order stationary and homogeneous

finite-state Markov block-fading process [44]. We assume that the channel gains are mutually

independent and independent of the harvested energies. Similar to the harvested energies, we

assume that the Markov chain is unichain. We further assume that within each block, the channel

remains constant. For simplicity, the duration of each fading block is assumed to be the same

as the duration of each transmission slot. We consider an orthogonal multiple access scheme

between the sensors and the FC, which can be implemented for instance via orthogonal frequency

division multiple access (OFDMA). The received signal at the FC from sensor m at time k is

zm(k) =
√

αm(k)gm(k)xm(k) + ζm(k) where ζm(k) is assumed to be i.i.d. additive white Gaussian noise

with variance ξ2m.

3The energy storage model (2) differs from the model in [36] in two ways: (i) the model in [36] does not consider energy

transfer, and (ii) the energy harvesting term is not affected by energy leakage. However, by simply rescaling the harvested

energy levels accordingly, both models can be converted into each other when the energy transfer terms are ignored.
4Optimality of analog transmission for multi sensor estimation of a memoryless Gaussian source over a coherent

multiaccess channel was shown in [43]. Further, this scheme is very simple to implement since it does not require

complex coding/decoding, and incurs no other delay than propagation delay.
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2.4. Distortion Measure at the Fusion Centre

At the FC, the minimum mean-square error (MMSE) estimator (see [45]) provides the vector of

estimates θ̂(k) =
(

θ̂1(k),θ̂2(k), . . . ,θ̂M(k)
)T

given the vector of received signals

z(k) = (z1(k), . . . ,zM(k))T = Hθ(k) + v(k) (4)

with

H = diag
(√
α1g1,

√
α2g2, . . . ,

√
αMgM

)

(5)

and

v =
(√
α1g1n1 + ζ1,

√
α2g2n2 + ζ2, . . . ,

√
αMgMnM + ζM

)T
(6)

(where we dropped the dependence on k for brevity).5 Then, the distortion measure at the FC is

D(E(k),g(k)) :=trace
(

E

{

(

θ(k) − θ̂(k)
) (

θ(k) − θ̂(k)
)T

})

= trace
(

(

H
TR−1

v H + R−1
θ

)−1
)

(7)

where E(k) = (E1(k), E2(k), . . . , EM(k)) is the vector of all transmission energies,

g(k) = (g1(k), g2(k), . . . , gM(k)) is the complete vector of all channel gains and Rv =

diag
(

α1g1σ
2
1 + ξ

2
1 , . . . ,αMgMσ

2
M
+ ξ2

M

)T
. Note that the distortion D(E(k),g(k)) is a random

process since θ(k) is a random variable. Hence, designing optimal predictive power control

strategies is a difficult and challenging task.

2.5. Information Patterns

In this paper, we will consider a causal information pattern where only information of current

and past channel gains and harvested energies is available. In particular, we consider centralized

information, where the FC has causal information of all the channel gains, harvested energies and

battery levels of all sensors. This can be achieved in practice by the FC transmitting periodic pilot

signals to the sensors at the beginning of each transmission slot, from which the sensors estimate

their channels and report back their channel gains and previously harvested energies or current

battery levels to the FC via orthogonal control channels. We assume the channels between the

5It is also assumed that the sensor noise parameters σm, and the channel noise variances ξm are known at the FC.
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sensors and the FC are reciprocal, such as in a time-division-duplex framework. The FC computes

the optimal power control schemes and informs the sensors at each slot.6

3. INFINITE-TIME HORIZON OPTIMAL ENERGY ALLOCATION

In this section, we formulate an infinite-time horizon predictive control problem subject to energy

constraints (2) to minimize the overall long-term average distortion (7) at the FC. It is considered

that only causal information is available. Hence, the unpredictable future wireless fading channel

gains and harvested energies are not known a priori and the information available at time k ≥ 1 is

Ik = {g(k),H(k),B(k),Ik−1} (8)

where H(k) = (H1(k),H2(k), . . . ,HM(k)) is the vector of harvested energies and B(k) =

(B1(k), B2(k), . . . , BM(k)) is the vector of battery levels at time k, and I1 = {g(1),H(1),B(1)}. The

information Ik is used at each time slot k at the FC to decide the amount of energy used for data

transmission from the sensors to the FC, i.e., Em(k) for all m = 1,2, . . . ,M, and the amount of energy

transferred between sensors, i.e., Tn,m(k) for all m = 1,2, . . . ,M and n ∈ NT,m. A power control policy

is a set of functions to determine ({Em(k)},{Tm,n(k)}) : m ∈ {1, 2, . . . ,M}, and n ∈ NT,m}. A policy is

feasible if the energy constraints

Em(k) ≥ 0, Tm,n(k) ≥ 0, Em(k) +
∑

n∈NT,m

Tm,n(k) ≤ Bm(k) (9)

are almost surely (a.s.) satisfied for all 1 ≤ m,n ≤ M and k ≥ 1. The admissible control set is the set

of all possible power control policies, which are based only on the causal information set Ik and do

not violate the energy constraints (9). For future reference, we define T(k) as the matrix with entries

(T(k))m,n = Tm,n(k) for n ∈ NT,m and (T(k))m,n = 0 otherwise.

6The communication overhead between the sensors and the FC for reporting channel gains and battery levels does, of

course, also consume energy at the sensors. This is not explicitly taken into account in this work. However, if this energy

consumption is constant for each transmission slot, then it can be easily taken into account by subtracting this energy

from the maximum battery level and defining a modified maximum battery level for each sensor.
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3.1. Infinite-Time Horizon Stochastic Predictive Control Problem

We aim to find the optimal power control scheme that minimizes the expected average distortion

measure over an infinite-time horizon. The optimization problem is described as the following

stochastic control problem: Find a power control policy, which determines E(k) and T(k), such

that the following cost function is minimized

lim sup
K→∞

1

K

K
∑

k=1

E {D(E(k),g(k))} , (10)

(9) subject to being satisfied a.s. for 1 ≤ m,n ≤ M and 1 ≤ k ≤ K, and Bm(k) satisfying (2).

3.2. Stationary Optimal Energy Allocation Policy

The stochastic control problem (10) with centralized information (8) can be regarded as a Markov

Decision Process (MDP) formulation {S,A,P} with state space S = {B,g,H} and action space

A = {E,T}. The transition probability from state S to S′ under action A, i.e., P(S′|S,A) can be

derived from the battery dynamics (2) while considering the Markov chains describing the channel

gains and harvested energies. See [40,46] for further details.

To simplify notation, the vector of channel gains, harvested energies, battery levels and energy

consumption and the matrix of energy shared at time k are denoted g = g(k), H = H(k), B = B(k),

E = E(k) and T = T(k), respectively, and the corresponding vectors of channel gains, harvested

energies and battery levels at time k + 1 are denoted g̃ = g(k + 1), H̃ = H(k + 1) and B̃ = B(k + 1),

respectively.

Under the given assumptions, one can show the existence of a stationary optimal power control

policy computed offline from a Bellman dynamic programming equation given in Theorem 1 below.

Theorem 1. Suppose that a unichain power control policy7 exists and consider the average-cost

optimality Bellman equation

ρ + V(g,H,B) =min
E,T

{

D(E,g) +E
{

V
(

g̃,H̃,B̃
∣

∣

∣ g,H,E,T
)}}

(11)

7A unichain policy is a stationary policy under which the associated Markov chain has a single recurrent class, that is, all

states are visited an infinite number of times with probability 1.
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where E and T satisfy the energy constraints given in (9) and V is the relative value function. Then

the infinite-time horizon stochastic control problem (10) has a unique solution.

Further, if the set of possible policies includes at least one policy under which energy is used for

data transmission or transferred to neighboring nodes, such that the associated Markov chain of

battery levels is unichain, then the value of the infinite-time horizon stochastic control problem (10)

is given by ρ, which is the unique solution of (11). The optimal average cost ρ is independent of the

initial conditions g(0), H(0) and B(0).

Proof

Since it is assumed that the Markov chains of the harvested energies and the channel gains are

unichain and that a stationary unichain policy exists, it can be shown that (11) has a unique solution

by following similar steps as in [47, Chap. 4.2, Prop. 2.5]. Then, by [47, Chap. 4.2, Prop. 2.6], the

solution of (11) is independent of the initial state. �

Remark 1. The stationary optimal solution to the stochastic control problem (10) is given by

{Eo(g,H,B),To(g,H,B)} = argmin
E,T

{

D(E,g) +E
[

V(g̃, H̃, B̃)|g,H,E,T
]}

(12)

such that E and T, which satisfy the energy constraints (9) with battery dynamics (2) for all m, and

V constitute the solution to the average cost Bellman equation (11).

Remark 2. If a control policy {Eo,To}, a measurable function V , and a constant ρ exist, which solve

equations (11) and (12), then the control {Eo,To} is optimal and ρ is the optimal cost

ρ = lim sup
K→∞

1

K

K
∑

k=1

E {D(E(k),g(k))} . (13)

For any other feasible and causal control policy {E,T}, we have

ρ ≤ lim sup
K→∞

1

K

K
∑

k=1

E {D(E(k),g(k))} . (14)

More details can be found in [40].

Remark 3. Since the processes g and H are mutually independent (also across sensors) finite state

Markov chains, the second right hand term involving the expectation in (11) becomes

∫

g̃,H̃

V
(

g̃, H̃,B̃
)

M
∏

m=1

(

P(g̃m|gm)P(H̃m|Hm)
)

dg̃dH̃ (15)
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where P(x|y) is the probability of x given y.

If the processes g and H are i.i.d. over time and across the sensors, then the same term in (11)

simplifies to

∫

g̃,H̃

V
(

g̃, H̃,B̃
)

M
∏

m=1

(

P(g̃m)P(H̃m)
)

dg̃dH̃. (16)

The Bellman equation (11) can be solved using the relative value iteration algorithm. Details

can be found in [40]. In order to facilitate the numerical computation, the Bellman equation (11)

is solved by discretizing the state and action space, in particular the battery levels and the power

level space. (Recall that the state components involving the fading channels and the harvested

energy levels are already assumed to be discrete due to the finite-state Markov chain assumption.)

It is expected that the solution of the discretized Bellman equation approaches the solution of the

continuous valued Bellman equation as the number of discretization levels grows [48].

Remark 4. Note that the results presented in Theorem 1 can be extended to networks with

decentralised information. In such cases, it is assumed that sensors only have access to their

own battery level and channel gain. Instead of the actual battery level and channel gains of their

neighbors, only statistical information such as the energy harvesting and channel gain models are

considered to be known. For more details, see [39].

4. Q-LEARNING

Solving the average-cost optimality Bellman equation (11) requires full knowledge of the underlying

transition probability matrix P. In practice, the transition probabilities of the Markov process

generating the channel gains and the harvested energies may not be perfectly known. In this case,

the optimal power control cannot be determined by solving the Bellman dynamic programming

equation presented in the previous section. Hence, finding suboptimal algorithms, which do not rely

on the complete knowledge of the underlying system, is an important task. In case the state, S, and

action space, A, are discrete or discretized (that is, the channel gains, the harvested energies, the

battery levels and the allocated energy usage and energy transfer values belong to finite-discrete

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc



15

sets) and the fading channels and harvested energies are independent finite-state Markov chains, the

average-cost optimality Bellman equation (11) can be simplified to the Q-Bellman equation [49]

Q∗(g,H,B,E,T) = D(E,g) +
∑

g̃,H̃,B̃

P(g̃|g)P(H̃|H)P(B̃|B,H,E,T) min
Ẽ,T̃∈A(B̃)

Q∗(g̃,H̃,B̃,Ẽ,T̃) (17)

where Ẽ or T̃ are the chosen values for E or T at the next time step, respectively, and A(B̃) is the set

of all feasible choices of Ẽ or T̃ given B̃. The iterative learning algorithm referred to as Q-learning,

approximates the average cost for a given set of states and actions, i.e., Q, by adjusting its value

according to the recent observed cost, which is here the distortion D. See also [49] and [50], for

more details on the stochastic approximation Q-learning algorithm. Assuming that the probabilities

P(g̃|g), P(H̃|H) and P(B̃|B,H,E,T) are unknown we obtain

Q1(g,H,B,E,T) = 0 for all g,H,B and E,T ∈ A(B) (18)

and for all k ≥ 1

Qk+1(g,H,B,E,T) = Qk(g,H,B,E,T) + γ(k)

(

D(E,g) + min
Ẽ,T̃∈A(B̃)

Qk(g̃,H̃,B̃,Ẽ,T̃) − Qk(g,H,B,E,T)

)

(19)

where now {g̃,H̃,B̃,Ẽ,T̃} is the next state after g,H,B,E,T when E,T ∈ A(B) is selected according to

the ǫ-greedy method:

{E,T} =



































argminE,T∈A(B) Qk(g,H,B,E,T) with prob. 1 − ǫ

chosen randomly ∈ A(B) with prob. ǫ

(20)

The algorithm in (19) converges to the optimal Q values if the step sizes γ(k) for all k ≥ 1 satisfy

γ(k) > 0,
∑

k γ(k) = ∞ and
∑

k γ
2(k) < ∞, [49, 50]. Note that convergence is guaranteed for all

ǫ > 0, [49, 50]. If ǫ is large, then the algorithm spends more computational effort in exploring the

effect of possible choices of E and T. A small value of ǫ is usually preferred as it often allows to

better exploit the knowledge of which choice of E and T leads to the minimal expected cost based

on the current Qk.
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5. HEURISTIC POLICIES

The proposed solutions to find power control policies in the two previous sections, i.e., finding the

optimal solution via (11) or solving the iterative learning algorithm (17), require a considerable

computational effort. In practice, it is often beneficial to investigate simple policies, that provide

suboptimal solutions, but require a reasonable computational effort.

5.1. Heuristic 1: Modified greedy policy

A very simple policy is the greedy policy, where each sensor just uses all available energy to transmit

its data to the FC. Hence, Em(k) = Bm(k) for all m independently of the channel gain or any other

states. When implementing this policy, there is a considerable risk of not having any energy available

to transmit data from some sensor m to the FC at some time k if no energy has been harvested in the

previous step. Thus, the greedy policy is slightly modified such that Em(k) = Bm(k)
2

, which ensures

that at each time step, some energy is available to transmit data from every sensor to the FC, if the

initial battery levels are not zero.

5.2. Heuristic 2: Ad hoc policy

A second heuristic policy was derived for a related but slightly different problem in our recent

contribution [39], where instead of a correlated field, all sensors measure the same scalar signal of

interest θ(k). We recapitulate the basic principles next.

Assume a simple system with two sensors, where both agents can share energy between each

other and have access to full causal information, such as the maximum battery level, mean channel

gains and harvested energies, energy transfer efficiencies as well as current channel gains and battery

levels.8 Aiming to minimise the overall distortion at the FC, leads to the problem described in [39],

for which necessary optimality conditions are derived. Those have to be simplified in order to reduce

8Note that in case of Markovian channel gains or harvested energies, the mean channel gains ḡ1 and ḡ2 and the mean

harvested energies H̄1 and H̄2 are calculated as the dot product of the channel gain levels or harvested energy levels,

respectively, and the corresponding stationary distribution.
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the computational complexity and to require only causal information. The simplified necessary

conditions for using energy for data transmission to the FC (E1(k) ≥ 0), for storing energy in the

battery for future use9 (F1(k) ≥ 0) and for transferring energy to sensor 2 (T1,2(k) ≥ 0) are as follows:

E1(k) ≥ 0 if g1(k) ≥ ḡ1 and g1(k) ≥ η1,2ḡ2 (21)

F1(k) ≥ 0 if ḡ1 ≥ g1(k) and ḡ1 ≥ η1,2ḡ2 (22)

T1,2(k) ≥ 0 if η1,2ḡ2 ≥ g1(k) and η1,2ḡ2 ≥ ḡ1 (23)

In case of unlimited battery capacity, these simplified necessary conditions could be used to allocate

the energy at time step k. However, since both batteries have limited capacities, storing all energy

at time k or transferring all energy from sensor 1 to sensor 2 at time k might be undesirable despite

the necessary conditions (22) or (23) being satisfied because it could lead to preventable battery

overflow. Instead of determining the power control policy solely based on the necessary conditions,

all three options (data transmission, storage, energy sharing) are prioritized and energy is then

allocated accordingly with the aim to minimize battery overflow.

This suggests the following basic rules:

(i) Denote the available pwer, that is available at sensor 1 at timw k by B̄1 = B1(k). Then,

prioritize the three possible energy usage alternatives, i.e., data transmission E1(k), storage

F1(k) and energy sharing T1,2(k), by sorting g1(k), ḡ1 and η1,2ḡ2 from highest to lowest.10 In

case g1(k) = ḡ1 or g1(k) = η1,2ḡ2, using energy for data transmission has higher priority than

storing energy or transferring it to sensor 2, respectively. In case ḡ1 = η1,2ḡ2 storing energy has

higher priority than transferring it to sensor 2. Then allocate the available energy B̄1 according

to these priorities.

(ii) If transmitting data to the FC is the next highest priority, use all remaining energy to transmit

data to the FC. (Thus, no energy is allocated to a task with a lower priority.)

9That is, F1(k) is the total amount of energy left in battery 1 for future use.
10For instance, if ḡ1 > g1(k) > η1,2ḡ2, storing energy has the highest priority followed by data transmission to the FC;

and transferring energy to the second sensor has the lowest priority.
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(iii) If storing energy has the next highest priority, energy should be stored. To avoid battery

overflow (i.e., energy waste), one should never store more energy than necessary to fill the

battery to its maximal capacity minus the mean harvested energy. That is

F1(k) = min
{

max
{

B̂1(k) − H̄1; 0
}

; B̄1

}

.

In case there is more energy available in the battery than should be stored, the remaining energy

should be used according to the next following priority, that is, following the instructions in

(ii) or (iv) and setting B̄1 → B̄1 − F1(k).

(iv) If transferring energy to sensor 2 has the next highest priority, transfer as much energy to

sensor 2 to have its battery full for the next time step. To avoid battery overflow, no more

energy should be transferred than the battery capacity minus the mean harvested energy of

sensor 2. Therefore, T1,2(k) for η1,2 > 0 is given by

T1,2(k) = min
{

max
{(

B̂2 − B2(k) + E2(k) − H̄2

)

/η1,2; 0
}

; B̄1

}

.

If η1,2 = 0, then T1,2(k) = 0. In case there is more energy in the battery than should be

transferred, the remaining energy should be used according to the next following priority,

that is, following the instructions in (ii) or (iii) and setting B̄1 → B̄1 − T1,2(k).

The ad hoc heuristic power allocation policy is summarised in the flow chart in Fig. 2.

Remark 5. The necessary conditions reported in [39], which lead to the heuristic algorithm given

above, have been derived for a system without battery leakage, that is, with µ = 1. However, when

assuming little battery leakage, that is, µ close to 1, it can be expected that the heuristic policy can

still be applied.

Remark 6. It should be noted that this heuristic policy favors transmitting data to the FC if the

current channel gain is higher than the mean. This policy works well for cases where the overall

amount of energy available is low. If only little energy is available, then it is beneficial to minimize

the overall distortion by transmitting data whenever the channel gain is better than the mean. In

contrast, if a lot of energy is already available due to higher mean harvested energy or higher battery
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B̄1 = B1(k)

F1(k) = min {max
{

B̂1(k) − H̄1; 0
}

; B̄1

}

,

B̄1 → B̄1 − F1(k)

ḡ1 ≥ η1,2ḡ2 and

ḡ1 ≥ g1(k)

T1,2(k) = min
{

max
{(

B̂2 − B2(k)

+E2(k) − H̄2

)

/η1,2; 0
}

; B̄1

}

,

B̄1 → B̄1 − T1,2(k)

η1,2ḡ2 > g1(k) and

η1,2ḡ2 > ḡ1

E1(k) = B̄1

g1(k) ≥ ḡ1 and

g1(k) ≥ η1,2ḡ2

done.

B̄1 = 0

done.

B̄1 = 0

done.

B̄1 > 0 and

g1(k) ≥ η1,2ḡ2

B̄1 > 0 and

g1(k) ≥ ḡ1

F1(k) = min {max
{

B̂1(k) − H̄1; 0
}

; B̄1

}

,

B̄1 → B̄1 − F1(k)

T1,2(k) = min
{

max
{(

B̂2 − B2(k)

+E2(k) − H̄2

)

/η1,2; 0
}

; B̄1

}

,

B̄1 → B̄1 − T1,2(k)

B̄1 > 0 and

η1,2ḡ2 > g1(k)

B̄1 > 0 and

ḡ1 > g1(k)B̄1 > 0 B̄1 > 0

B̄1 = 0 B̄1 = 0

Figure 2. Flow chart of the ad hoc heuristic policy

capacity, then increasing the energy for data transmission further in case of high channel gains leads

to a small reduction of the distortion. In these cases it would be better to store energy to be able to

transmit data at time steps with poorer channel gains. However, this simple policy cannot distinguish

between these two fundamentally different scenarios. It is designed to work well for scenarios with

overall little energy availability but its performance may not be as good when higher amounts of

energy are available.

6. SIMULATION EXAMPLES

6.1. Numerical Results

In this section, we provide a collection of numerical results that illustrate the performance of

the optimal dynamic programming based algorithm, the Q-learning based algorithm and the two

heuristic policies against various important parameters such as cross correlation, energy transfer

efficiency and battery leakage.
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Example 1 (Effect of Cross Correlation). A system with two sensors is simulated where η1,2 = η2,1 =

0.8, µ = 0 (no battery leakage), B̂1 = B̂2 = 4mWh and Rθ = (1, ϕ;ϕ,1), where ϕ describes the cross

correlation between the two measurements θ1 and θ2 and is varied between 0 and 0.9.

The fading channel gains and harvested energies are modeled as 3-level discrete Markov chains

with the common transition matrix

T =

















































0.2 0.3 0.5

0.3 0.4 0.3

0.1 0.2 0.7

















































. (24)

Two cases have been simulated: In the ‘balanced scenario’, the state space for g1, g2 is {0,0.5,1}

and for H1 and H2 is {0,1,2}. In the ‘unbalanced scenario’ g2 and H1 are 4 times lower than g1 and

H2, respectively. That is, the state space for g1 and g2 are {0,0.5,1} and {0,0.125,0.25}, respectively,

while the state spaces of H1 and H2 are {0,0.5,1} and {0,2,4}, respectively.

To facilitate the implementation of the dynamic programming algorithm and the Q-learning

algorithm, the space for the battery levels and the power levels for data transmission or energy

transfer to the neighboring sensor were quantized uniformly using 16 levels. The discretization of

the decision variables leads to numerical inaccuracies, which can be addressed by averaging the

results over a sufficiently long time span. The Q-learning algorithm was evaluated by the use of two

different training time horizons, i.e. 104 and 106, respectively, and with ǫ = 0.1. After calculating

the corresponding Q-values for both training horizons, the performance of the algorithms were

evaluated for a given simulation time span by using the Q-values as a look-up table to determine

the best choice of E and T without adapting Q-values further. Third, the heuristics described in

Section 5 were implemented.

The average distortion and the average energy usages for a simulation time span of 104 time steps

for the optimal solution based on dynamic programming (‘DP’), the Q-learning algorithm with the

two different training time horizons 104 and 106 (‘Q1’ and ‘Q2’, respectively), and the two heuristics

(‘h1’ and ‘h2’) are illustrated in the plots in Fig. 3.
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Figure 3. Example 1: average distortion (left) and average energy usage (right, (E1 + E2)/2 in red, (T1,2 +

T2,1)/2 in blue), vs. cross correlation term ϕ for the ‘balanced case’ (top) and the ‘unbalanced case’ (bottom)

It is evident that increasing the cross correlation term ϕ leads to an overall reduced distortion.

As expected, the average distortion is the smallest for the optimal algorithm based on dynamic

programming. The performance of the Q-learning algorithm is quite poor if a short training time

horizon of 104 time steps is used (‘Q1’). However, when increasing the training horizon to 106

(‘Q2’) the average distortion is significantly reduced since the optimal policy is better approximated.

It is expected that the performance can be further improved using even longer training time horizons.

Observe also, that the modified greedy policy (‘h1’) performs almost as good as the optimal solution

(‘DP’) for the balanced case. In contrast, the ad hoc heuristic (‘h2’) derived for the related setting

in [39] (every sensor measures the same θ) clearly outperforms the modified greedy policy in the

unbalanced case.
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Example 2 (Effect of Energy Transfer Efficiency for Low Cross Correlation). The system settings

from Example 1 were modified in the following way: Instead of varying the cross correlation term,

it is set to ϕ = 0.2 while η = η1,2 = η2,1 is varied between 0 and 1.

The simulations are shown in Figure 4. In the balanced case, the average distortion hardly

decreases when increasing the energy transfer efficiency despite the increase of average energy

transferred between the sensors. In the unbalanced case, the average distortions obtained for the

optimal solution (‘DP’) and the Q-learning (‘Q2’) decrease for higher η. As in the previous example,

the modified greedy policy (‘h1’) is more suitable for the balanced case while the ad hoc heuristic

(‘h2’) achieves better results in the unbalanced case. Note that the average distortion for the optimal

solution slightly increases between η = 0 and η = 0.1. This can be explained by the loss of optimality

due to discretization, which is necessary to implement the solution of the Bellman equation on a

digital computer resulting in small deviations from the true optimal solution.

In the unbalanced case, it should also be noted that the optimal shared energy increases when the

energy transfer efficiency increases from 0 to approximately 0.3. If the energy transfer efficiency

is increased further, the optimal amount of energy shared among the sensors remains roughly

the same. Since the measurements from the two sensors carry information about two different

sources (although correlated) the FC needs to receive data from both sensors in order to estimate

both sources. Hence, in the unbalanced case, one sensor needs to share some energy to allow the

other sensor to transmit data that can be received at the FC with an acceptable quality. In case

wireless energy transfer is possible with a sufficiently high efficiency (such that at least 30% of the

transmitted energy is actually received at the receiving sensor), sharing more energy is not beneficial

since the other sensor has enough energy already for information transmission with an acceptable

distortion level at the FC.

It can also be observed that the curve of the average energy used for data transmission is “bowl

shaped”: Due to the increase in average shared energy when increasing the energy transfer efficiency

from 0 to 0.3, on average, less energy is available for data transmission to the FC. Hence, the average

energy usage decreases for low energy transfer efficiencies. However, for higher energy transfer
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Figure 4. Example 2: distortion (left) and average energy usage (right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in

blue), vs. energy transfer efficiency η for the ‘balanced case’ (top) and the ‘unbalanced case’ (bottom) for

low cross correlation

efficiencies, the amount of shared energy remains almost the same, leading to an increase in average

available energy to be used for data transmission.

Example 3 (Effect of Energy Transfer Efficiency for High Cross Correlation). The system settings

from Example 2 were solely modified by setting ϕ = 0.8.

The simulations in Figure 5 show similar results as in Example 2 for the case of low cross

correlation (ϕ = 0.2). Due to the higher cross correlation, the average distortion is generally lower in

Figure 5 compared to the results in Figure 4. Further, it seems that in case of higher cross correlation,

energy transfer offers a larger benefit, since the average energy transferred between the sensors

increases more for ϕ = 0.8 than for ϕ = 0.2.
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Figure 5. Example 3: distortion (left) and average energy usage (right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in

blue), vs. energy transfer efficiency η for the ‘balanced case’ (top) and the ‘unbalanced case’ (bottom) for

high cross correlation

Example 4 (Effect of Battery Leakage). Here, the system settings are similar to the examples above

with setting ϕ = 0.8 and η = 0.8. In contrast to above, the battery leakage parameter µ is varied

between 0 (no leakage) to 0.5.

The simulations in Figure 6 show that for all power control policies, in both cases (balanced and

unbalanced), a higher battery leakage parameter µ leads to an increase in the average distortion.

It is also evident that energy sharing offers more benefits in the unbalanced case compared to the

balanced scenario. If the energy loss due to battery leakage increases, then the energy shared among

the sensors approaches the average amount of energy used for data transmission. As in the examples

above, the modified greedy policy (‘h1’) is outperformed by the ad hoc policy (‘h2’) in case of

unbalanced networks. In case of balanced networks, the ad hoc heuristic (‘h2’) outperforms the
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Figure 6. Example 4: distortion (left) and average energy usage (right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in

blue), vs. battery leakage factor µ for the ‘balanced case’ (top) and the ‘unbalanced case’ (bottom)

modified greedy policy (‘h1’) for sufficiently high battery leakage. This is despite the ad hoc policy

being developed for systems without battery leakage.

6.2. Discussion

When looking at the numerical results above, it becomes clear that the optimal predictive power

control scheme outperforms all suboptimal power control algorithms. Also, when considering

energy sharing between neighboring sensors by increasing the energy transfer efficiency, the overall

distortion decreases, which indicates the usefulness of energy sharing. However, how much the

overall distortion can be reduced when implementing the optimal power control solution compared

to suboptimal schemes, or when enabling wireless energy transfer, significantly depends on the

system settings. For instance, if the system is balanced, i.e., if all sensors have access to similar
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energy harvesting processes and use channels of similar quality, little can be gained from applying

the optimal power control or enabling wireless energy transfer. Instead, implementing the very

simple modified greedy policy yields almost the same distortions as the optimal solution. In contrast,

if the energy harvesting processes and channel gains of the sensors in the system differ significantly,

applying the modified greedy policy is not recommendable. Instead, the ad hoc heuristic should

be used. It allows wireless energy transfer between neighboring sensors, which appears to be very

beneficial in such unbalanced systems.

7. CONCLUSIONS

This paper studied the distortion minimization problem of a multi sensor system, where each sensor

transmits its measurement to a FC over a fading channel using uncoded analog forwarding for

remote estimation at the FC. The FC computes the optimal predictive power control policy to

minimize a long term average distortion cost when using the minimum mean-square error (MMSE)

estimator under the following energy constraints: (i) the batteries at the sensors have a limited

capacity and are prone to energy leakage, (ii) the sensors can harvest energy from their environment

but only causal information about the harvested energies is available, and (iii) the sensors are fitted

with transceiver units, that allow them to share energy with their neighbors subject to some loss.

Random harvested energies and channel gains are modeled as independent finite-state Markov

chains. The FC has causal information about the sensors’ channel gains and harvested energy levels.

The optimal solution is obtained via a stochastic predictive control approach resulting in a

Bellman dynamic programming equation. A suboptimal Q-learning algorithm, which does not

require a priori knowledge of all system parameters, is also studied. Further, to avoid the

computational burden of the optimal solution based on dynamic programming techniques, two

heuristic ad hoc power control policies are presented. Simulations reveal that the average distortion

decreases as the cross correlation and the energy transfer efficiency increase. Further, in most

scenarios, the optimal solution (obtained by dynamic programming) clearly outperforms the two

sub-optimal policies. It can also be seen that an increase in energy transfer efficiency (for energy
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sharing) and an increase in the cross correlation term have a significantly higher impact on the

average distortion if the system is unbalanced, that is, if a sensor has a substantially higher average

harvested energy and a poorer channel compared to its neighbor.

The results in this paper reveal important insights into wireless sensor networks with energy

harvesting and energy sharing. Despite this paper focusing on relatively simple star networks, the

results show that even for those simplistic network settings, the optimal energy allocation policy is

far from trivial. Indeed, the findings presented here, form an important base for further investigation

in this area as they provide a benchmark for more complicated network topologies. As a next step,

more advanced sensor networks should be considered.
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