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Abstract: This paper proposes individualized, dynamical and data-driven models to describe
pelvic floor muscle responses in women undergoing vaginal dilation. Specifically, the models
describe how the aggregated pressure exerted by the pelvic floor muscles of women change
due to physiological and psychological stimuli. Specifically, women experienced inflation of a
balloon at the vaginal introitus while watching different short movies such as with or without
sexual content. The paper inspects the approximation capabilities of different model structures,
such as Hammerstein-Wiener and NARX, for this specific application, and finds the specific
model structures and orders that best describe the recorded measurement data. Moreover, the
manuscript explores the trade-offs between individualization and averaging of models. More
precisely it numerically assesses how models obtained by assuming that each individual has the
same response can be used to simulate the responses of different patients. Although the current
dataset is drawn from a sample of healthy volunteers, this paper is an initial step towards
better understanding women’s responses to vaginal dilation and sexual/nonsexual videos and
facilitating individualised medical vaginal dilation treatment.
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1. INTRODUCTION

Painful experiences during sexual intercourses, also sum-
marized with the acronym Genital pain / penetration
disorders (GPPD), is a common problem and affects
an estimated 30-40% of women at least once in their
life (Goldstein et al., 2009, Chap. 2). The condition
can be caused by physiological processes (e.g., compli-
cations after cervix cancer surgeries, vaginal radiothera-
pies, Mayer-Rokitansky-Küster-Hauser syndromes, male-
to-female gender confirmation surgeries), psychosocial pro-
cesses (e.g., traumatic sexual experiences), and combina-
tions thereof (Goldstein et al., 2009, Chap. 3). Research in
the area concludes that psychological mechanisms (e.g.,
anxiety, catastrophising pain, avoidance of sexual inti-
macy) and interpersonal factors (e.g., hostile partner re-
sponses, relationship conflicts) may maintain, prolong and
exacerbate the suffering from genital pain.
Treating GPPD usually combines psychological (e.g., Cog-
nitive Behavioral Therapies (CBTs)) and physiological
therapies. The latter ones may include stretching the vagi-
nal duct, desensitizing the vestibulum, and relaxing the
pelvic floor muscles (Binik et al., 2006; Bergeron et al.,
2008; Goldstein et al., 2011) by inserting opportunely sized
vaginal dilators. However, these therapies are perceived
as invasive, lengthy and uncomfortable. Hence, several

patients delay, avoid or stop treatment. This problem
might be alleviated by individualising the vaginal dilation
patterns, but to the best of our knowledge it is still unclear
how to quantitatively perform this individualisation step
and how much this will improve the situation. In this
paper, we propose control-oriented models to facilitate
designing such individual therapies.

1.1 Literature review

Before detailing our contributions, we discuss the existing
literature that is related to the topic of understanding how
to design vaginal dilation therapies.
First, we consider the medical literature where several
studies exist, that analyse the physiological implications
of stimulating the pelvic area using medical-oriented ap-
proaches. For instance, it is known that sexual arousal in
women induces genital blood flow, which then leads to
both vasocongestion of the vestibular bulbs Puppo (2013)
and vaginal lubrication Levin (2002); Boyer (2009). Fur-
ther, inducing vibrations in a “suitable range” of the inner
labia and the vestibular bulbs may facilitate and intensify
orgasms Puppo (2011). Also, touch and pain perception
thresholds increase with the physiological arousal levels
under stimulation with vibrations but not for thermal
stimulation Gruenwald et al. (2007). It is also understood



that experiencing fear induces activity of the pelvic floor
muscle van der Velde et al. (2001); Both et al. (2012)
and tense pelvic floor muscles before or at the beginning
of the penetrative act may then lead to decreased blood
flow and lubrication Van Lunsen and Ramakers (2002);
Binik et al. (2006). Hence, penetrative activities with no
or little arousal or initial activity of the pelvic floor muscles
due, e.g., to fear may cause vulvar pain Brauer et al.
(2006); Farmer and Meston (2007); ter Kuile et al. (2010).
Several models of the behaviour of the pelvic floor muscles
focussing on childbirth (but not considering GPPD) are
summarised in Li et al. (2010).
Unfortunately the models presented above do neither in-
clude all or even the majority of the variables involved
in experiencing genital pain, nor describe the dynamics
of these variables from quantitative perspectives. One of
the few models that describe the interplay of several key
variables as a dynamic model is derived in Varagnolo
et al. (2017), where the variables form two distinct loops,
referred to as the Circle Of Fear (COF) and Circle Of Plea-
sure (COP). The COF captures the facts that: i) pelvic
muscle activity before or at the beginning of penetration
may lead to pain; ii) fear induces muscular tension; and iii)
inducing positive erotic stimuli may reduce fear. The COP
is instead based on the Basson model of the female sexual
response Basson (2000), and captures the facts that: i) the
physiological arousal increases under sexual stimulation
and when feeling subjectively aroused; ii) the subjective
arousal increases with sexually stimulation and pleasurable
physical sensations; and iii) physiological arousal affects
the subjective arousal indirectly via the physical pleasure.
However, the model in Varagnolo et al. (2017) is solely
based on known cause-effect relationships in the medical
literature and informed guesses from experts in the field.
Moreover its objectives are to find a suitable deterministic
mathematical and quantitative model that strikes a bal-
ance between being able to accurately model some known
relationships and being simple enough to be mathemati-
cally analysable. However, the model in Varagnolo et al.
(2017) is neither directly based on specific medical tests
nor measurement data, and is hence not validated.
Consider then that the medical literature clearly suggests
the existence of interplays between psychological and phys-
iological responses in patients subject to vaginal dilation
stimuli. For designing these stimuli in a quantitative way,
there is thus the need for quantitative models of both these
types of responses. As for the psychological response to
vaginal dilation, a data driven model was created by our
team (and proposed in Varagnolo et al. (2018)) using sta-
tistical analysis tools. Varagnolo et al. (2018) verified that
clustering the psychological responses of patients in groups
may lead, from a data-driven point of view, to models with
a significantly improved statistical performance. Overall
the paper thus suggested that casting the modelling of sub-
jective pain/pleasure assessments in response to vaginal
dilation stimuli as a support vector classification problem
can lead to models having classification error performances
in test sets up to 25%.
As for the data-driven modelling of the physiological
responses part, a first step towards closing the knowledge
gap was proposed in Knorn et al. (2018). Here, our
team derived data-driven dynamical models of female

response to vaginal dilation using time-series of pelvic floor
pressure collected from healthy patients during ad-hoc
medical trials. The work in Knorn et al. (2018) investigates
which type of model and model order are suitable to
accurately describe the recorded data both for individual
patients’ models and “average” models (i.e., models built
considering data from several individuals).

1.2 Statement of contributions

This manuscript extends and completes Knorn et al.
(2018) in the following ways: even though the data used
in Knorn et al. (2018) was gathered from medical trials,
where women watched different video clips (including low
or high arousal sexual or non-sexual movies), the infor-
mation of which video was watched when during the ses-
sions was not used. This means that the models proposed
in Knorn et al. (2018) ignore the psychological effects of
watching different types of videos on the physiological
response, in a sense thus neglecting potential statistical de-
pendencies that may be present in the collected evidence.
The work presented here extends the results from Knorn
et al. (2018) by also considering how the models derived for
specific movie types differ. Further, we investigate the vari-
ations between models for certain movies compared to the
variation between different patient models. In a sense, we
focus on answering in a quantitative fashion the following
questions: What are suitable model structures for this type
of system? Are there differences in the physiological re-
sponses to sexual vs. to nonsexual movies? How uniformly
do different people physiologically respond to the same
movie? Given our vision of providing tools for designing
personalised vaginal dilation patterns, we seek to answer
the questions above by focusing specifically on models with
control-oriented structures such as Hammerstein-Wiener
and Nonlinear autoregressive exogenous (NARX) models,
which have been shown to be suitable in other biomedical
applications, see Bro and Medvedev (2017); Langdon et al.
(2016).

1.3 Organization of the manuscript

The paper is organised as follows: Section 2 describes the
experimental setup used to record the measurement data.
Section 3 overviews the standard strategies of modelling
generic muscular activity. The notation is clarified in Sec-
tion 4. Sections 5 and 6 present our identification results.
Section 7 closes the paper by drawing some qualitative and
quantitative conclusions.

2. MEDICAL TRIALS SETUP

To derive quantitative dynamical models of how the pelvic
floor muscles respond to forced vaginal dilation we use
the dataset recorded at Maastricht University Hospital
(described in more detail in Melles et al. (2018)). The data
includes participants’ responses to the gradual vaginal
dilation forced by an inflatable balloon to be inserted
at the introitus as described in Figure 1, called Vaginal
Pressure Inducer (VPI). During the experiments, women
also watched sequences of 5-minutes long erotic or non-
erotic movies in the (tentatively) neutral environment
shown in Figure 2.



Fig. 1. Picture of the VPI (left) and schematic description
of its usage (right). The balloon can be gradually
expanded by filling it with water at body temperature
by a pump; the length of the inflated area is up
to 6 cm. When the balloon is filled, an outward
omnidirectional pressure is given to the surrounding
tissues.

Fig. 2. Photos of the room hosting the medical trials.

The study included data from 36 women without sexual
problems, aged between 18 and 45 years, in a steady
heterosexual relationship for at least 3 months, and being
sexually active including coitus. Each woman participated
in a single session where, while using the VPI and watch-
ing movie sequences, they recorded their perceived level
of comfort/discomfort (on a scale from 0, maximum ad-
mittable discomfort, to 100, complete comfort) with an
opportune slider. As soon as the pressure felt unbear-
able, participants could end the experiment and start
the deflation of the balloon. The sessions started with
the presentation of a neutral acclimatisation movie with
pressure induction using the VPI. This was followed by
showing one high-arousal sexual movie without inducing
vaginal pressure, then followed by four randomised movies
with inducing pressure. Every patient watched four movie
clips in randomized order: Movie 1: an explicit erotic clip,
meant to be sexual and inducing arousal. Movie 2: a clip
of a heterosexual couple kissing, meant to be sexual but
not inducing arousal. Movie 3: an excerpt from Roberto
Benigni’s “Life is beautiful”, meant to be non-sexual and
inducing arousal. 1 Movie 4: an excerpt from a documen-

1 Note that the movie is intensely sad and is enhance expected to
induce strong emotional reactions without being sexual.
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Fig. 3. Dataset from one patient. The six movie clips
described above are in this case started at minutes
3, 13, 26, 35, 43 and 52. The VPI was inserted in the
duct during the whole trial but inflated only while
watching the movies (but the second one).

tary on the life of zebras, meant to be non-sexual and not
inducing arousal.
During the experiment, the induced pressure in the water
was measured at the pump as an indirect measure of the
pelvic floor muscle activity. Further, the reported pleasure
levels were recorded as well as when patients stopped
the experiment to enforce the deflation of the balloon. A
typical data set is shown in Figure 3.

3. MODELLING THE PHYSIOLOGICAL RESPONSE
TO VAGINAL DILATION: CHOICE OF THE

SUITABLE MODEL STRUCTURES

We are interested in using the measurement data recorded
in the test described in Section 2 to model the psycho-
physiological system having, as inputs:
• psychological assessments in the form of recorded
pleasure levels,
• psychological stimuli in the form of different movies
types,
• physiological stimuli in the form of enforced vaginal
(volumetric) dilation levels,

and as outputs the aggregated muscular pressure exerted
by the pelvic floor muscles.
This modelling problem is similar to the general case of
relating muscular stimulation levels with the correspond-
ing pressure (or force) outputs, for which many differ-
ent generic models of different complexities exist. These
include physiologically based models, that relate stimuli
and corresponding forces as interactions of the fibers at
a microscopic level, Huxley (1957), Hill-type models, that
relate stimulation levels and corresponding forces through
mechanically-inspired concepts, Hill (1977), and black-box
models, that derive input-output relations from numeri-
cal evidence. Note that physiologically based models or
Hill-type models require the additional data such as (1)
measurements of the muscular stimulation signals or other
signals that are known to be correlated (e.g., Electromyo-
graphy (EMG) levels); (2) measurements of the force or
pressure exerted by a specific set of muscular fibers; or
(3) measurements of the mechanical parameters of the
muscular fibers (such as thickness and length). However,
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Fig. 4. Graphical representation of an Hammerstein
model of muscular dynamics Hunt et al. (1998).
Hammerstein-Wiener models generalise further these
types of models by adding a further static nonlinear
map after the ARX transfer function.

since such information is not included in the data used for
this work, we thus follow a purely data-driven approach.
In the literature on black-box models for muscular dy-
namics, the most common strategies use Hammerstein-
Wiener or NARX models, including Neural network (NN)
and fuzzy models. Since physiological models of muscular
dynamics are typically non-linear, non-linear identification
approaches tend to provide better results than linear ones.
Hammerstein models, see Figure 4, include a static nonlin-
ear map (called the static recruitment), an Autoregressive
exogenous (ARX) model, and an additive disturbance that
may account for temporary effects like fatigue and that can
be modelled through another additional transfer function.
NARX models (Ljung, 1997, Chap. 5) can be described in
the general form

y(t) = f
(
y(t−1), . . . , y(t−T ), u(t−1), . . . , u(t−T ), θ

)
+d(t)
(1)

where y is the output, u the input, and d disturbances
of the system. There exists a vast literature on how to
determine both the structure of f(·) and the best set of
parameters θ. It is also known that the problem of selecting
the structure of f is a difficult task specially when the
size of the available dataset is small. For an example of
modelling muscular dynamics through NARX approaches
see, e.g., Previdi (2002).
We notice that machine-learning inspired approaches such
as NN and fuzzy models may achieve great generalization
capabilities when modeling input-output muscle dynam-
ics. Their main drawback is though that they are more
difficult to be used for automatic control purposes. On
the other hand, Hammerstein-Wiener and more control-
oriented NARX models have also been proven to be capa-
ble of high approximation capabilities for various medical
applications (e.g., Bro and Medvedev (2017); Langdon
et al. (2016)). In the paper we thus explore the approx-
imation capabilities of Hammerstein-Wiener models with
different nonlinearities and some NARX strategies for the
available dataset.
A special discussion shall then be posed to describe how
to account for the psychological components that we aim
at using as inputs, i.e., the recorded pleasure levels and
the different movies types that patients watch during the
medical trial.

As described in our literature review, it is well known that
the human psycho-physiological sexual response is heavily
dependent on both physiological measures and external
stimuli. While some external factors such as stimulating
music, books, movies, conversations etc may lead to an
increase in physiological and subjective sexual arousal,
others such as stress, hostile partner responses or relational
conflicts may reduce arousal or act as turn-off factors.
In the experiments conducted at Maastricht university
hospital and considered in this paper, women watched
different types of short movie sequences. Since they include
sexual movies (high and low arousal) and nonsexual movies
(high and low arousal), it is reasonable to assume that they
also influence the pelvic floor muscle response to vaginal
stimuli. Even though the specific reaction of individual
women to the same movies might differ, we expect that
specific types of movies tend to induce similar types of
emotional responses.
In this paper we thus aim also to investigate whether differ-
ent types of movies induce different reactions by studying
whether models trained for a specific movie type have
higher prediction capabilities than models trained for an
individual patient. In other words, we investigate whether
the type of movie that has been seen by the patients should
be considered an effective external stimulus or not.
We finally note this type of external influence can be
included in the model in different ways, i.e., as a (partly
unknown) external disturbance, as a (control) input, or
simply as a factor that influences the parameters of the
system. In any case, assessing the amplitude of the effect
induced by movies is important as it is an evaluation of
how much we expect physiological responses to depend on
external factors for this specific type of framework.
We will hence investigate the prediction capabilities for
individual models in Section 5, i.e., one model per patient,
and the prediction capabilities per movie type in Section 6,
i.e., one model per movie type.

4. NOTATION

For notational clarity, let i = 1, . . . , 36 denote the patient
ID, and Di its associated dataset. Every Di, as described
in Section 2, is composed by 4 time-series signals. Letting t
denote the time index, and incidentally noting that all the
various signals have sampling periods equal to 1 second,
in more details the collected signals are, for each patient i:
• mi(t), a non-negative integer in {0, 1, 2, 3, 4} indicat-
ing if a patient i was watching a movie at time t
(mi(t) 6= 0) or not (mi(t) = 0). If mi(t) 6= 0 then
the signal indicates also which movie type was being
shown to the patient;

• `i(t), a non-negative integer in {0, . . . , 100}, indicat-
ing the perceived pleasure level of patient i at time t.
Note that this signal is nonzero only when a movie is
being played;

• vi(t), indicating the volume of the VPI at time t for
patient i;

• pi(t), indicating the measured aggregated pelvic floor
muscles pressure at time t for patient i.



We are then interested in learning models of the generic
form

pi (t+ 1) = φi (pi(t), . . . , pi(t− T ), . . .
vi(t), . . . , vi(t− T ), `i(t), . . . , `i(t− T ), . . .
mi(t), . . . ,mi(t− T ) ; θi) .

(2)

Note that the subscript i in (2) implicitly indicates a
notation referring to an individual model, i.e., a function
φi that captures how the specific patient i responds to
stimuli and that has been learned by using data relative
to patient i. When we instead refer to a model that has
been trained using data from several patients we remove
the subscript i and indicate the model just with φ. In a
similar fashion, rather than considering individual models
for individual patients, we can also consider individual
models for individual movies types, i.e., join the responses
of several patients to the same movie m ∈ {1, . . . , 4} and
use this gathered data in order to train a model that
refers to that specific movie m. In this case we use the
notation φm, with m reminiscent of “movie” instead of i,
reminiscent of “individual” (patient).
The quantities especially of interest for our purposes are:
• the functional structures of φi, φ or φm, assumed to
be selectable within a finite set of plausible functional
structures denoted with

Φ :=
{
φ(1), . . . , φ(M)

}
; (3)

• the model order Ti, assumed to be selectable within
a finite set of plausible orders denoted with

T :=
{
T (1), . . . , T (N)

}
; (4)

• the vector of model parameters θi whose dimension
depends on which structure φi and order Ti is used.

As for the set of plausible functional structures Φ we
consider the set of available alternative choices when using
Matlab’s 2018b system identification toolbox 9.9 –
in practice, Hammerstein-Wiener models with different
structures for the input and output nonlinearities, plus
wavelet, tree-partitioning, and sigmoid NARX models.
Notice that neural networks were not taken into con-
sideration, since our focus here is on structures whose
representations can give intuitive knowledge to physicians
and in general people not coming from engineering fields.

5. RESULTS – INDIVIDUAL PATIENTS MODELS

In this section, we present results relating to predicting the
responses of patients using individual models. Recall that
during the collection of the generic dataset Di, the related
patient i was exposed to a total of 6 movies (see, e.g.,
Figure 3) in total, of which the last 4 movie clips are the
four movie types (high arousal sexual, low arousal sexual,
high arousal nonsexual and low arousal, nonsexual) in
randomised order. Since this implies that for each patient
only one set of data, watching each movie type only once,
is available, the movie type is ignored when considering
individual models. In case individual models, that also take
the movie type into account, should be derived, several of
these data sets per patient would be needed.
For practical reasons, in the following we neglect the data
for the first two movies played. Indeed in the initial part
of the trial, each patient acclimatizes with the experiment

during the first movie, and the VPI balloon is not inflated
during the second movie. An “individualized” learning
process for every specific patient may be performed im-
plementing the following pseudo-code:
(1) divide the four remaining movies played within the

datasetDi into two separate datasets, namely create a
training set Dtrain

i comprising the responses to movies
3 and 4 (referring to the order in which they were
played but neglecting the movie type) and a test
set Dtest

i comprising the remainder of the available
evidence for patient i;

(2) for every potential structure φ(j)
i ∈ Φ and admissible

model order T , learn the model using patient i’s
training set Dtrain

i ;
(3) select the best model structure, order and parameters

for patient i as that triplet that leads to the best fit
in the test set Dtest

i .
In general, this strategy leads to individual models that
differ in their structures j and/or orders T . Different
model structures, nonetheless, make the task of comparing
and grouping different patients difficult. Using only one
model structure and model order for learning the individ-
ual model parameters, on the other hand, has the potential
drawback of reducing the generalization capabilities of the
estimated models.
To evaluate this trade-off quantitatively there is the need
for solving the ancillary question of how to select the model
structure and order among the alternative competing
choices. We thus consider the following strategy (note that
the superscripts s and o are mnemonics model structures
and model orders):
(1) for every patient i learn M · N models (i.e., one

for each couple model structure / order (φ(s), T (o))
of potential alternative model structures and order
choices) using the individual training set Dtrain

i . This
means learning for each patient i M · N different
parameters vectors θ̂(s,o)

i ;
(2) for every learned θ̂(s,o)

i (thus for every patient i, model
structure s and model order o) compute the simulated
pressure

p̂
(s,o)
i := φ

(s,o)
i

(
p̂

(s,o)
i ,vi, `i ; θ̂(s,o)

i

)
(5)

where we tacitly let the signals vi and `i in (5) belong
to the test set Dtest

i , we omit writing time delays, and
we assume that the initial conditions for initializing
the simulations are known and set to be equal to the
initial measurements in the test set;

(3) for every simulated pressure p̂
(s,o)
i we compute its fit

index in the test set as

F (s,o)
i := 100 ·

1−

∥∥∥pi − p̂
(s,o)
i

∥∥∥
‖pi −mean(pi)‖

 ; (6)

(4) for every couple (s, o) of potential model structure
and model order we compute its average fit over the
set of all the patients, i.e., compute

F (s,o) := 1
36

36∑
i=1
F (s,o)

i . (7)
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ARMAX, F = HW pw.linear-deadzone, G = wavenet,
H = treepartition. To complement the information,
the standard deviations of the fit indexes associated
to the first three model structures are, respectively,
23.89, 24.02, and 25.68.

In this way we check the generalization performance
of that specific model structure and order;

(5) we finally select as best model structure s∗ and best
model order o∗ that couple s, o that is associated to
the highest average fit F (s,o).

Notice that since this procedure is reminiscent of a cross-
validation approach we do not employ information criteria
like Akaike or Bayesian ones for penalizing higher model
orders.
Figure 5 shows then a summary of the results obtained
following the procedure above. More precisely, the figure
reports the average fits F (s,o) for a subset of potential
model structures; for each structure we then plot for
simplicity only the data associated to its best model order.
Interestingly, the 3 model structures returning the best
average fits are all Hammerstein-Wiener models and all
with similar functional structures in the input and output
nonlinearities. This seems to indicate that for our specific
framework of modelling pelvic floor muscular pressure as a
function of vaginal dilation we recover the same functional
structures that have been proposed in the literature for
modelling generic muscular force as a function of EMG
levels, see for instance Hunt et al. (1998).
In the following we thus assume that the “best model
structure” s∗ to work with is a Hammerstein Wiener model
with piecewise linear input and output nonlinearities, as
indicated by the results on both average and standard
deviation of the fit performance in Figure 5. In other
words, in the remainder of the section we fix the structure
and order of the models for all patients to be this specific
one, but at the same time let the parameters of the
individual models be potentially different and depending
on the specific patient i. We then quantify how much the
performance of the individual estimators θ̂(s∗,o∗)

i may vary
depending on the particular patient under consideration,
and thus analyze the spread of the statistical performance
of F (s∗,o∗)

i over i. Instrumental to this evaluation, we
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Fig. 6. Histogram of how many patients have a specific
model order as their best individual one, as deter-
mined through strategy S1 above.

first check the sensitivity of the fit indexes on the model
order while assuming the structure fixed. Consider thus
the alternative strategy:
S1) select as the “best individual model order” that

individual order n∗i that maximizes the individual fit
F (s∗,o)

i over o;
Figure 6 refers to strategy S1 above and plots how many
patients had a certain individual model order as their best
one. Unfortunately the plot does not give clear indications
on what may be a suitable o∗ for strategy S1, in the sense
that the curve is neither unimodal nor with a small overall
spread. Considering however not only how many patients
have a specific model order as best fit (see Figure 6) but
also the actual fit values, the best order seems to be o∗ = 4.

Figure 7, instead, compares the histograms of two sets of
fit indexes: the set of indexes F (s∗,o∗)

i obtained by fixing
the model structure and order to be the same for the
various patients (named “fixed order” in the figure), and
the set of indexes F (s∗,n∗

i )
i obtained using strategy S1,

i.e., where the order of the models are individual variables
(named “individual order” in the figure). As expected, the
best fits can be obtained when allowing individual choices
of model orders, since this guarantees more flexibility.
The trade-off becomes thus the following: from practical
reasons, allowing individual model orders might help get-
ting models with better prediction capabilities. Restricting
the models to have the same orders on the other hand
allows to compare different estimated parameters θ̂i for
different patients, and this in its turn enables introducing
algorithms for grouping and clustering the patients based
on opportune geometric distances among their learned
parameters.
For the sake of completeness, we finally consider the per-
formance that can be obtained fixing the very same model
structure s and order o for all the various patients (and,
more precisely, using that structure s∗ = HW pw.lin and
order o∗ = 4 determined when computing Figure 5). We
thus report in Figure 8 the simulation results for the
patient associated to the worst fit against the simulations
relative to the patient with the best fit. The simulation
results shows that for the best case the learned model is
qualitatively able to reproduce the features of the mea-
sured time series. For the worst case, instead, the simulated
pressure has very poor approximation capabilities. This
indicates that this general model is not suitable for some
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the various individual patients (white, corresponding
to a Hammerstein-Wiener (HW) pw.linear-pw.linear
with order 4), and then consider the indexes F (s∗,n∗

i )
i ,

obtained by using a fixed model structure but allowing
individual model orders vary for each patient (gray).
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Fig. 8. Comparison of the simulation results for the pa-
tients associated to the best fit (left) and worst fit
(right), choosing the model structure and order s∗ and
o∗ with the best fit according to Figure 5. A summary
of the modelling performance for the other 41 patients
is implicitly included in Figure 7.

patients. It indicates that for modelling the responses
of these persons there is the likely need of considering
additional data, factors or disturbances.

6. RESULTS – MOVIE-DEPENDENT MODELS

The previous Section 5 discussed how different model types
(in the sense of structures and orders) are able to fit the
data, and tried to answer the question “what are suitable
model structures for this type of system?”.
The learning approaches used in Section 5, however, ig-
nored the information about which type of movie the
patients were watching (that are, for the sake of com-
pleteness, of 4 different types, combining the dichotomies
high-arousal / low arousal, sexual / non-sexual). The need
for ignoring this information is due to the lack of enough
measurements: each patient watched exactly every type
of such movies just once, so that it is not possible to

perform the classical “learn on training data, assess on
test data” since it is not possible to divide the available
data in meaningful train and test datasets.
Disregarding the fact that watching different movie types
may potentially induce psychological effects is, however,
a clear drawback of the models proposed in Section 5,
specially considering that the medical literature indicates
that psychological and physiological responses are tied.
To fill this gap in this section, we focus thus on answer-
ing two specific questions: are there differences in the
physiological responses to different movie types? And how
uniformly do different people physiologically respond to
the same movie type?
To do so we first divide each dataset (like the one in
Figure 3) in 6 segments so that each segment refers to one
single and specific movie. To do so, we arbitrarily defined
these segments in a way that they temporally start at:
• time 0 for the first segment;
• two minutes after the VPI has completely deflated for

the second, fourth, fifth and sixth segment;
• two minutes after the second movie has finished for

the third segment.
We moreover let these segments finish either one minute
before the beginning of the new segment or at the end
of the experiment. Qualitatively, thus, we include in each
movie segment the various signals before the movie starts
up to a few minutes after that movie ends.
Given the above segmentation criterion, we then create
four different training sets and four test datasets Dtrain

m
and Dtest

m , with m reminiscent of “movie”, starting from
the “individual patients i” training and test datasets Dtrain

i
and Dtest

i considered in Section 5. More precisely, Dtrain
m

contains the segments of various Dtrain
i , that correspond to

the specific movie type m, for the first half of the patients,
i.e., for i between 1 and 18. Then, the responses of the
second half of the patients, i.e., for i between 19 to 36,
when watching movie type m form Dtest

m .
Importantly, the operation of merging data segments rel-
ative to one specific movie but also relative to differ-
ent patients hides a technical difficulty: patients’ baseline
pressures are both individual and time-dependent. I.e.,
inspecting Figure 3 (that is representative of what happens
also with all the other various patients) and comparing it
to the data from other patients we can notice two distinct
phenomena:
(1) the vaginal pressure during resting periods (i.e., while

the VPI is completely deflated) can be considered
a plateau (i.e., relatively stable and flat in time).
Consecutive resting periods tend to be characterized
by lower and lower plateau levels;

(2) different people experience very different resting vagi-
nal pressure plateau levels.

Relative to the first phenomenon, we note that indeed
the first plateau is sensibly higher than the consecutive
ones in virtually all the analysed patients. An explanation
supported also by interviews with patients is that at
the beginning they were subject to different levels of



anticipatory anxiety, that then vanish as the patients get
more and more relaxed as the experiment goes on.
The two phenomena described above imply that joining
data from different individuals requires an ad-hoc detrend-
ing strategy. Our strategy has been to implement, for each
of these identified segments, the following pseudo-code:
(1) first detrend the pressure signal within the segment

(call it ps
i (t)) by removing the value of its first sample.

In this way the new signal ps
i (t) := ps

i (t)− ps
i (0) will

start from zero;
(2) then consider the value of the last sample for this

detrended pressure signal, say ps
i (T ). Our aim is to

modify ps
i (t) so to arrive at a new signal ps

i (t) that is
s.t. both ps

i (0) and ps
i (T ) are equal to 0;

(3) to do so, we note that - inspecting the datasets
- all the segments present vaginal pressure traces
that share the same qualitative behavior: patients
physiologically respond to an inflating VPI by first
exerting an increasing vaginal pressure, but as the
VPI completely deflates the patients experience a
brief over-relaxation that lasts few seconds. After this
“overshoot” the patient then increases her vaginal
pressure, and a new plateau begins. To compute a
p

s
i (t) that is s.t. both p

s
i (0) and p

s
i (T ) are equal

to 0 but that at the same time retains statistical
information of how patients dynamically respond to
an increasing volumetric vaginal stimulus we then find
this “overshoot” and adjust the samples after this
overshoot so that eventually the last sample of ps

i (t)
will be zero.

In a sense, thus, the final ps
i (t)’s considered in the learning

phases are structurally equal to the original ps
i (t)’s up to

the negative overshoot defined above, and then after that
differ from the original signal by a typically small bias.
Among the potential choices for performing this detrend-
ing operation we choose the here defined one because it
does not alter the statistical information of how patients
dynamically respond to an increasing volumetric vaginal
stimulus. It alters though the information relative to how
patients respond to the transition inflated → completely
deflated. Our detrending strategy though modifies only the
gain associated to this operation, while preserving the time
constants. The effects of different detrending choices have
not yet been evaluated and are left to future work.
Assuming that the above detrending operation has been
implemented in all movie segments and that the datasets
Dtrain

m and Dtest
m have been computed, we then can repeat

the same strategy implemented in Section 5, i.e.,

• for every potential structure φ(j)
m ∈ Φ and admissible

model order T we can learn the movie-typem’s model
using the training set Dtrain

m ;
• we can then select the best model structure, order
and parameters for the movie-type m as that triplet
that leads to the best fit in the test set Dtest

m .
This means that for each m we can select the best model
structure s∗ and best model order o∗, i.e., the couple
s, o that is associated to the highest average fit F (s,o)

m ,
using the same notation as above. Performing this check
is instrumental to verify that the models obtained for indi-
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Fig. 9. Fits on the test sets for different potential model
structures (the model order being here implicitly
assumed to be, for each model structure φ(s), that
one that maximizes F (s,o)

m over the potential orders
o) for the four different movies types. Legend: A
= HW pw.linear - pw.linear, B = HW pw.linear-
saturation, C = HW poly.-poly., D = sigmoidnet, E =
ARMAX, F = HW pw.linear-deadzone, G = wavenet,
H = treepartition. The movie indexes refer to 1 =
“high arousal, sexual”, 2 = “low arousal, sexual”, 3 =
“high arousal, nonsexual” and 4 = “low/no arousal,
nonsexual” as described in Section 2.

vidual patients and for individual movies are structurally
the same.
Figure 9 shows that once again HW models with piece-
wise linear nonlinearities lead to the best approximation
capabilities, with fit indexes in test sets in the order of
60%. This in a sense is expected and also implicitly reas-
sures that the detrending strategy introduced above does
not introduce radical changes from a signals-information
content point of view.
We then inspect the variability of the (test-set) fit perfor-
mance in simulating the responses associated to specific
movies of the various individual patients in the following
sense: Assume that the best model (in the sense defined
above) trained for movie m on the dataset Dtrain

m is φ∗m.
If then the associated test set Dtest

m is composed by say
K traces from K different individuals, then φ∗m will have
in general K different fit performances in simulating these
K different traces. The related evidence collected in our
medical trials is then shown in Figure 10.
Figure 10 shows that the greatest variability in terms
of performance indexes happens for movie type 1, i.e.,
explicit erotic clips. This graph is in a sense a quantitative
assessment of how much different persons have different
responses to this type of movies. The smallest variabil-
ity is happens instead for movie type 3, i.e., Benigni’s
“Life is beautiful”. The evidence thus seems to suggest
that (even if wary of the statistical significance of the
numerical results above) from structural points of view,
the measured physiological responses to both sexual and
nonsexual movies are captured through HW models of the
same type. However, movies with sexual content (specially
1) may lead to more variegate individual physiological
responses than non-sexual movies (3 and 4). We guess
that this higher variability may be due to more different
emotional responses to these movies across the spectrum
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Fig. 10. Variability of the fit performance in the test set
of the optimal individual models φ∗m, m = 1, . . . , 4,
in simulating the responses associated to the specific
movies of the various individual patients. The movie
types indicate 1 = “high arousal, sexual”, 2 = “low
arousal, sexual”, 3 = “high arousal, nonsexual” and 4
= “low/no arousal, nonsexual”, see also Section 2.

of the patients, and that these differences eventually cause
also higher variations in the physiological responses. How-
ever, we do not have data supporting this claim: checking
this would indeed require opportune statistical analyses of
subjective questionnaires and qualitative self-assessments
of the users experiences, well beyond the scope of this
paper.
We finally quantitatively assess how different the four
individual-movie models φ∗m=1, . . . , φ

∗
m=4 are by compar-

ing their performance in simulating the four test sets
Dtest

m=1, . . . ,Dtest
m=4 (and, as a cross-check, the training sets

Dtrain
m=1, . . . ,Dtrain

m=4). The results are summarized in Tables 1
and 2, whose generic (m′,m′′) element represents how well
the model learned for movie m′ is able to simulate the test
or training set, respectively, associated to movie m′′.

Dtest
m=1 Dtest

m=2 Dtest
m=3 Dtest

m=4
φ∗

m=1 51.36 63.50 59.13 63.23
φ∗

m=2 50.93 61.74 60.55 66.52
φ∗

m=3 46.84 65.92 63.14 65.48
φ∗

m=4 43.70 57.77 53.57 64.11

Table 1. Fit performance of the individual-movie mod-
els φ∗m in simulating the test sets Dtest

m .

Dtrain
m=1 Dtrain

m=2 Dtrain
m=3 Dtrain

m=4
φ∗

m=1 58.82 48.29 58.64 57.89
φ∗

m=2 55.93 44.71 55.84 54.72
φ∗

m=3 59.22 50.63 72.68 68.17
φ∗

m=4 61.03 43.16 58.25 60.64

Table 2. Fit performance of the individual-movie mod-
els φ∗m in simulating the training sets Dtrain

m .

Tables 1 and 2 show the training and test fits for the
different models per movie type and data sets. As indicated
above, the training sets per movie type are formed by
combining the corresponding responses of the first half of
the patients whereas the responses of the second half of
the patients was used to form the corresponding test set.

It can be seen that the training and test fits are com-
parable; this, together with leave-one-out cross valida-
tions (Hastie et al., 2008, Chap. 7.4) that are omitted for
the sake of brevity, indicate that no overfitting is likely to
have happened.
We then notice that the fit values between the various
training and test sets vary more when the movie segments
have sexual content rather than when the segments are
without sexual content. A possible explanation may be
that (as elaborated also above) sexual content may lead
to more varied physiological responses, and this increases
the variability of the results (even if we cannot however
support this intuition with the data that we have collected
in our trials). This is specially noticeable when realizing
that the performance of the various learned models φ∗m
in simulating Dtrain

m=1 (i.e., the responses associated to the
erotic sexual clips) tend to be lower than in simulating the
other Dtrain

m ’s. This in a sense confirms and reinforces the
intuition developed before that movies with sexual content
lead to individual physiological responses that are more
difficult to be captured.
This seems to indicate that it is important to know if a
patient is watching a sexual movie when identifying her
physiological responses, while knowing if it is high arousal
or low arousal seems to bring only minor information.
For this reason we believe that the subjective pleasure
indicator eventually cannot be considered as a signal that
implicitly incorporates the information of the movie type,
and shall be always used for identification purposes.

7. CONCLUSIONS

This paper presents results on data-driven modelling of the
pelvic floor muscle dynamics for healthy patients undergo-
ing vaginal dilation exercises through an inflatable balloon
while being exposed to different movie types. For the avail-
able datasets, we identified that the pressure dynamics are
best modelled as a Hammerstein-Wiener model with piece-
wise linear input output maps, a fact that is reminiscent
of similar results in the medical literature dedicated to
numerically modelling the dynamics of muscular pressure
as a function of EMG levels.
In the paper we specifically focus on understanding what
are the effects from a system identification point of view
of enforcing the model type and model order for cap-
turing the dynamics of all the various patients. We in-
deed aimed at checking whether different patients share
dynamics with similar functional structures, and found
results that are partially contradictory: Even if, as said
above, Hammerstein-Wiener structures seemed to capture
the collected evidence for all various patients, we have not
been able to find a common order for the linear blocks of
the various patients that led to satisfactory approximation
capabilities for every patient. This is not ideal from a mod-
elling perspective, since having the same model structure
but different model orders for different patients prevents
being able to compare (and thus group) patients by means
of comparing (and grouping) their estimated parameters.
Another important quantitative result that we found is
about the effect of being exposed to different movies types
while being subject to vaginal dilation stimuli. Testing the



generalization capabilities of our learned models it turned
out that patients’ physiological responses while watching
movies with explicit erotic content are more variegated
than when watching non-erotic movies. This is implicitly
important for the overall aim of this research line, that
intends answering the problem of how to personalize
vaginal dilation patterns by building dynamical models
that are control-oriented.
The intuition is that personalizing the dilation patterns
requires predictive models, i.e., models that can accurately
forecast, what will be the short- and long-term effects of
applying specific dilation patterns to a specific patient in
a specific condition. Our findings suggest then that finding
predictive models of how patients’ physiologically respond
to movies with explicit erotic content is more difficult.
Treatments are at the same time sometimes associated
to these types of movies, since they may help to achieve
physiological and psychological arousal, that are known
in their turn to help some patients to experience better
appraisal of the treatment themselves.
Our main conclusion is thus that models, which allow
a better prediction of the pelvic floor muscle response
or give interpretable insights into the underlying relation
between the variables, would further ease the derivation
of personalised dilation patterns. But for this it seems
that there is the need for models that incorporate further
research on the underlying physiological and psychological
responses as well as dedicated medical tests, that capture
more data of interest and are not focused, as did here, on
finding connections among few of the variables that are
involved in the system.
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