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Abstract—We consider the problem of control and remote state
estimation with battery constraints and energy harvesting at
the sensor (transmitter) under DoS/jamming attacks. We derive
the optimal non-causal energy allocation policy that depends on
current properties of the channel and on future energy usage. The
performance of this policy is analyzed under jamming attacks on
the wireless channel, in which the assumed and the true channel
gains differ, and we show that the resulting control cost is not
monotonic with respect to the assumed channel gain used in the
transmission policy. Additionally, we show that, in case there
exists a stabilizing policy, then the optimal causal policy ensures
stability of the estimation process. The results were illustrated for
non-causal and causal energy allocation policies under different
jamming attacks.

Index Terms—energy harvesting, energy allocation, optimal
control, cybersecurity, jamming attack

I. Introduction

NETWORKED control systems have vast and promising
applications, such as distributed sensing and control

based on Internet-of-Things devices, and flexible and scalable
process control through wireless communication networks [1].
The development of low-energy embedded sensors with higher
computation and communication capabilities, and the creation
of efficient and reliable communication protocols, are the
main driving forces behind these applications. Nonetheless,
the full benefits of such technologies may be hindered by
issues underlying the use of digital connected devices and
communication networks, such as malicious cyber-attacks.

Cybersecurity has become an increasingly important aspect
of control systems in recent years, driven by the pervasive
use of information and communication technologies, as well
as by the steadily increasing number of newly discovered
vulnerabilities and reported cyber-attacks [2]. See the overview
in [3], [4]. Rational adversaries are highlighted as one of the
key items in security for control systems, where adversaries
may exploit existing vulnerabilities and limitations in the
modern closed-loop systems. For instance, targeting battery-
powered wireless devices with jamming attacks to deplete their
batteries [5].

Denial-of-Service (DoS) attacks affecting the availability of
data have been recently addressed from different angles. In
DoS attacks, the adversary aims at dropping transmitted data
packets, or jamming the wireless communication medium [6],
so that the performance of the closed-loop system is deterio-
rated [7], [8], possibly resulting in instability.
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DoS attacks have recently been addressed in the literature,
both with the purpose of analyzing such attacks, as well
as to mitigate their impact. For instance, in [9], [10] the
authors formulate the DoS attacks using zero-sum dynamic
games, where the optimal attack strategy aims at maximizing
the impact on control performance. Similarly, [6] considers
a state estimation problem under DoS attacks, using game-
theory to derive the optimal attack strategy that most degrades
estimation performance. Approaches to mitigate the impact of
DoS attacks have also been proposed, including game theoretic
schemes [6], [9], [10], optimal control [7] and event-triggered
control [8], [11], [12].

Common to most of this work is the assumption that the
transmitter and receiver have no energy constraints. In contrast,
the adversary is often assumed to be constrained in the amount
of packets it can block [9], or in the available energy to
jam the communication channel. Transmission and jamming
power constraints are also considered in the remote estimation
problem in [6], but battery dynamics and capacity constraints
were neglected.

In contrast, we consider a remote state estimation scenario
with energy harvesting at the battery-powered sensor (trans-
mitter) in a closed control loop. This paper is an initial study of
the problem of remote state estimation with energy harvesting
and battery constraints in a closed control loop under DoS
attacks, and focuses on its structural properties.

As a first step, we derive the optimal non-causal energy
allocation policy that depends on properties of the channel
and on future energy usage. The performance of this policy
is analyzed under jamming attacks on the wireless channel, in
which the assumed channel gain (used in the policy) differs
from the true channel gain (due to the DoS attack). In partic-
ular, we show that the resulting control cost is not monotonic
with respect to the assumed channel gain. Additionally, we
establish that, in case there exists a stabilizing policy, then the
optimal causal policy stabilizes the estimation process.

Sec. II describes the nominal wireless control system. The
optimal energy allocation policy in the absence of attack is
described in Sec. III. Sec. IV analyzes how the optimal policy
performs under attack. Numerical examples are presented in
Sec. V. The paper concludes in Sec. VI.

II. SystemModel

A scheme of the system model can be found in Figure 1.
A detailed description of the components is given below.
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Figure 1: Scheme of system model

A. Plant Model

The plant is modeled as a linear system with state xk ∈
R

n, process noise wk ∈ R
n, and a control input uk ∈ R

p:
xk+1 = Axk + Buk + wk with initial state x0. The process noise
is assumed to be i.i.d. Gaussian noise with zero mean and
covariance matrix M = E{wkwT

k
} ≥ 0. A, B are matrices of

appropriate dimensions. Similar to [13], we assume that (A, B)
and (A, M

1
2 ) are controllable.

B. Sensor

The sensor produces a noisy measurement of the state given
by yk = Cxk + vk where (A,C) is assumed to be observable,
yk ∈ R

q, and vk ∈ R
q is assumed to be i.i.d. Gaussian noise

(independent of x0 and wk) with zero mean and covariance
matrix N = E{vkvT

k
} > 0.

C. State Estimator at the Transmitter

We assume a smart sensor with computational capability
to estimate the current state, and that the sensor/transmitter
forwards a state estimate to the controller. The sensor measure-
ments are used at the transmitter to estimate the current state
xk based on the information set Ik = {x̂0,yl,γl−1 : 1 ≤ l ≤ k},
where γl denotes the packet loss process in the sensor-receiver
communication link, which is made available to the transmitter
through the channel feedback acknowledgment, as discussed in
detail in Sec. II-E below. Since the transmitter knows the exact
packet loss sequence and the control law, it can reconstruct
the Kalman filter at the receiver, and the exact control input
applied to the plant, which is calculated by the receiver based
on its state estimate.

We assume that the Kalman filter at the transmitter has been
running for a long time before k = 0 such that the Kalman
filter at the transmitter has reached a steady state with the error
covariance matrix given by P∞.

D. Energy Harvester and Battery Dynamics

The transmitter has a rechargeable battery or (super) capac-
itor equipped with an energy harvester, that can gather energy
from the environment. The unpredictable energy available to
be harvested at k, denoted Hk, is described as a stationary
first-order homogeneous finite-state Markov process, [14]. We
assume that the energy for sensing and computational purposes
at the transmitter are negligible compared to the transmission

energy. The stored energy in the battery at k, Bk, evolves
according to

Bk+1 = min{Bk − Ek + Hk; B̄} (1)

with 0 ≤ B1 ≤ B̄ and where B̄ is the battery capacity, and Ek

is the energy used for transmission at k.

E. Communication Channel

A wireless communication channel is used to transmit the
state estimate x̂k to the controller/actuator, referred to as Rx
block. The channel is a packet dropping link such that the
estimate is either exactly received (for γk = 1) or completely
lost due to corrupted data or substantial delay (for γk = 0),
where γk is the Bernoulli random variable modelling the packet
loss process. The received signal is zk = γk x̂k. Based on
wireless communication principles [15], we suppose that the
channel is affected by independent additive white Gaussian
noise (AWGN) with energy n0, in which case the probability
of successful transmitting a packet depends on the signal-to-
noise ratio (SNR) of the channel. Denoting Ek as the energy
for transmitting the packet at time k over the channel, and
g = 1

n0
as the channel gain, the SNR is given by gEk and the

probability of successfully transmitting the packet is

P(γk = 1|Ek) := h(gEk) (2)

where the function h : [0,∞] → [0,1] is monotonically
increasing and continuous. The function h relates to how
the SNR affects the packet-error rate, which depends on the
modulation of the channel, see [15] for further details.

We assume that the channel gain g is constant. In practice,
there might be several reasons to make such assumption. First,
listening to a pilot signal in order to estimate the channel gain
consumes significant amounts of energy, which might instead
be used for data transmission. Further, in known environments
and maybe even connections with line of sight, channel gains
might not vary significantly and can be simplified as being
constant over time. This also simplifies the analysis and
computation, which might be another significant advantage in
practice. Note that this is assumption is similar to assuming
a constant packet drop probability, which is common in the
literature, see for instance [13].

Based on the channel harvested energy Hk, and the current
battery level Bk, the transmitter finds an optimal energy alloca-
tion policy {Ek} in order to minimise a suitable finite horizon
control cost. The details of this optimal energy allocation
scheme will be provided in the next section.

After receiving zk over the lossy communication channel,
the receiver sends an ACK/NACK packet, i.e. γk, to the
transmitter over a perfect feedback channel.

F. Estimator/Controller and Actuator in the Receiver block

The controller in the receiver block has access to the
information set Ic

k
:= {x̂c

0,zl, γl : 1 ≤ l ≤ k}. As the estimates
from the transmitter Kalman filter are dropped with probability
1 − h(gEk), the current state estimate is not always available
at the Rx block. Hence, the state estimate at the Rx block,
x̂c

k|k = E[xk|Ic
k
], is given by

x̂c
k := x̂c

k|k = γk x̂k + (1 − γk)
(

Ax̂c
k−1 + Buk−1

)

. (3)



The estimation error covariance matrix at the Rx block is

Pc
k :=E

{

(xk − x̂c
k)(xk − x̂c

k)T|Ic
k

}

=γkP∞ + (1 − γk)
(

APc
k−1AT + M

)

. (4)

We assume that the Rx block uses as initial state distribution
Pc

0 := P∞. Since it is assumed that the Tx block receives the
ACK/NACK packet without fault, a copy of Pc

k
can be kept at

the Tx block.
The task of the controller is to design an optimal control

sequence {uk} based on the information pattern Ic
k

such that
a suitable average control cost is minimised. It is assumed
that the link between the Rx block and the plant is lossless,
such that the correct control signal uk is applied to the plant.
This is a reasonable assumption in case the actuator is directly
connected or located very close to the plant.

G. Optimisation Problem and Separation Principle

We seek to find the optimal transmission energy allocation
policy EK ∗ and the optimal control policy uK∗, that jointly
minimise the finite horizon LQG control cost

J(uK , EK , x0, P∞) = E















xT
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K
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where uK = {u1, . . . , uK}, EK = {E1, . . . , EK}, and the cost
depend on the mean and the variance of the initial state.

Similar to the case in [16], it can be shown that a separation
principle holds: Note that the control input uk is perfectly
known at the transmitter due to receiving perfect acknowledg-
ments. Thus, the estimation error is independent of the control
input (see also [13]) and the separation principle holds in this
case. Hence, the tasks of obtaining the optimal Kalman filtered
state estimate x̂k, x̂c

k
, calculating the optimal control input u∗

k

at the controller, and computing the optimal energy allocation
E∗

k
at the transmitter can be done separately. Therefore, im-

plementing the Kalman filters as discussed above is optimal.
Further, the optimal control policy is an LQG controller as
in [16]. The optimization problem for finding the optimal
transmission energy allocation is described below. Note that
we will consider both the nominal case and the system under
DoS/jamming attack, which reduces the channel gain. Hence,
in contrast to [16], which analyzed the effect of perfect vs
imperfect acknowledgements but accurate knowledge of the
channel gain, this paper considers the impact of jamming
attacks on a system with perfect acknowledgements and using
the optimal (for the nominal case) energy allocation policy.

III. Energy Allocation Policy

In this section, we characterize the optimal causal policy,
and look further into the optimal non-causal policy to derive
structural results used to analyze the effects of jamming attacks
in the following section.

A. Optimal Solution for Causal Information and Limited Bat-

tery Capacity

Since the separation principle holds, the optimal energy
allocation policy at the transmitter can be obtained by solving

min
0≤Ek≤Bk∀k

K
∑

k=1

J̃k(Hk,Bk,P
c
k−1, Ek), (5)

where J̃k(Hk,Bk,P
c
k−1,Ek) := E

{

tr(Pc
k
) | Hk,Bk,P

c
k−1, Ek

}

. In the
remainder of the paper, we omit the argument of J̃k when there
is no ambiguity. Indeed, (5) is a stochastic control problem
with the state process (Hk,Bk,P

c
k−1) and the control action Ek.

In practice, only causal information about the harvested energy
and battery level is available. Hence, the future unpredictable
energy harvesting information is not a priori known. In this
case, the solution to the stochastic control problem (5) is given
as follows:

Theorem 1: Let the initial condition be I1 = {H1,B1, P
c
0 =

P∞}. Then the value of the finite-time horizon minimisation
problem (5) with causal information is given by V1(H1,B1, P

c
0),

which can be computed recursively from the backward Bell-
man dynamic programming equation

Vk(Hk,Bk, P
c
k−1) = min

0≤Ek≤Bk

{

J̃k(Hk,Bk,P
c
k−1,Ek)

+ E

{

Vk+1(Hk+1, Bk+1,P
c
k)
∣

∣

∣ Ek,Hk,Bk, P
c
k−1

}}

(6)

with the battery dynamic equation (1) and the terminal con-
dition VK(HK ,BK , P

c
K−1) = E

{

tr(Pc
K

)|BK

}

, where all remaining
energy is used up for transmission in the final time K.

Proof: The proof follows from the optimality equations
for finite-time horizon stochastic control problems, [17].

The optimal energy allocation policy can be calculated for
all possible combinations of Hk, Bk, and Pc

k−1, and for all k

and stored in a look-up table. Then, when implementing the
policy, the optimal value of Ek is simple taken from the table.
However, the optimal solution is based on the assumption that
the channel gain is indeed the known value g, which may be
untrue on the case of jamming attacks. Analyzing the influence
of the jamming attack onto the optimal solution for causal
information is difficult since no closed form solution exists.
Hence, instead we will analyze the optimal solution for the
unrealistic case of non-causal state information and unlimited
battery capacity, for which an explicit solution exists. Of
course, the influence onto the performance under the optimal
policy for the causal information case with limited battery
capacity will be different. However, analyzing the case below
offers structural insights into the problem and is an important
benchmark for the optimal solution under realistic conditions.

B. Lagrangian Formulation for Non-causal Information and

Unlimited Battery Capacity

Using (2), the properties of the trace and the expected value,
the function J̃k(Hk,Bk,P

c
k−1,Ek) can be rewritten as

J̃k =E

{(

γktr(P∞) + (1 − γk)tr
(

APc
k−1AT + M

)

)

|Ek

}

=h(gEk)tr(P∞) + (1 − h(gEk))tr
(

APc
k−1AT + M

)

.

Hence, the Lagrangian formulation for this problem, given the
Lagrange multipliers λk ≥ 0, k = 1, 2, . . . ,K is [17],

L (E,λ) =
K

∑

k=1

[

λk

( k
∑

l=1

El −
k−1
∑

l=1

Hl − B1

)

+ J̃k

]

. (7)
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k
, and λo

k
are primal and dual optimal solutions to (7) if and

only if they satisfy the Karush-Kuhn-Tucker (KKT) optimality
conditions for k = 1, 2, . . . ,K i. e.,

Ek ≥ 0, λk ≥ 0,
k
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El −
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∑
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Hl − B1 ≤ 0, (8)
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≥ 0 for Eo
k
= 0

= 0 for 0 < Eo
k
< Bk

≤ 0 for Eo
k
= Bk

(10)

The Lagrangian multipliers λk are introduced as penalty terms
to ensure that energy causality is respected, that is, to ensure
that not more energy is used for data transfer than is available
in the battery at the same time step, see (8). The KKT condi-
tion (9) ensures that the optimal solution of the Lagrangian is
identical to the solution of the original optimisation problem
(5) with energy causality constraints. The last KKT condition
(10) follows from the fact that the Lagrangian function L is
convex due to the convexity of the objective function and the
linearity of the constraints.

C. Optimal Solution for Non-Causal Information and Unlim-

ited Battery Capacity

Based on the Lagrangian formulation in (7), the KKT con-
ditions (8)-(10) and an additional assumption on the function
h in (2), the optimal solution for the non-causal case with
unlimited battery capacity can be obtained:

Theorem 2: Suppose that the Tx-block has a battery of
unlimited capacity and access to non-causal information on
the harvested energy for all time steps. Further, assume that
the first derivative of h in (2) exists and is invertible for non-
negative arguments. Then, the optimal transmission energy
allocation at time k is given by

Eo
k =



























0 if Φk ≤ 0

Φk if 0 < Φk < B∗
k

B∗
k

if Φk ≥ B∗
k

(11)

with the largest possible energy for data transmission at k

being B∗
k
= B1 +

∑k−1
l=1 Hl −

∑k−1
l=1 El and

Φk = ξ

(

Λk

tr (∆Pk) g

) /

g (12)

where ∆Pk := APc
k−1AT + M − P∞, Λk :=

∑K
l=k λl and ξ is the

inverse function of dh(x)
dx

.
Proof: The KKT condition (10) for Eo

k
> 0 yields

∂L
∂Ek

∣

∣

∣

∣

∣

Ek=Eo
k

= − g
dh(x)

dx

∣

∣

∣

∣

∣

x=gEo
k

tr (∆Pk) + Λk = 0. (13)

Solving for Eo
k

leads to (12). Whenever Φk is within the
achievable boundaries of 0 and the battery level B∗

k
we have

Eo
k
= Φk. Otherwise Φk will be saturated below at 0 and above

at B∗
k

to ensure the KKT conditions are satisfied.

Remark 1: Note that h is a non-decreasing function, which
reaches 1 asymptotically as its argument tends towards infinity.
Assuming that its first derivative is invertible for non-negative
arguments, the derivative is a non-negative, decreasing func-
tion. The same is also true for its inverse ξ.

Remark 2: Due to (8), Λk is non-increasing in k. Hence, for
constant Pc

k−1, the argument of ξ in (12) will be non-decreasing
in k. Since ξ is a decreasing function, the optimal transmission
energy for constant Pc

k−1 is also non-decreasing in k such that
there exists a tendency to use more energy at later time steps
k. This is similar to the directional or staircase water filling
algorithm shown to be the optimal energy allocation policy
for a similar problem in [18], [19].

A more in depth analysis of the optimal solution, for
the case with non-causal information and unlimited battery
capacity, can be found in the following subsection.

IV. Optimal Policy under Jamming Attack

This section more closely examines the effects of jamming
attacks on the control cost and stability of the control system,
given that the optimal energy allocation policy is used with an
assumed nominal (but possibly incorrect) channel gain g.

A. Channel model under jamming attack

As detailed in Sec. II-E, we consider a AWGN wireless
channel. The effect of a jammer on the communication channel
is the same as that of an interference source. Therefore,
the channel under a jamming attack is modeled in terms
of the signal-to-interference-plus-noise ratio (SINR) of the
channel. Denoting gtrue =

1
Ejam+n0

as the channel gain under
the interference of a jamming attack with energy Ejam, the
SINR is given by gtrueEk and the probability of successfully
transmitting the packet is P(γk = 1|Ek) := h(gtrueEk). Similarly
as the interference-free case, the function h relates to the SINR
and the modulation of the channel, see [15] for further details.

B. Analysis of the Optimal Solution with Non-Causal Infor-

mation under Jamming Attack

It is an interesting question how the optimal policy, which
was derived for assuming non-causal information, unlimited
battery capacity and an assumed, nominal channel gain g,
will perform under a jamming attack, where the unknown true
channel gain gtrue < g.

For this, we will make two simplifying assumptions:

A1 The probability function h in (2) is of the form h(gEk) =
1 − e−gEk/τ, such that ξ(y) = −τ ln(τy).

A2 The saturation in (11) is ignored such that Eo
k
= Φk as

given in (12).

Then, the following result can be shown.
Lemma 1: Consider policy (12) and Assumptions A1 and

A2 above hold. Then, the expected increase of the accumulated
error covariance in (5) for time k is given by

J̃k =tr(P∞) + tr(∆Pk)
(

τΛk

tr(∆Pk)g

)gtrue/g

(14)

Proof: Using the definition of J̃k and applying A1 and
A2 yield the result.
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g

(

log
(

τΛk

tr(∆Pk)

)

− log(g)
)

in (15)
for τΛk

tr(∆Pk) = 0.1 as a function of g.

Remark 3: In the worst case gtrue = 0 such that J̃k = tr(P∞)+
tr(∆Pk) = tr(APc

k−1AT + M), capturing the fact that the packet
will be lost with probability 1, such that the state estimate
must be achieved by a simple prediction step given the last
available state estimate.

Remark 4: For arbitrary values of gtrue the difference be-
tween the actual expected increase in the accumulated error
covariance measure, J̃k, and the best possible situation, tr(P∞),
is given by J̃k − tr(P∞) = tr(∆Pk)

(

τΛk

tr(∆Pk)g

)gtrue/g
which yields

in logarithmic scale

log
(

J̃k − tr(P∞)
)

= log(tr(∆Pk))+
gtrue

g

(

log
(

τΛk

tr(∆Pk)

)

− log(g)
)

.

(15)
Note that the factor 1

g

(

log
(

τΛk

tr(∆Pk)

)

− log(g)
)

is not monotonic
in g and might even change sign. See Figure 2.

The results in this subsection were derived with several
simplifying assumptions, including non-causal information,
unlimited battery capacity, ignoring the saturation of Eo

k
in

(11) and assuming a specific function for h in (2). Hence, we
cannot conclude that the derived results hold true for realistic
and more general model cases. However, they show that the
effects of jamming attacks leading to a mismatch between the
assumed nominal g and the true gtrue are far from trivial.
Nonetheless, we will show that even in case of jamming
attacks, stability might be guaranteed in some cases.

C. Stability Analysis for the Optimal Solution with Causal

Information under Jamming Attack

Consider again the case that the communication system is
suffering a jamming attack such that the actual channel gain
gtrue is lower than the assumed, nominal channel gain g.

It is straightforward to show that in general the energy
allocation policy (11) will not be optimal in case the true
channel gain is not the same as the assumed channel gain,
i.e., gtrue , g. As time K grows without bound, hence the
system might become unstable in case too many packets are
lost between the transmitter and the receiver. However, we will
show below that as long as there exists a policy that given
enough harvested energy stabilises the plant, then using the
policy (11) despite gtrue , g will also stabilise the system.

As a first step, we show that there exists a policy to
ensure that the error covariance matrix is bounded in case
the harvested energy is sufficient under the greedy policy, for
which Ek = Bk,∀k.

Theorem 3: Assume the error covariance matrix at the

controller Pc
k

in (4). If there exists a ψ ∈ [0,1) such that

sup
H

∫

Hk−1

(

1 − h
(

gtrue min
{

Hk−1,B̄
}))

×P (Hk |Hk−2 = H) dHk−1 ≤
ψ

‖A‖2
, (16)

then there exists a policy {Ek} such that for some scalars α,β >
0 the norm of Pc

k
satisfies

E

{∥

∥

∥Pc
k

∥

∥

∥

}

≤ αψk + β for all k ≥ 1. (17)

Proof: The proof is based on [20, Thm 1] showing that for
constant channel gain gtrue a sufficient condition for exponen-
tial stability in the sense of (17) is supH P (γk = 0|Hk−1 = H) ≤
ψ

‖A‖2 for some ψ ∈ [0,1). The exponential stability condition

yields (16) with min
{

Hk−1,B̄
}

= Ek for some ψ ∈ [0,1).
Assume all the harvested energy at each time step is used
for data transmission. Then, E1 = B1 and Ek = min{Hk−1; B̄}
for k > 1. Then (16) is a sufficient condition to guarantee (17).

The theorem above shows that in case the probability of
loosing a packet when using the greedy policy is small enough,
then there exists an energy allocation policy, which guarantees
that E(tr(Pc

k
)) is bounded according to (17). So, if we can show

that the optimal policy designed for the nominal case with
g, given the actual channel gain gtrue performs better than or
converges to the greedy policy, i.e., towards Ek = Bk,∀k, then
using the optimal policy designed for g stabilises the system
under a jamming attack with gtrue < g.

Theorem 4: Consider the error covariance matrix at the
controller Pc

k
in (4) and there exists a ψ ∈ [0,1) such that

(16) for gtrue. Then, using the energy allocation policy (11)
derived for g > gtrue guarantees that there exists some scalars
α,β > 0 such that (17) holds true.

Proof: The proof follows by contradiction. Consider that
the error covariance matrix grows without bound. Hence, the
trace in the denominator of the argument of ξ in (12) tends
towards zero. Since ξ is a non-negative, decreasing function,
see Remark 1, Φk grows without bound and the transmission
energy will converge to the available energy in the battery. In
case this policy is continued due to large values of Φk, this
corresponds to the greedy policy in which all available energy
is immediately used for transmission. However, it was shown
in Theorem 3 that, under the greedy policy and gain gtrue,
condition (16) guarantees (17).

V. Numerical Example

A scalar system with parameters A = 1.1, B = 1, C = 1,
M = 1 and N = 1 is considered. It is assumed that the sensor
uses a binary phase shift keying (BPSK) transmission scheme,
[15], with b = 4 bits per packet. Hence, P{γk = 1|gk,Ek} =
h(gkEk) =

(

∫

√
gkEk

−∞
1√
2π

e−t2/2dt

)b

. The battery capacity is set to
5mW and the harvested energy is chosen randomly using an
exponential distribution with µH = 1mW.

Four scenarios have been simulated. In the first two sce-
narios, the optimal solutions are obtained. In the first case,
we consider non-causal information for the harvested energy.
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Figure 3: Control cost for Scenario 1 (non-causal inf., optimal
sol; top. left), Scenario 2 (causal inf., optimal sol.; top right),
Scenario 3 (causal inf., greedy policy; bottom left), Scenario
4 (causal inf., inverted channel policy; bottom right)

The second scenario only uses causal information of the
harvested energy and dynamic programming is used to solve
the Bellman optimality equation. Scenarios 3 and 4 consider
two heuristic policies. In scenario 3 the greedy policy is used,
in which Ek = Bk,∀k. The second heuristic policy, shown
in scenario 4, is the “inverted channel policy”: Denote the
required transmission energy such that the expected drop-
out probability of the communication channel with channel
gain g is equal to a desired probability γ̄, by Eγ̄(γ̄,g). Then,
Ek = min{Bk,Eγ̄(γ̄,g)}. The control cost for all scenarios for
K = 25 (averaged over 10000 runs) is shown in Fig. 3.

The control cost increases for all scenarios as the true
channel gain decreases. Consider specially the case where the
nominal channel gain g decreases, due to the transmitter’s
belief of being under an increasingly harsh jamming attack,
whereas the true channel gain remains constant. For both
optimal solutions (Scenarios 1 and 2) the control cost increases
as the nominal channel gain decreases until g = 0.2 and
then decreases again for g between 0.1 and 0.2. This lack of
monotonicity can be explained by the structure of the optimal
solution, see Sec. IV-B. Further, due to the mismatch between
g and gtrue, the optimal solution (derived for g) performs
noticeably worse than the heuristics.

VI. Conclusions

In this paper, we have considered a closed-loop with a
remote state estimation scenario with battery constraints and
energy harvesting at the transmitter under DoS/jamming at-
tacks. Supported by the separation principle for the nominal
case without attacks, an optimal causal energy allocation
policy was characterized as a dynamic programming problem.
To shed light onto the effects of jamming attacks, the non-
causal case was analyzed, where the optimal non-causal energy
allocation policy was derived and parameterized by the future
battery usage and the current channel properties. Analyzing
this optimal non-causal policy under jamming attacks, in
which the assumed and the true channel gains differ, we

observed that the resulting control cost is not monotonic on the
assumed channel gain used in the transmission policy. Despite
this result, we have shown that, in case there exists a stabilizing
policy, then the optimal causal policy ensures stability of the
estimation process. The results were illustrated for non-causal
and causal energy allocation policies under different jamming
attacks.
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ric information and resource constrained players with applications to
security of cyberphysical systems,” IEEE Transactions on Control of

Network Systems, vol. 4, no. 1, pp. 71–81, 2017.
[10] V. Ugrinovskii and C. Langbort, “Controller–jammer game models of

denial of service in control systems operating over packet-dropping
links,” Automatica, vol. 84, pp. 128–141, 2017.

[11] A. Cetinkaya, H. Ishii, and T. Hayakawa, “Networked control under
random and malicious packet losses,” IEEE Transactions on Automatic

Control, vol. 62, no. 5, pp. 2434–2449, 2017.
[12] D. Senejohnny, P. Tesi, and C. De Persis, “A jamming-resilient algorithm

for self-triggered network coordination,” IEEE Transactions on Control

of Network Systems, vol. 5, no. 3, pp. 981–990, 2018.
[13] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S.

Sastry, “Foundations of control and estimation over lossy networks,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 163–187, January 2007.

[14] C. K. Ho, P. D. Khoa, and P. C. Ming, “Markovian models for harvested
energy in wireless communications,” in IEEE International Conference
on Communication Systems (ICCS), 2010, pp. 311–315.

[15] J. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill,
2001.

[16] S. Knorn and S. Dey, “Optimal sensor transmission energy allocation
for linear control over a packet dropping link with energy harvesting,”
in IEEE Conference on Decision and Control (CDC), 2015.

[17] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 1995, vol. 1.

[18] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless
communications with energy harvesting constraints,” IEEE Transactions

on Signal Processing, vol. 60, no. 9, pp. 4808–4818, September 2012.
[19] O. Ozel, J. Yang, and S. Ulukus, “Optimal transmission schemes for par-

allel and fading gaussian broadcast channels with an energy harvesting
rechargeable transmitter,” Computer Communications, vol. 36, no. 12,
pp. 1360–1372, 2013.

[20] D. E. Quevedo, A. Ahlén, and K. H. Johansson, “State estimation over
sensor networks with correlated wireless fading channels,” IEEE Trans.

Automatic Control, vol. 58, no. 3, pp. 581–593, March 2013.

https://documents.trendmicro.com/assets/rpt/rpt-2018-Midyear-Security-Roundup-unseen-threats-imminent-losses.pdf
https://documents.trendmicro.com/assets/rpt/rpt-2018-Midyear-Security-Roundup-unseen-threats-imminent-losses.pdf

	Introduction
	System Model
	Plant Model
	Sensor
	State Estimator at the Transmitter
	Energy Harvester and Battery Dynamics
	Communication Channel
	Estimator/Controller and Actuator in the Receiver block
	Optimisation Problem and Separation Principle

	Energy Allocation Policy
	Optimal Solution for Causal Information and Limited Battery Capacity
	Lagrangian Formulation for Non-causal Information and Unlimited Battery Capacity
	Optimal Solution for Non-Causal Information and Unlimited Battery Capacity

	Optimal Policy under Jamming Attack
	Channel model under jamming attack
	Analysis of the Optimal Solution with Non-Causal Information under Jamming Attack
	Stability Analysis for the Optimal Solution with Causal Information under Jamming Attack

	Numerical Example
	Conclusions
	References

