
1

Optimal Energy Allocation in Multi Sensor
Estimation over Wireless Channels using Energy

Harvesting and Sharing
Steffi Knorn, Subhrakanti Dey, Anders Ahlén and Daniel E. Quevedo

Abstract—We investigate the optimal power control for multi
sensor estimation of correlated random Gaussian sources. A
group of wireless sensors obtains local measurements and trans-
mits them to a remote fusion centre (FC), which reconstructs the
measurements using the minimum mean-square error (MMSE)
estimator. All sensors are equipped with an energy harvesting
module and a transceiver unit for wireless, directed energy
sharing between neighboring sensors. The sensor batteries are
of finite storage capacity and prone to energy leakage. Our aim
is to find optimal power control strategies, which determine the
energies used to transmit data to the FC and shared between
sensors, so as to minimize the long term average distortion over
an infinite horizon. We assume centralized causal information of
the harvested energies and channel gains, which are generated by
independent finite-state stationary Markov chains. The optimal
power control policy is derived using a stochastic predictive
control formulation. We also investigate the structure of the
optimal solution, a Q-learning based sub-optimal power control
scheme and two computationally simple and easy to implement
heuristic policies. Extensive numerical simulations illustrate the
performance of the considered policies.

Index Terms—multi sensor estimation, energy harvesting, en-
ergy sharing, power control, fading, Q-learning, networks

I. Introduction

Wireless sensors have become more powerful and affordable

in recent years and are used in a growing number of areas,

[1]–[4]. Often several sensors are used to construct a wireless

sensor network (WSN). Each sensor wirelessly transmits its

measurements over a network to a remote fusion center (FC),

which further processes the data, e.g., by reconstructing or

analyzing the measured sources or computing an actuation

signal. When using battery powered sensors, a significant

challenge is to spend the available power in an optimal fashion,

i.e.,“power control” or “power management”, [5]–[8].

Another promising alternative might be to harvest energy

from the sensors’ environment using, e.g., solar panels, wind-

mills, thermoelectric elements, radio frequency harvesters or

vibration harvesters. However, since harvesting is an often un-

predictable and unreliable power source and the rechargeable

batteries have limited capacity, spending the available energy

in an optimal fashion is a challenging task. Several optimal

power control policies for different system settings with energy

harvesting and optimizing a variety of performance criteria
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have been proposed. For instance, [9], [10] presented power

control policies to maximize the throughput or minimize the

mean delay or transmission completion time, respectively,

and [11] derived power control algorithms to maximize the

mutual information of a wireless link. An optimal packet

scheduling problem for a single-user system with infinite

battery and energy harvesting was investigated in [12]. The

work in [13] studied how to jointly control the data queue

and battery buffer to maximize the long-term average sensing

rate of a wireless sensor network with energy harvesting.

The problem of designing optimal sensor transmission power

control schemes under energy harvesting constraints has also

been investigated in [14].

The authors of [15] considered an energy harvesting sensor,

that sends its measurements towards a remote estimator, and

developed a communication scheduling strategy for the sensor

and an estimation strategy for the estimator that jointly mini-

mize the expected sum of communication and distortion costs

over a finite time horizon. [16] investigated a setting where

sensor measurements are wirelessly sent over an unsure chan-

nel from an energy harvesting sensor to a remote estimator.

This was extended to a closed control loop in [17].

Apart from energy harvesting, wireless energy transfer

is another promising option to overcome the limitations of

finite power resources since it allows harvested energy to be

transferred and used in larger sensor networks, where not all

sensors might be able to harvest sufficient amounts of energy

at all times. The authors of [18] showed through experiments

that energy can be transferred between two resonant objects

with efficiencies of over 50% for distances up to 2 meters.

Similar energy transfer techniques were also discussed in [19].

Building on these results, [20]–[25] investigated the benefits

of wireless energy transfer in wireless sensor systems.

A significant hurdle when using batteries or capacitors

to power wireless sensors, is the fact that these devices

are not perfect. To address such issues, capacitor leakage

aware algorithms for energy harvesting wireless devices were

developed in [26]. The approach in [27] considered a single

communication link with a hybrid power source including a

constant energy supply and energy harvesting prone to energy

leakage. A slightly different approach in [28], considered

losses when saving harvested energy in the battery but lossless

energy storing and energy retrieval from the battery.

A different line of research was taken in [29], [30], investi-

gating a multi sensor estimation problem. Via a star network,

wireless sensors report their measurements over fading chan-
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nels to a central FC, which reconstructs the random source ob-

served by the sensors. All sensors are equipped with individual

energy harvesting modules able to transfer energy via directed

wireless links to neighboring sensors. Considering a finite

time horizon, optimal power control policies for information

transmission and energy sharing were derived to minimize

the overall distortion at the FC. These results showed that

energy sharing can be particularly beneficial (and potentially

worth investing in) in case the harvesting and channel gain

characteristics differ significantly between the sensors. But

implementing such finite time solutions is difficult. Optimal

policies are time-varying and require advance knowledge of

the length of the time horizon of the application. Also,

[30] assumed perfect batteries and/or super-capacitors, inde-

pendent and identically distributed (i.i.d.) channel gains and

harvested energies and only a single point source. The present

manuscript considers more realistic scenarios by studying the

more practically relevant case of infinite time horizon power

management. This leads to a stationary power control scheme,

which can be implemented without knowing the run-time of

the application a priori. Recalculating or adapting the policy is

hence only necessary if the underlying statistics of the random

processes change, which one assumes to be infrequent. The

main contributions are as follows:

1) We investigate optimal power control schemes for infor-

mation transmission and energy sharing in multi sensor

estimation of a spatially correlated random source vector,

and minimizing a long-term average distortion cost over

an infinite horizon, with centralized causal information

at the fusion centre. We also consider Markovian fading

channels and harvested energies and allow the sensor

batteries / energy storage devices to be imperfect and

subject to energy leakage.

2) The optimal stationary power control scheme is obtained

by a stochastic control approach using a Markov de-

cision process (MDP) formulation, where the optimal

energy values for information transmission and sharing

are found by solving a Bellman dynamic programming

(DP) equation using relative value iteration, see [31].

Furthermore, some important structural properties of the

optimal solution are established.

3) Motivated by practical limitations and based on the

structural properties, we show that the optimal choice of

transmission energies is a simple threshold policy on the

sensor battery level, provided that all other variables are

fixed. We also consider a practical scenario where exact

statistical information of the underlying random processes

may not be available, and present a Q-learning algorithm,

that yields a suboptimal solution to the power control

problem at hand.

Sec. II presents the model, Sec. III studies the infinite-

horizon optimal power control problem and Sec. IV studies

the structure of the optimal solution. Three suboptimal policies

are proposed in Sec. V and VI. The performances of the

power control policies are compared by numerical examples

presented in Sec. VII, followed by conclusions in Sec. VIII.
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Figure 1: Simple system with three sensors

II. SystemModel

We consider a star-network with M sensors and an FC. Each

sensor m individually measures a signal of interest θm(k), at

discrete-time instants k ∈ {1,2,3, . . . } subject to measurement

noise. The measurements are spatially correlated between the

sensors. The remote sensors transmit their information to the

FC, which estimates the vector θ(k) = (θ1(k),θ2(k), . . . ,θM(k))T

given the measurements received. We consider an analog

amplify and forward uncoded transmission strategy subject

to additive noise, [32]. Each sensor is equipped with a local

battery/energy storage device, an energy harvester, and a unit

to transmit and receive energy from other sensors, along with a

transceiver for information transmission and reception, subject

to transmission losses. A simple system is shown in Fig. 1.

A. Source Model and Sensor Measurements

We consider θ(k) to be an i.i.d., band-limited Gaussian

process with zero mean. The measurements of the sensors are

spatially correlated such that its covariance matrix (possibly

non-diagonal) is Rθ = E

{

θ(k)θT(k)
}

. We assume that Rθ > 0

(positive definite). The measurements of sensor m, denoted

xm(k), are subject to measurement noise, nm(k), such that

xm(k) = θm(k) + nm(k) (1)

for 1 ≤ m ≤ M and k ≥ 1. The measurement noises nm(k)

are assumed to be i.i.d. Gaussian, mutually independent and

independent of θ(k) with zero mean and variances σ2
m.

B. Energy Harvester, Energy Sharing and Battery Dynamics

Each sensor is equipped with an energy harvester to gather

energy from the environment. The harvested energy at sensor

m at time k is denoted by Hm(k) and is independent of the

process θ(k) and the measurement noise but may depend on

Hn(k) for n , m. The vector of harvested energies H(k) =

(H1(k), . . . ,HM(k)) is described as a first-order homogeneous

finite-state irreducible and aperiodic Markov chain, motivated

by empirical measurements reported in [33].1 We further

1In case the harvested energies are mutually independent, each individual
Hm(k) would be described by an independent finite-state Markov chain.
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assume that the Markov chain is unichain, that is, it has a

single recurrent class and a possibly empty set of transient

states, [31]. We consider a slotted time model. For simplicity,

each time-slot is assumed to be equal to the sampling period

between two discrete sampling instants. The energy harvested

at time slot k is stored in the battery, and can be used for data

transmission to the FC or for energy sharing in time slot k+1.

The energy used to transmit data from sensor m to the FC at

time k is denoted Em(k).

Each sensor can transmit energy to neighboring sensors

and also receive energy from neighboring sensors via directed

wireless energy transfer. This can be realized, for instance, by

energy transfer between two resonant objects such as discussed

in [18], [19], laser beams, or beamforming radiowaves. The

set of neighboring sensors from which sensor m can receive

energy is denoted by NR,m and the set of neighboring sensors

to which sensor m can transmit energy is denoted by NT,m.

The energy transferred from sensor m to sensor n at time k

is denoted by Tm,n(k). The efficiency of the energy transfer

link from sensor m to sensor n, which accounts for losses in

the wireless energy transfer process, is given by ηm,n < 1.

In general, the efficiencies ηm,n can be functions of time, i.e.,

ηm,n(k). Here, we will assume time-invariant efficiencies.

Further, we assume that during each time interval, some

stored energy in the battery is lost due to leakage, [26]. Thus,

if no energy is added or used at time k, at time step k + 1

only a fraction µ ∈ [0,1] of the energy stored in the battery at

time k is available for use. Hence, using the notation above,

the dynamics of the battery level of sensor m at time k + 1 is

Bm(k + 1) =min





































Bm(k) + Hm(k) − Em(k) −
∑

n∈NT,m

Tm,n(k)

+
∑

n∈NR,m

ηn,mTn,m(k)



















µ; Bmax
m



















, (2)

where Bmax
m denotes the maximal battery capacity of sensor m.

C. Transmission Model

Each sensor has a transmitter using an analog amplify

and forward uncoded strategy.2 Hence, at each time-slot k,

sensor m transmits its measurement xm(k) amplified by a

factor of
√
αm(k). The energy needed for transmission is then

given by Em(k) = αm(k)
(

(Rθ)m,m + σ
2
m

)

where (Rθ)m,n denotes

element m,n of matrix Rθ. The channel power gain of the m-

th channel between sensor m and the FC is denoted gm(k)

and the vector of channel gains, g(k) = (g1(k), . . . , gM(k)),

is assumed to be a first-order stationary and homogeneous

finite-state Markov block-fading process. We assume that the

Markov chain is unichain and that the channel gains are

independent of the harvested energies, the process θ(k) and

the measurement noises. We further assume that, within each

block, the channel gains remain constant. For simplicity, the

duration of each fading block is assumed to be the same

2Optimality of analog transmission for multi sensor estimation of a mem-
oryless Gaussian source over a coherent multiaccess channel was shown in
[32]. Further, this scheme is very simple to implement since it does not require
complex coding/decoding, and incurs no other delay than propagation delay.

as the duration of each transmission slot. We consider an

orthogonal multiple access scheme between the sensors and

the FC. The received signal at the FC from sensor m at time k

is zm(k) =
√

αm(k)gm(k)xm(k) + ζm(k) where ζm(k) is assumed

to be i.i.d. additive white Gaussian noise with variance ξ2m.

D. Distortion Measure at the Fusion Centre

At the FC, the minimum mean-square error (MMSE)

estimator, [34], provides the vector of estimates

θ̂(k) =
(

θ̂1(k), . . . ,θ̂M(k)
)T

given the vector of received

signals z(k) = (z1(k), . . . ,zM(k))T = Hθ(k) + v(k)

with v =
(√
α1g1n1 + ζ1, . . . ,

√
αMgMnM + ζM

)T
and

H = diag
(√
α1g1, . . . ,

√
αMgM

)

. So the distortion is

D(E(k),g(k)) :=trace
(

E

{

(

θ(k) − θ̂(k)
) (

θ(k) − θ̂(k)
)T

})

=trace
(

(

H
TR−1

v H + R−1
θ

)−1
)

(3)

where E(k) = (E1(k), . . . , EM(k)) is the vector of transmission

energies and Rv = diag
(

α1g1σ
2
1 + ξ

2
1 , . . . ,αMgMσ

2
M
+ ξ2

M

)T
.

The distortion is a random process as θ(k) is a random variable.

E. Information Patterns

We consider a causal information pattern using only in-

formation of current and past channel gains and harvested

energies. Further, we consider centralized information, where

the FC has causal information of the channel gains, harvested

energies and battery levels of all sensors. This can be achieved

in practice by the FC transmitting periodic pilot signals to

the sensors at the beginning of each transmission slot, from

which the sensors estimate their channels and report back their

channel gains and previously harvested energies or current

battery levels to the FC via orthogonal control channels. We

assume the channels between the sensors and the FC are

reciprocal, such as in a time-division-duplex framework. The

FC computes the optimal power control schemes and informs

the sensors at each slot.3

III. Infinite-Time Horizon Optimal Energy Allocation

In this section, we formulate an infinite-time horizon pre-

dictive control problem subject to energy constraints (2) to

minimize the overall long-term average distortion (3) at the

FC. It is considered that only causal information is avail-

able such that the information available at time k ≥ 1 is

Ik = {g(k),H(k),B(k),Ik−1} where B(k) = (B1(k), . . . , BM(k))

is the vector of battery levels, and I1 = {g(1),H(1),B(1)}. The

information Ik is used at each time k at the FC to decide the

amount of energy used for data transmission from the sensors

to the FC, i.e., Em(k) for all m = 1, . . . ,M, and the amount

of energy transferred between sensors, i.e., Tn,m(k) for all

m = 1, . . . ,M and n ∈ NT,m. A power control policy is a set of

3The communication overhead between the sensors and the FC for reporting
channel gains and battery levels also consumes energy at the sensors. This is
not explicitly taken into account in this work. But if this energy consumption is
constant for each transmission slot, it can be taken into account by subtracting
it from the maximum battery level and defining a modified maximum battery
level for each sensor.
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functions to determine ({Em(k)},{Tm,n(k)}) : m ∈ {1, 2, . . . ,M},
and n ∈ NT,m}. A policy is feasible if the energy constraints

Em(k) ≥ 0, Tm,n(k) ≥ 0, Em(k)+
∑

n∈NT,m

Tm,n(k) ≤ Bm(k) (4)

are almost surely (a.s.) satisfied for all 1 ≤ m,n ≤ M and

k ≥ 1. The admissible control set is the set of all possible

power control policies, which are based only on Ik and do

not violate the energy constraints (4). For future reference, we

define T(k) as the matrix with entries (T(k))m,n = Tm,n(k) for

n ∈ NT,m and (T(k))m,n = 0 otherwise.

We aim to find the optimal power control scheme that

minimizes the expected average distortion measure over an

infinite-time horizon. The optimization problem is described as

the following stochastic control problem: Find a power control

policy, which determines E(k) and T(k), such that the cost

lim sup
K→∞

1

K

K
∑

k=1

E {D(E(k),g(k))} , (5)

is minimized subject to (4) being satisfied a.s. for 1 ≤ m,n ≤ M

and 1 ≤ k ≤ K, and Bm(k) satisfying (2).

The stochastic control problem (5) with centralized informa-

tion Ik can be regarded as a Markov Decision Process (MDP)

formulation {S,A,P} with state space S = {B,g,H} and action

space A = {E,T}. The transition probability from state S to S′
under actionA, i.e., P(S′|S,A) can be derived from the battery

dynamics (2) while considering the Markov chains describing

the channel gains and harvested energies. See [31], [35].

To simplify notation, denote g = g(k), H = H(k), B = B(k),

E = E(k) and T = T(k), as well as g̃ = g(k + 1), H̃ = H(k + 1)

and B̃ = B(k + 1). Under the given assumptions, the existence

of a stationary optimal power control policy computed offline

from a Bellman DP equation follows:

Theorem 1. Suppose a unichain power control policy4 exists

and consider the average-cost optimality Bellman equation

ρ + V(g,H,B) =min
E,T

{

D(E,g) +E
{

V
(

g̃,H̃,B̃
∣

∣

∣ g,H,E,T
)}}

(6)

where E and T satisfy (4) and V is the relative value function.

Then the infinite-time horizon stochastic control problem (5)

has a unique solution. Further, if the set of possible policies

includes at least one policy under which energy is used for

data transmission or transferred to neighboring nodes, such

that the associated Markov chain of battery levels is unichain,

then the value of the infinite-time horizon stochastic control

problem (5) is given by ρ, which is the unique solution of

(6). The optimal average cost ρ is independent of the initial

conditions g(0), H(0) and B(0).

Proof. Since it is assumed that the Markov chains of the

harvested energies and the channel gains are unichain and that

a stationary unichain policy exists, it can be shown that (6)

has a unique solution by following similar steps as in [36,

Chap. 4.2, Prop. 2.5]. Then, by [36, Chap. 4.2, Prop. 2.6], the

solution of (6) is independent of the initial state. �

4A unichain policy is a stationary policy under which the associated Markov
chain has a single recurrent class, that is, all states are visited an infinite
number of times with probability 1.

Remark 1. The stationary optimal solution to (5) is given by

{Eo(g,H,B),To(g,H,B)}
= argmin

E,T

{

D(E,g) +E
[

V(g̃, H̃, B̃)|g,H,E,T
]}

(7)

such that E and T, which satisfy the energy constraints (4)

with battery dynamics (2) for all m, and V constitutes the

solution to the average cost Bellman equation (6).

The Bellman equation (6) can be solved using the relative

value iteration algorithm, [31]. In order to facilitate the numer-

ical computation, the state and action space are discretized, in

particular the battery levels and the power level space. It is

expected that the solution of the discretized Bellman equation

approaches the solution of the continuous valued Bellman

equation as the number of discretization levels grows [37].

IV. Structural results of the optimal energy allocation

policy

In this section, we investigate the structure of the optimal

energy allocation solution. Given that V is convex in B (see

[29], [34]), it will be shown that, if all other decision variables

such as the shared energies Tm,n for all m and n and the

transmission energies En for all n , m have been set, then

the optimal transmission energy Em is non-decreasing in Bm:

Theorem 2. Given g, H, T as well as Bn and En for all

n , m, the optimal transmission energy allocation policy Eo
m

is non-decreasing in Bm.

Proof. First, we define the right hand side of (7) for fixed g,

H, T as well as Bn and En for all n , m

L(Em,Bm) := argmin
0≤Em≤Bm

{

D(E,g) + E
[

V(g̃, H̃, B̃)|g,H,E,T
]}

. (8)

Hence, the transmission energy of the single sensor m, i.e.,

Em, is only constrained by the local battery level Bm and L in

(8) is only a function of Em and Bm.

To show that Eo
m is non-decreasing in Bm, it is sufficient to

show that (8) is submodular in (Em,Bm), as defined in [38], as

L(E′m,B
′
m)+L(Em,Bm) ≤ L(Em,B

′
m)+L(E′m,Bm) for all B′m ≥ Bm

and E′m ≥ Em. The first term of the right hand side in (8) is

independent of the battery levels B and thus submodular in

(Em,Bm). Define x = (x1,x2, . . . ,xM)T with xm = Bm − Em for

all m, χ = (χ1,χ2, . . . ,χM)T with χm = min{(Bm − Em + Hm −
∑

n∈NT,m
Tm,n +

∑

n∈NR,m
ηn,mTn,m)µ; Bmax

m } for all m, and denote

the last term in (8) as Z(xm) := E

[

V(g̃, H̃, χ|g,H,E,T
]

. Since

V is convex in Bm as shown in [29, Lem. 5.1], and hence Z(x)

is convex, this is equivalent to Z(x+ ǫ)−Z(x) ≤ Z(y+ ǫ)−Z(y)

for all x ≤ y and ǫ ≥ 0. Setting x = Bm − E′m, y = Bm − Em

and ǫ = B′m − Bm, yields Z(B′m − E′m) − Z(Bm − E′m) ≤ Z(B′m −
Em)−Z(Bm−Em), which shows submodularity of L in (Em,Bm).

Submodularity implies that given g, H, T and Bn and En for

all n , m, the optimal transmission energy Em is hence a

nondecreasing function of the battery level Bm. �

The result above is particularly useful for practical cases

where the transmission energies E at the power amplifier may

only take values from a small finite set. In fact, a wireless

sensor is often only able to transmit at a low power Elow (or
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not at all, i.e., Elow = 0) or a high power Ehigh > Elow. Then,

it can be shown that for such cases, a threshold policy exists:

Corollary 1. Given g, H, T as well as Bn and En for all

n , m, if Em is restricted to take values from the finite set

Em ∈ {Elow,Ehigh}, there exists a threshold B∗m > 0, such that

Eo
m(g,H,B) =















Elow if B < B∗m
Ehigh if B ≥ B∗m

. (9)

Proof. The result follows directly from the fact that Eo
m is

non-decreasing in Bm, Theorem 2. �

It should be noted that the above result is not only limited

for Em(k) taking one of two values. Indeed, in case Em(k) takes

values from a larger discrete set, e.g., Em(k) ∈ {0,Elow,Ehigh},
two or more thresholds would exist instead of one to separate

the energy levels.

Threshold based policies for Em(k) taking values from a

discrete set greatly reduce the search space to find the optimal

policy. No analytical expressions for the optimal thresholds ex-

ist, but several grid search techniques combined with stochastic

optimization based iterative algorithms can be used, see e.g.

[16] and especially the simultaneous perturbation stochastic

optimization (SPSA) gradient algorithm in [29, Algorithm 1

in Section V.A]. In particular, this algorithm can be applied

to find locally optimal thresholds B∗m with minor adaptations

to the appropriate distortion cost function. Similarly, it can

be also shown that there exists a threshold policy for the

transferred energy Tm,n, if all other variables are fixed.

V. Q-Learning

Solving the Bellman equation (6) requires full knowledge

of the underlying transition probability matrix P. In practice,

the transition probabilities of the Markov process generating

the channel gains and the harvested energies may not be

perfectly known. In this case, the optimal power control

cannot be determined by solving the Bellman DP equation

presented in the previous section. Hence, finding suboptimal

algorithms, which do not rely on the complete knowledge

of the underlying system, is an important task. In case the

state, S, and action space, A, are discrete or discretized

(that is, the channel gains, the harvested energies, the battery

levels and the allocated energy usage and energy transfer

values belong to finite-discrete sets) and the fading channels

and harvested energies are independent finite-state Markov

chains, the average-cost optimality Bellman equation (6) can

be simplified to the Q-Bellman equation [39]

Q∗(g,H,B,E,T) = D(E,g) (10)

+
∑

g̃,H̃,B̃

P(g̃|g)P(H̃|H)P(B̃|B,H,E,T) min
Ẽ,T̃∈A(B̃)

Q∗(g̃,H̃,B̃,Ẽ,T̃)

where Ẽ or T̃ are the chosen values for E or T at the next

time step, respectively, and A(B̃) is the set of all feasible

choices of Ẽ or T̃ given B̃. The iterative learning algorithm

referred to as Q-learning, approximates the average cost for

a given set of states and actions, i.e., Q, by adjusting its

value according to the recent observed cost, which is here

the distortion D. See also [39] and [40], for more details on

the stochastic approximation Q-learning algorithm. Assuming

that the probabilities P(g̃|g), P(H̃|H) and P(B̃|B,H,E,T) are

unknown we obtain

Q1(g,H,B,E,T) = 0 for all g,H,B and E,T ∈ A(B) (11)

and for all k ≥ 1

Qk+1(g,H,B,E,T) = Qk(g,H,B,E,T)

+ γ(k)

(

D(E,g) + min
Ẽ,T̃∈A(B̃)

Qk(g̃,H̃,B̃,Ẽ,T̃) − Qk(g,H,B,E,T)

)

where {g̃,H̃,B̃,Ẽ,T̃} is the next state after {g,H,B,E,T} when

E,T ∈ A(B) is selected according to the ǫ-greedy method:

{E,T} =














argminE,T∈A(B) Qk(g,H,B,E,T) with prob. 1 − ǫ
chosen randomly ∈ A(B) with prob. ǫ

The algorithm converges to the optimal Q values if the step

sizes γ(k) for all k ≥ 1 satisfy γ(k) > 0,
∑

k γ(k) = ∞ and
∑

k γ
2(k) < ∞, [39], [40]. Note that convergence is guaranteed

for all ǫ > 0. A small value of ǫ is usually preferred as it

allows to better exploit the knowledge of which choice of E

and T leads to the minimal expected cost.

VI. Heuristic policies

The proposed solutions to find power control policies by

finding the optimal solution via (6) or solving the iterative

learning algorithm (10), require a considerable computational

effort and time. Even if the FC has sufficient energy resources,

it may in practice be beneficial to find simple, suboptimal

policies, that require less computational effort and time.

A. Heuristic 1: Modified greedy policy

A very simple policy is the greedy policy, where each sensor

just uses all available energy to transmit its data to the FC.

Hence, Em(k) = Bm(k) for all m independently of the channel

gain or any other states. When implementing this policy, there

is a considerable risk of not having any energy available to

transmit data from some sensor m to the FC at some time k

if no energy has been harvested in the previous step. Thus,

the greedy policy is slightly modified such that Em(k) = Bm(k)
2

,

which ensures that at each time step, some energy is available

to transmit data from every sensor to the FC, if Bm(0) > 0 ∀m.

B. Heuristic 2: Ad hoc policy

Inspired by our previous contribution [30], assume a simple

system with two sensors, where the agents can share energy

and have access to full causal information: the maximum

battery level, mean channel gains and harvested energies,

energy transfer efficiencies and current channel gains and

battery levels.5 Aiming to minimize the overall distortion at the

FC, leads to the problem described in [30], for which necessary

optimality conditions are derived. Those have to be simplified

in order to reduce the computational complexity and to require

5Note that in case of Markovian channel gains or harvested energies, the
mean channel gains ḡ1 and ḡ2 and the mean harvested energies H̄1 and H̄2 are
calculated as the dot product of the channel gain levels or harvested energy
levels, respectively, and the corresponding stationary distribution.
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only causal information. The simplified necessary conditions

for using energy for data transmission to the FC (E1(k) ≥ 0),

for storing energy in the battery for future use (F1(k) ≥ 0) and

for transferring energy to sensor 2 (T1,2(k) ≥ 0) are as follows:

E1(k) ≥ 0 if g1(k) ≥ ḡ1 and g1(k) ≥ η1,2ḡ2 (12)

F1(k) ≥ 0 if ḡ1 ≥ g1(k) and ḡ1 ≥ η1,2ḡ2 (13)

T1,2(k) ≥ 0 if η1,2ḡ2 ≥ g1(k) and η1,2ḡ2 ≥ ḡ1 (14)

In case of unlimited battery capacity, these simplified neces-

sary conditions could be used to allocate the energy at time

step k. However, since both batteries have limited capacities,

storing all energy at time k or transferring all energy from

sensor 1 to sensor 2 at time k might be undesirable despite

the necessary conditions (13) or (14) being satisfied because

it could lead to preventable battery overflow. Instead of deter-

mining the power control policy solely based on the necessary

conditions, all three options (data transmission, storage, energy

sharing) are prioritized and energy is then allocated accord-

ingly with the aim to minimize battery overflow:

(i): Denote the available power, that is available at sensor

1 at time k by B̄1 = B1(k). Then, prioritize the three possible

energy usage alternatives, i.e., data transmission E1(k), storage

F1(k) and energy sharing T1,2(k), by sorting g1(k), ḡ1 and η1,2ḡ2

from highest to lowest.6 In case g1(k) = ḡ1 or g1(k) = η1,2ḡ2,

using energy for data transmission has higher priority than

storing energy or transferring it to sensor 2, respectively.

In case ḡ1 = η1,2ḡ2 storing energy has higher priority than

transferring it to sensor 2. Then allocate B̄1 accordingly.

(ii): If transmitting data to the FC is the next highest priority,

use all remaining energy to transmit data to the FC. (Thus, no

energy is allocated to a task with a lower priority.)

(iii): If storing energy has the next highest priority, energy

should be stored. To avoid battery overflow (i.e., energy

waste), one should never store more energy than necessary

to fill the battery to its maximal capacity minus the mean

harvested energy: F1(k) = min
{

max
{

Bmax
1

(k) − H̄1; 0
}

; B̄1

}

. In

case there is more energy available in the battery than should

be stored, the remaining energy should be used according to

the next following priority, i.e., following the instructions in

(ii) or (iv) and setting B̄1 → B̄1 − F1(k).

(iv): If transferring energy to sensor 2 has the next

highest priority, transfer as much energy to sensor 2 to

have its battery full for the next time step. To avoid bat-

tery overflow, no more energy should be transferred than

the battery capacity minus the mean harvested energy of

sensor 2. Therefore, T1,2(k) for η1,2 > 0 is equal to

min
{

max
{(

Bmax
2
− B2(k) + E2(k) − H̄2

)

/η1,2; 0
}

; B̄1

}

. If η1,2 =

0, then T1,2(k) = 0. In case there is more energy in the battery

than should be transferred, the remaining energy should be

used according to the next following priority, that is, following

(ii) or (iii) and setting B̄1 → B̄1 − T1,2(k).

Remark 2. This heuristic policy favors transmitting data to

the FC if the current channel gain is higher than the mean

since then it is beneficial to minimize the overall distortion by

6For instance, if ḡ1 > g1(k) > η1,2ḡ2, storing energy has the highest priority
followed by data transmission to the FC; and transferring energy to the second
sensor has the lowest priority.

transmitting data whenever the channel gain is better than the

mean. In contrast, if a lot of energy is available due to higher

mean harvested energy, then increasing the energy for data

transmission further in case of high channel gains leads to only

a small reduction of the distortion. It would be better to store

energy to be able to transmit data at time steps with poorer

channel gains. This simple policy cannot distinguish between

these two fundamentally different scenarios. It is designed to

work well for scenarios with overall little energy availability

but maybe not as good when higher amounts of energy.

VII. Simulation Examples

Example 1 (Effect of Cross Correlation). A system with

two sensors is simulated with η1,2 = η2,1 = 0.8, µ = 0

(no leakage), Bmax
1
= Bmax

2
= 4mWh and Rθ = (1, ϕ;ϕ,1),

where ϕ is the cross correlation between the measurements

θ1 and θ2 and is varied between 0 and 0.9. The chan-

nel gains and harvested energies are modeled as 3-level

discrete Markov chains with the common transition matrix

T = [0.2, 0.3, 0.5; 0.3, 0.4, 0.3; 0.1, 0.2, 0.7]. We consider the

‘balanced case’, where the state space for g1 and g2 is {0,0.5,1}
and for H1 and H2 is {0,1,2}, and the ‘unbalanced case’, where

g2 and H1 are 4 times lower than g1 and H2, respectively.

To facilitate the implementation of the DP and the Q-

learning algorithm, the space for the battery levels and the

power levels for data transmission or energy transfer were

quantized uniformly with 16 levels. The discretization of the

decision variables leads to numerical inaccuracies, which can

be addressed by averaging the results over a sufficiently long

time span. The Q-learning algorithm was evaluated by the use

of two different training time horizons, i.e. 104 and 106, respec-

tively, and with ǫ = 0.1. After calculating the corresponding

Q-values for both training horizons, the performance of the

algorithms were evaluated for a given simulation time span

by using the Q-values as a look-up table to determine the best

choice of E and T without adapting Q-values further. Third,

the heuristics described in Section VI were implemented.

The average distortion and the energy usages for a sim-

ulation time span of 104 time steps for the optimal solu-

tion (‘DP’), the Q-learning algorithm with the training time

horizons 104 and 106 (‘Q1’ and ‘Q2’, respectively), and the

heuristics (‘h1’ and ‘h2’) are illustrated in Fig. 2. Increasing

the cross correlation term ϕ leads to an overall reduced

distortion. As expected, the average distortion is the smallest

for the optimal algorithm (‘DP’). The performance of the Q-

learning algorithm is quite poor if a short training time horizon

of 104 time steps is used (‘Q1’) but improves for the training

horizon 106 (‘Q2’). Also, the modified greedy policy (‘h1’)

performs almost as good as the optimal solution (‘DP’) for

the balanced case, but the ad hoc heuristic (‘h2’) outperforms

the modified greedy policy in the unbalanced case.

Example 2 (Effect of Energy Transfer Efficiency). The system

settings from Example 1 were modified as follows: ϕ = 0.2

and η = η1,2 = η2,1 varies between 0 and 1. See Fig. 3.

In the balanced case, the average distortion hardly decreases

when increasing the energy transfer efficiency despite the

increase of average energy transferred between the sensors. In
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Figure 2: Example 1: average distortion (left) and average

energy usage (right, (E1+E2)/2 in red, (T1,2+T2,1)/2 in blue),

vs. cross correlation term ϕ for the ‘balanced case’ (top) and

the ‘unbalanced case’ (bottom)
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Figure 3: Example 2: distortion (left) and average energy usage

(right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in blue), vs. energy

transfer efficiency η for the ‘balanced case’ (top) and the

‘unbalanced case’ (bottom) for low cross correlation

the unbalanced case, the average distortions obtained for the

optimal solution (‘DP’) and the Q-learning (‘Q2’) decrease

for higher η. Again, the modified greedy policy (‘h1’) is more

suitable for the balanced case while the ad hoc heuristic (‘h2’)

achieves better results in the unbalanced case.

Example 3 (Effect of Battery Leakage). The system settings

are similar to the examples above with ϕ = 0.8 and η = 0.8.

The battery leakage parameter µ is varied between 0 (no

leakage) to 0.5. The simulations in Fig. 4 show that a higher

battery leakage parameter µ leads to an increase in the average

distortion. It is also evident that energy sharing offers more

benefits in the unbalanced case compared to the balanced

scenario. If the energy loss due to battery leakage increases,
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Figure 4: Example 3: distortion (left) and average energy

usage (right, (E1 + E2)/2 in red, (T1,2 + T2,1)/2 in blue), vs.

battery leakage factor µ for the ‘balanced case’ (top) and the

‘unbalanced case’ (bottom)

then the energy shared among the sensors approaches the

average amount of energy used for data transmission. As

in the examples above, the modified greedy policy (‘h1’)

is outperformed by the ad hoc policy (‘h2’) in case of

unbalanced networks. In case of balanced networks, the ad

hoc heuristic (‘h2’) outperforms the modified greedy policy

(‘h1’) for sufficiently high battery leakage despite the ad hoc

policy being developed for systems without battery leakage.

Through these simulations, it becomes clear that the optimal

predictive power control scheme outperforms all suboptimal

power control algorithms. Also, when considering energy

sharing between neighboring sensors by increasing the energy

transfer efficiency, the overall distortion decreases, which

indicates the usefulness of energy sharing. But how much the

overall distortion can be reduced when implementing the opti-

mal power control solution compared to suboptimal schemes,

or when enabling wireless energy transfer, significantly de-

pends on the system settings. If the system is balanced, little

can be gained from applying the optimal power control or

enabling wireless energy transfer. Implementing the simple

modified greedy policy yields almost the same distortions

as the optimal solution. In unbalanced systems, the ad hoc

heuristic outperforms the modified greedy policy.

VIII. Conclusions

This paper studied the distortion minimization problem of a

multi sensor system, where each sensor transmits its measure-

ment to a FC over a fading channel for remote estimation at the

FC. Based on causal information, the FC computes the optimal

predictive power control policy to minimize a long term

average distortion cost given that (i) the batteries at the sensors

have a limited capacity and are prone to energy leakage, (ii)

the sensors can harvest energy from their environment, and

(iii) the sensors are able to wirelessly share energy with their
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neighbors subject to losses. Harvested energies and channel

gains are modeled as finite-state Markov chains.
The optimal solution is obtained via a stochastic predictive

control approach resulting in a Bellman DP equation. A

suboptimal Q-learning algorithm, which does not require a

priori knowledge of system parameters, is studied and two

heuristic power control policies are also presented. Simu-

lations reveal that the average distortion decreases as the

cross correlation and the energy transfer efficiency increase.

In most scenarios, the optimal solution clearly outperforms

the sub-optimal policies. It can be seen that an increase in

energy transfer efficiency and an increase in cross correlation

have a significantly higher impact on the average distortion

if the system is unbalanced, that is, if one sensor has a

substantially higher average harvested energy and a poorer

channel compared to its neighbor.
The results in this paper reveal important insights into

wireless sensor networks with energy harvesting and energy

sharing. Even for simplistic network settings, the optimal

energy allocation policy is far from trivial. Indeed, the findings

presented here provide a benchmark for more complicated

network topologies.
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