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Abstract
Remanufacturing represents a key strategy for the management of end-of-life products, with the potential to promote a
circular economy. However, its implementation has been limited due to the labour-intensive and time-consuming nature
of the disassembly processes required for component remanufacturing. The disassembly process has to cope with further
uncertainties. The quality of the cores is often unknown, which can result in fluctuating processing times and random failures
of cores or components during disassembly, due to damage. These uncertainties can have a significant impact on both on-time
delivery and component service levels, both of which are costly and difficult to optimise simultaneously. In pursuit of multi-
objective optimization, a novel reinforcement learning (RL) framework based on the Proximal Policy Optimization (PPO)
algorithm has been formulated to inform decision-making processes during the disassembly process. Two distinct categories
of RL agents have been developed to facilitate collaborative decision-making, namely one type for core decision and a
second type for component decision. Furthermore, diverse configurations for merging these two types of RL agents have been
explored. The approach aims to enable real-time decision-making during disassembly, potentially providing companies with
an economic advantage. We compare our approach to heuristic control methods and the Deep-Q-Network (DQN) algorithm
and prove the potential of the RL approach using the PPO algorithm through various test cases. Based on the reward function
developed, the approach using the PPO algorithm received an approximately 12% higher reward than the DQN algorithm.
In comparison to the Basic heuristic, it received an 22% higher reward and a 4% higher reward than the One Disassembly
heuristic. This significantly increases adherence to on-time delivery and the service level. Simulations also demonstrate that
the RL agent types can adapt to changing state values, resulting in high adaptivity and scalability.
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• Decision making in disassembly process is challenging
due to uncertainties in used products

• Current literature considers deterministic conditions.
• Our work proposes a Reinforcement Learning based
decision-making for complete disassembly process con-
sidering uncertainties.

• The proposed technique considers conflicting optimisation
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• Our approach receives an 22% higher reward than basic
heuristic, 12% higher than with the DQN algorithm, and a
4% higher reward than the One Disassembly heuristic.

Introduction

Due to the world’s increasing population and environmen-
tal concerns, many countries have regulations that require
original equipment manufacturers (OEMs) to take back used
products fromconsumers at the end of their lifecycle.Reman-
ufacturing or reusing materials and functional components
from used products can be a better alternative than disposal
and can also provide financial benefits (Tuncel et al., 2014).
Other business objectives that may be pursued from the
company’s perspective include reducing production costs,
securing the aftermarket, establishing an environmentally
conscious corporate image, meeting increasing customer
demand for eco-friendly products, or simply reducing envi-
ronmental impact (Fleischmann et al., 1997; Toffel, 2004).

Motivation

Remanufacturing is an industrial practice that aims to restore
worn-out products to their original or near-original condition.
This is achieved through a series of industrial processes. The
initial stage is a pre-cleaning and analysis, which is followed
by disassembly. Subsequently, the disassembled components
are subjected to an inspection, after which those that are fit
for rework are passed on to that process. Subsequently, the
components are subjected to reworking, cleaning and storage
in inventory. Finally, a combination of remanufactured and
new components are used to reassemble the product, result-
ing in a unit that matches or exceeds the performance and
expected life of the original new product (Lund, 1984).

Nevertheless, remanufacturing has only been partially
implemented, primarily due to the time-consuming disas-
sembly processes that are required in order to retrieve the core
components from the returned products. The current domi-
nance of manual labour within the remanufacturing value
chain serves to undermine its economic feasibility (Cong
et al., 2019; Ong et al., 2021). In the context of an increas-
ing diversification of product variants, the role of human
operators remains crucial, particularly in operations that are
predominantly manual (Vongbunyong, 2015). The disassem-
bly process has a significant influence on the reuse rate of
components, the quality of recovered parts, and the cost of
remanufacturing (Tuncel et al., 2014).

Recovery profit can decrease because the disassembly pro-
cess is highly unpredictable. This is caused by the variability
in product type, quantity and quality, as well as the condition

of the cores and the lack of robust decision-making at the
operational level. This unpredictability gives rise to a con-
siderable degree of volatility in the remanufacturing systems.
The quality of cores is uncertain due to the effects of wear
and tear that occur over the lifetime of the cores, which can
result in degradation, aging, and other forms of deprecia-
tion (Wurster et al., 2022). The functionality and physical
properties of retired products often vary significantly and are
subject to uncertainty. These variations may manifest as cor-
rosion, looseness, or the unexpected presence of defective
components (Meng et al., 2022). The act of disassembling
these items may give rise to a number of difficulties, many
of which are related to quality issues. These are discussed in
further detail below:

(1) Disassembly processing time variation influencing on-
time delivery (OTD) The quality of the cores collected
for disassembly represents a significant challenge in the
disassembly process. This has a direct impact on the
type and duration of disassembly operations that are
required (Wurster et al., 2022). The processing time for
each component per quality category at the disassembly
station has an impact on the ability to deliver on time.

(2) Ensuring an optimal service level (SL) despite uncer-
tain core quality A well-designed stock management
system is crucial for a disassembly system to bal-
ance the service levels of remanufactured components.
This requires a thorough understanding of component
demand patterns, which can inform decisions about the
stock’s component quantities (Wurster et al., 2022). The
unpredictable quality of components introduces an addi-
tional layer of complexity to stock management, as they
are subject to failure at random.

The disassembly process is complex due to conflicting
objectives and influences the productivity of the remanu-
facturing production (Paschko et al., 2023). To illustrate, a
low-quality core will require a greater processing time and
may have an adverse effect on on-time delivery, whereas dis-
assembling other components may have a beneficial impact
on service levels. The complexity of this process is further
compounded by the requirement to make decisions under
time constraints and the uncertain nature of used products.
This makes the automation of decision-making a challenging
task.

Background on disassembly control strategies

In recent years, there has been a notable increase in research
activity concerning the disassembly process and its eco-
nomic benefits for material recovery (Tuncel et al., 2014).
To address the complex nature of returned products in the
disassembly process, researchers have developed various
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decision-making methods, as conventional approaches may
prove ineffective in such cases (Rizova et al., 2020). Despite
the extensive research that has been conducted in this field,
studies frequently concentrate on specific aspects of disas-
sembly decision-making. The decision-making methods that
have been developed can be applied to a number of different
disassembly problems:

• Disassembly line balancing problem (DLBP): DLBP was
originally introduced by Gungor and Gupta (1999), who
used a heuristic approach with a priority function to solve
simple DLBPs, where the goal is to balance the disas-
sembly line by determining the most efficient sequence
of disassembly tasks with the minimum number of work-
stations possible and minimising the idle time between
them (Gao et al., 2020; Guo et al., 2021, 2022; Liang
et al., 2022; Wang et al., 2020). Tuncel et al. (2014) intro-
duced a Monte-Carlo based RL approach to solve the
DLBP. The study aimed to apply RL techniques to DLBP,
investigate their efficiency and effectiveness compared to
existing methods, and incorporate stochastic elements to
handle dynamic environments. The results showed that
the proposed method performed well on a large complex
problem and outperformed benchmark methods reported
in the literature. Several studies have investigated inven-
tory KPIs such as time targets, inventory levels and
component salvage values to manage disassembly uncer-
tainties. For example, Reveliotis (2007) explores the use
of neuro-dynamic programming for uncertainty manage-
ment and modelling, where the agent determines the level
of disassembly. Paprocka and Skolud (2022) studied the
disassembly system to balance line efficiency and profit by
predicting disassembly time and product quality based on
historical data. Similarly, Riggs et al. (2015) proposed a
method with multiple quality classes for end-of-life prod-
ucts to accurately account for varying task times in the
disassembly line. The paper by Mei and Fang (2021)
presents a study on using DRL to solve the DLBP in
multi-robot disassembly lines, which involves optimising
multiple objectives such as minimising idle time, pri-
oritising high demand components and reducing energy
consumption.

• Disassembly planning and control problems: Wenzel and
Peter (2017) mentioned, that decisions should be made
dynamically and individually for each operation. The
authors introduce a dynamic control system for a man-
ual disassembly line, which enables a simulation-based
optimisation of operations. The system allows for the
adjustment of disassembly operations or methods at each
station, as well as the transfer of operations to subsequent
stations. In Stecke et al. (1981) and Xanthopoulos et al.
(2016), the stations are afforded the ability to select the
subsequent order to be processed from a set of pending

orders. The selection is made in accordance with priority
rules. Stecke et al. (1981) conclude that the effectiveness
of priority rules is contingent upon the system configu-
ration, while Xanthoplous et al. (2016) emphasize that a
combination of rules yields optimal results. In Wurster
et al. (2022), a dynamic control logic is proposed for agile
hybrid disassembly systems. The proposed methodology
aims to achieve a balanced allocation of disassembly tasks
between a flexible robot and a human operator, taking
into account the varying quality conditions of discarded
products. The approach is based on Deep Q-Learning,
which has demonstrated the potential to reduce opera-
tional failures and operational costs, and systemmake span
when compared with a priority rule heuristic. Zhang et al.
(2023) proposed an improved artificial bee colony algo-
rithm to jointly optimise process planning and scheduling
in flexible job-shop remanufacturing systems, demonstrat-
ing enhanced solution quality and robustness compared to
conventional metaheuristics. DiWang et al. (2024) applied
a deep reinforcement learning approach to energy-aware
disassembly planning by combining manual and stimuli-
triggered self-disassembly. The study showed promising
results in terms of balancing profitability and energy effi-
ciency, particularly under uncertain conditions.

• Disassembly Sequencing Planning (DSP): There has been
a significant focus on DSP (Feng et al., 2019; Ren et al.,
2020; Xu et al., 2020), which aim to determine the opti-
mal disassembly sequences for a give product. Due to
the complexity of determining the correct sequence, it
is considered an NP-hard problem (Liu & Zhang, 2021).
Prioritising the early disassembly of hazardous and high-
demand components has been a common strategy in
various solution approaches to the DSP, as discussed
by Tuncel et al. (2014). In their study, Liu and Zhang
(2021) observe the use of different techniques, such as
genetic algorithms and heuristics, to find optimal solu-
tions for the DSP (Liu & Zhang, 2021). Several studies
have investigated the use of machine learning and neural
networks for disassembly sequence generation. Bi et al.
(2022) proposed a Q-learning technique to optimise selec-
tive disassembly sequences and maximise disassembly
profit. Mao et al. (2023) proposed an adaptive disas-
sembly sequence planning method using DRL and Deep
Q-network (DQN) methods. The DRL method was found
to be effective in solving dynamic and stochastic prob-
lems. The proposed method was tested with experiments
and showed great potential in use cases where the failure
is uncertain.

In terms of implementation, an assembly sequence plan-
ning system for workpieces (ASPW) was proposed in Zhao
et al. (2019), where Deep Reinforcement Learning (DRL)
was adopted in the case of sparsity rewards and lack of
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training environments. Altenmüller et al. (2020) developed
a self-learning agent for order dispatching in a complex job
shop with time constraints using a Q-learning algorithm and
discrete event simulation. They combined RL in production
control and applied it to a real use case in semiconductor
manufacturing. Kuhnle and Lanza (2019) discuss the poten-
tial use of RL in production planning and control. They note
that production complexity has increased due to increas-
ing product variety, decreasing quantities, and higher quality
requirements. Reinforcement learning has also been applied
in remanufacturing for adaptive visual inspection planning,
where Kaiser et al. (2024) demonstrated that RL agents can
effectively determine optimal viewpoints without relying on
completeCADmodels, achieving high surface coveragewith
minimal scans There is increasing interest in usingRL to con-
trol and schedule conventional production facilities (Cunha
et al., 2020; Kuhnle et al., 2021). Paschko et al. (2023)
highlights that static control strategies for material release,
such as CONWIP, lead to efficiency losses when applied to
highly uncertain disassembly environments. They propose
using an adaptive control logic based on RL that incorporates
real-time system information for better performance.Reman-
ufacturing lacks a robust decision-making strategy that can
significantly improve performance under such uncertainties
(Hoffmann et al., 2025). Hoffmann and Knorn (2024) pro-
posed a dynamic optimisation model for resource allocation
that accounts for failure occurrences, system versatility, and
adaptive learning behaviour.

While progress has been made in disassembly decision
making, significant research gaps and challenges remain.
Existing research often focuses only on specific aspects.
Rizova et al. (2020) identified disassembly decision mak-
ing that deals with conflicting objectives and multi-objective
optimisation, as well as an integrated approach that considers
the uncertain characteristics of returned products, as impor-
tant research gaps.

Due to the large number of different disassembly system
configurations, a wide variety of challenges can be addressed
and analysed accordingly. In the works, where core quality
was considered, it was known in advance,which is not always
the case in practice. It has traditionally been the case that
researchers have utilised dynamic programming for the pur-
pose of solving control problems. However, the applicability
of such techniques is limited due to their inherent inability
to analyse large state spaces. Consequently, these techniques
are not recommended for use in the context of complex opti-
misation problems, which often involve a significant number
of states and variables. In order to address this issue, Sut-
ton and Barto (2020) have proposed the implementation of
RL methods that are capable of solving multi-dimensional
optimisation problems without the need for detailed manu-
facturing system models.

In summary,while traditional optimization algorithms like
Gravitational Search Algorithm (GSA) and Improved Parti-
cle Swarm Optimisation (IPSO) struggle with the dynamic
nature of our use case, RL stands out by effectively adapting
to real-time data and optimising key performance metrics,
making it a robust and scalable solution for modern supply
chain and production challenges (Heuillet et al., 2021). How-
ever, the use of RL in the field of disassembly is limited by
several difficulties: (1) no uniform base environment, result-
ing in significant variations for the same problem; (2) the
division of basic elements such as states and actions can lead
to a loss of information.Thedisassembly line system involves
complex variables and constraints, making the selection of
an appropriate algorithm a serious challenge. There is cur-
rently no standardized comparison index, as is used in deep
learning for RL, whichmakes it difficult to compare different
studies (Guo et al., 2023).

Contribution

The manuscript introduces a novel approach to autonomous
decision-makingwithin the disassembly process. The system
has been designed to accommodate a range of core quali-
ties, product variations and inherent uncertainties that can
affect production outcomes. At the centre of this approach
lies the utilisation of RL agents, which facilitate autonomous
decision-making. The contribution of the paper can be sum-
marised as follows:

• Novel RL agent framework: We present a RL agent
framework where separate RL agents independently make
decisions at both the core and component levels. This
architecture enhances decision granularity, enabling better
alignment with operational objectives.

• Optimisation of critical performance metrics: By employ-
ing the PPO algorithm, the proposed framework prioritizes
optimisation of OTD and SL metrics. These outcomes are
critical for the efficient functioning of dynamic disassem-
bly environments.

• Scalability and adaptability: The approach demonstrates
scalability to larger and more complex product configu-
rations through simulation tests. The framework’s adapt-
ability allows it to handle uncertainties related to core
quality, variable disassembly processing times, and fluc-
tuating demand profiles.

• Comparison with baselines: We validate the performance
of the proposed system through comparative studies with
heuristics and DQN approaches, demonstrating superior
results in OTD and SL metrics.

• Practical application: Themethodology aligns closelywith
real-world remanufacturing constraints, making it feasible
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Fig. 1 Remanufacturing process steps, uncertainties and production objectives including decision flow of one core disassembly process including
the core agent type and the component agent type

for practical deployment.Detailed case studies illustrate its
potential for industrial-scale implementation.

The following different types of RL agents have been
developed: the core agent type and the component agent
type. The core agent decides whether to proceed with dis-
assembling the entire core or stop after processing specific
components. This has an impact on all the remaining compo-
nents of the core. The component agent is solely responsible
for decidingwhether to disassemble a component and rework
it or to disassemble the component and proceed with its
disposal. It should be noted that the decision made by the
component agent type has no impact on the other remain-
ing components of the core. Both RL agent types are only
activated upon the request for a decision and subsequently
deactivated.

The parameters applied were derived from an empirically
grounded simulation model that closely reflects real-world
conditions. This simulation, which is based on real-world
conditions, includes autonomous decision-making function-
alities.

Figure 1 illustrates the remanufacturing process steps
including the critical step of disassembly, the uncertainties
and remanufacturing optimisation objectives and the deci-
sion flow of one core, taking into account both the core agent
type and the component agent type.

The flow represents a general decision flow in the core
disassembly process and is not specific to the number of com-
ponents that will be used for remanufacturing. The process
will be repeated for each core that is intended to be disas-
sembled, with the objective of achieving an order quantity.

This study aims to investigate the impact of different com-
binations of RL agent types on the outcome. A simulation
study is used to determine the best performing RL com-
bination, and to evaluate it in comparison with alternative
methodologies, thereby demonstrating the efficiency of the
RL approach.

Manuscript structure

The paper is structured as follows: Sect. "Problem formu-
lation and system model" presents the problem formulation
and systemmodel. Sect. "RLApproach" provides an in-depth
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Fig. 2 Disassembly control system

explanation of the RL approach. Sect. "Practical Case Study
and Validation of the RL approach" explains the scenarios
in detail. Sect. "Results and discussion" presents the results
and discussion. The paper finishes with the conclusion in
Sect. "Conclusion".

Problem formulation and systemmodel

Dynamic production systems are characterised by complex
interactions between various operational factors. We assume
that the output is measured directly in the disassembly sys-
tem via sensors or other devices. Figure 2 illustrates the
developed disassembly control system, which captures the
time-dependent behaviour of the system. This includes the
state of the system, represented by s(t), the control inputs, a
(t), and the outputs of the operational system, y(t).

The levels illustrated in Fig. 2 can be described as fol-
lows: The operation level represents the disassembly system,
wherein the disassembly process is performed. The process
monitoring system represents the monitoring system level,
wherein the states of the disassembly system are collected,
interpreted and can be visualised for the operators. The
highest level of the decision instance contains the decision-
making or action selection a(t), which is made based on the
transferred status s(t) from the process monitoring system.

This top-level entity is designated as ‘control system’. The
illustration is intended to provide a general overview, which
can subsequently be transferred to the RL approach. Addi-
tional assumptions regarding the approach are explained later
in this section.

Figure 3 shows a scheme of the disassembly system with
n components and disassembly operations (OPn) as well as
the component inspection processes (I Nn) and the rework
processes (RWn).

The disassembly system receives an order j containing
the following information: the demand for remanufactured
products (Dj ) and themaximum acceptable delivery time for
completing the order j (DTj ). Based on the provided order
information, the disassembly planning process determines
the requisite quantity of cores necessary to fulfil the demand.

The production system comprises loosely connected dis-
assembly stations, the number of which depends on the
specific disassembly environment under consideration. Each
station is tasked with handling N incoming orders, denoted
as j � {1,2, . . . , N }, with an order representing a predefined
quantity of a cores planned for disassembly. This disassem-
bly process follows a predetermined sequence of operations.
The repertoire of potential disassembly operations, denoted
as OP � {OP1, OP2, ..., OPn}, depends on the number of
components foreseen for remanufacturing. After disassem-
bly, each component undergoes inspection process I N �
{I N1, I N 2, ..., I Nn} to identify any damage that was not
visible during the analysis. This may be due to internal dam-
age or damage caused during disassembly. If there is any
damage visible, the componentmust be scrapped. It is impor-
tant to note that the RL agent has already made the decision
before this step, which only determines whether the com-
ponent is to be disassemble and passed on to the rework,
denoted as RW � {RW1, RW2, . . . , RWn}, or if the com-
ponent shouldn’t be reworked. It is not feasible to perform an
inspection of the components unless they are disassembled
from the core, as this is not possible in the assembled state.
Consequently, modification of the OPn and I Nn steps is not
feasible.

We assumed that the core’s disassembly is limited to a
single sequence due to the inability to specifically disassem-
ble the most valuable (e.g., based on the monetary value)
components in a different order.

The assumptions are as follows:

• Availability of the calculated cores to satisfy the demand
(see Eq. (5))

• Order j must be fully processed. The demands for com-
ponents are known in advance.

• The core disassembly sequence is given.
• Only one core can be selected for disassembly at a time.
• Service at disassembly workstation follows a first-come,
first-serve policy.
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Fig. 3 Disassembly Process scheme for an example of n components

• Core conditions are taken into account. The condition is
identified during the analysis process and is not known in
advance.

• Damaged components are identified during the inspection
process I N , e.g., inner damage or damages during the
disassembly process.

• Processing times are made led as normal distributions.

After explaining the disassembly process scheme and the
assumptions, we will explain the relevant variables of the
remanufacturing system.

It is crucial to consider the stock value of an individual
component i in the context of both inflows and outflows.
In context of material management in remanufacturing, the
stock value at any given time, denoted as Si (t), is a crucial
metric that reflects the quantity of component i in stock at
time t. The dynamic nature of stock value is governed by the
rates of material inflows and outflows. Mathematically, this
relationship is described by a differential equation that cap-
tures the net change in stock value over time. The differential
equation representing this relationship is:

dSi (t)

dt
� Ii (t) − Oi (t) (1)

where Ii (t) is the rate of inflow of component i at time t and
Oi (t) is the rate of outflow of component i at time t. In order
to ascertain the stock value at a specific time, given an initial
stock value Si (0), it is necessary to integrate this differential
equation over time. The solution to the differential equation

is given by:

Si (t) � Si (0) +
∫ t

0
Ii (t) − Oi (t)dt (2)

In the remanufacturing sector, determining the target stock
value for an order j, denoted as Si j , in a make-to-order pro-
duction is essential to ensure that customer orders are fulfilled
efficiently and on time. Si j can be expressed as:

Si j � Dj (3)

where Dj is the customer demand.
Since demand for order j D j is known, the required quan-

tity of cores for order j (C j ) can be calculated using the
Injection Rate (IR) as a guiding parameter. IR represents a
retrospective metric devoid of predictive insights or trends
concerning the history of core quality at rework station. The
IR can be computed utilizing historical data. The calcula-
tion entails dividing the number of disassembled cores by
the count of good cores:

I R � Numberof disassembledCores

Numberof GoodCores
(4)

The quantity of cores for order j (C j ) can be estimated
using IR:

C j � I R ∗ Dj (5)

Beside the IR, measuring the quality retrospective, there
is an important variable in the remanufacturing system that
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affects the whole process. In the analysis station we assign
a quality class q to the core or component based on the esti-
mated probability of failure λ (Klügel, 2024).

The probability of failure λ is derived from various dam-
age parameters and historical data. The data obtained from
field operations is of great value in providing insights into
the extent of wear and tear, operational stresses and envi-
ronmental conditions to which cores/components have been
subjected. These parameters help in predicting the likelihood
of failure. Key damage parameter, denoted as Fd , include, for
example, the following elements:

• Wear and Tear (F1): The extent of physical degradation
due to friction, corrosion, or fatigue.

• Operational Stresses (F2): The levels of mechanical, ther-
mal, or electrical stress experienced by the object during
its utilisation.

• Environmental conditions (F3): Exposure to extreme tem-
peratures, humidity or chemical environments.

• Usage Patterns (F4): Frequency and intensity of use (e.g.,
mileage), including any overloads or improper handling.

λ can be expressed as a function of these damage param-
eters Fd , where Fd represents individual damage parameters
from field operations:

λ � g(F1, F2, . . . , Fd) (6)

This expression indicates that λ is a composite mea-
sure derived from multiple damage factors affecting the
core/component. The relationship between the probability
of failure and the actual core/component failures in the
remanufacturing process is fundamentally rooted in dam-
age parameters from field operations. By systematically
analysing these parameters, remanufacturers can better pre-
dict and mitigate failures, leading to improved reliability and
efficiency.

The responsibility of the analysis station is to estimate the
probability of failure of the core and based on this estimation
to assign a quality class to the core. This classification helps
in optimising the decision-making in the disassembly pro-
cess and helps to understand the rework and random failures
of components at inspection better. Example for specifying
quality classes:

• Quality Class 1: 0 ≤ λ ≤ 0.1
• Quality Class 2: 0.1 < λ ≤ 0.4
• Quality Class 3: 0.4 < λ ≤ 0.8
• Quality Class 4: 0.8 < λ ≤ 1

The value q related to quality can be expressed as follows:

q ∈ {1,2, . . . , l} (7)

An additional variable that is calculated directly during
disassembly and is not based on historical data regarding
damage parameters is the failure rate λ(t). In the context of
disassembly, the failure rate λ(t) in general can be calcu-
lated as the ratio of the number of failed components F(t) to
the total number of components disassembled N (t) within a
specified time period or process step:

λ(t) � F(t)

N (t)
(8)

The failure rate λ(t) during disassembly is a criticalmetric
in decision-making. λ(t) can be calculated at the core level
or at the component level, depending on the specific interest.

In remanufacturing systems, understanding and manag-
ing process times is critical for optimising the overall lead
time Ttotal . Ttotal is the total time required to complete the
remanufacturing process. This includes: (1) pre-cleaning, (2)
analysing, (3) disassembling, (4) component inspection and
(5) rework. Ttotal can be expressed as the sum of the average
process times at each workstation ws (Tws):

Ttotal �
∑m

ws�1
Tws (9)

wherem is the total number ofworkstations in the remanufac-
turing system. Variability in process times due to factors such
as the condition of returned products, equipment efficiency,
and workforce skill levels must be considered to provide
accurate lead time estimates.

The planned delivery time for an order j (DT j ) is impor-
tant for ensuring customer satisfaction and maintaining
efficient operations. DT j is determined by Ttotal and C j .
Furthermore, delays in preceding orders can have a cascading
effect on the delivery times of subsequent orders, potentially
causing both negative and positive impacts. Given C j and
Ttotal , DT j can be expressed as:

DT j � (
Ttotal ∗ C j

)
+ �Tprevious j (10)

where �T previous j is the time, the order j spends waiting
before processing starts. The formula presented is based on
a sequential process. If parallel processing is feasible, the
formula should be modified accordingly.

The cost structure of remanufacturing is distinct from tra-
ditional manufacturing due to the unique processes involved
in rework used products to like-new condition. A compre-
hensive cost model for remanufacturing incorporates various
elements, including the costs associated with each individual
process step. The general remanufacturing costs for a core
(Cr ) based on the quality q are calculated using the additional
disassembly times (Ttotal ), the labour required (Clabour ), the
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failure costs (C f ) and estimated probability of failure (λ).

Cr � (Ttotal ∗ Clabour ) +
(
λ ∗ C f

)
(11)

Furthermore, the costs can be detailed at the component
level (Cr

i ):

Cr
i � (Ti ∗ Clabour ) +

(
λi ∗ C f

i

)
(12)

where Ti is the processing time needed only for the com-
ponent i, λi and C f

i the failure probability and cost for the
individual component i. The cost advantage for each a reman-
ufactured component, which can be expressed as the value
of the remanufactured component i (Vr

i ), can be calculated
with the costs for a new component (Cn

i ):

Vr
i � Cn

i − Cr
i (13)

By optimising the remanufacturing processes, you have
the possibility to maximise the cost savings.

The total value of the core (Vr
c ) can then be calculated as

follows:

V r
c �

∑n

i�1
V r
i (14)

The main goal of this paper is to identify and implement
an optimisation strategy that will address two conflicting
objectives, each of which has the potential to have a neg-
ative impact on the other.

The following part of the section will present the two prin-
cipal key performance indicators (KPIs) and the respective
optimisation objectives.

• On-time delivery (OT D) serves as a crucial metric for
assessing the dependability of order processing and deliv-
ery. In general, it measures the percentage of orders
produced within the agreed-upon or scheduled delivery
time. It serves as a gauge of operational efficiency within
production processes. OT D is calculated as follows:

OT D �
(
Number of On-Time Deliveries

Total Number of Deliveries

)
∗ 100%

(15)

The OT D is measured over all orders completed in the
remanufacturing system. A high OT D rate indicates that
the production consistently meets its delivery commit-
ments, while a low OT D rate may suggest issues in the
supply chain, such as production delays or inadequate
stock management.
To reach an overall highOT D rate, the optimisation goal is
tominimise the delivery time for an order j (FDT j ), which

is the time theorder j needs through the complete disassem-
bly system. The optimisation objective can be represented
as follows:

minimiseFDTj (16)

• The Service Level (SL) generally measures the ability of
the production to meet the target stock level for an order
j. The SL of component i for an order j at time t (SLi j (t))
is here defined as the division of the actual stock value for
component i at time t (Si (t)) by the target stock value of
component i for an order j (Si j ). Si j does not change with
time t (see formula (3)). SLi j (t) can be calculated using
the following formula:

SLi j (t) � Si (t)

Si j
(17)

Ensuring alignment between the Si (t) and Si j is essential.
Due to the uncertain core quality and quantity, Si (t) may
exceed Si j at any time t . The objective is to minimise the
difference between Si j and Si (t):

minimise
∣∣Si j − Si (t)

∣∣ (18)

The objective optimisation for SL is simplified in this
representation, while an asymmetric consideration (e.g.,
overstock vs. understock) is appropriately accounted for
in the reward function.

It is important to understand why these two KPIs are cru-
cial in remanufacturing. The quality of the cores for an order
j determines FDTj , which has a significant impact on over-
all OT D. Furthermore, poor quality negatively affects SLi j ,
leading to the scrapping of random components due to dam-
age.

All decisions made by the RL agent types affect FDTj . In
the disassembly process the steps are complex and variable.
If a component or a core is not intended for remanufacturing,
faster disassembly becomes possible as there is no need to
carefully handle connections or account for potential damage
during the process. It reduces FDTj at the end, because less
time is needed for disassembly.

Figure 4 shows the connection between FDTj , SL and
OT D.

The schematic figure helps to visualise and to under-
stand the complex connection between the different KPIs.
The uncertainties described in Sect. "Introduction", specifi-
cally core quality and variable processing times, significantly
influence Ttotal and thus affecting FDTj . The dashed red
line illustrates the threshold at which the overall OTD will
be negatively influenced by order j. This occurs when the
FDTj exceeds the DTj , as shown in Fig. 4 (FDTj > DTj ).

123



Journal of Intelligent Manufacturing

Fig. 4 Schematic figure showing
the relationship between FDTj ,
Service Level, and On-Time
Delivery

To illustrate, in the scenario where the target SLi j is not
met with the planned C j , the option to replan and disassem-
ble additional cores is available in order to reach the target.
However, this will have a negative impact on FDTj , given
the increased time required to complete the order j. Wherein
a higher FDTj will result in SLi j approaching 1, while the
OT D will be influenced negatively. In practice, the dashed
red line in the illustration can be adjusted based on the spe-
cific circumstances of the individual or entity in question. It
should be noted that this is simply a schematic representa-
tion of the threshold value beyond which the entire OT D is
positively or negatively influenced by order j.

Influencing FDTj is a key factor for overall OT D and,
SL performance. Optimised FDTj can reduce costs and
increase efficiency and customer satisfaction. These factors
are therefore critical in determining a cost-optimal disassem-
bly system. As mentioned before, the RL agent influences
FDTj , and optimises the two objectives.

RL approach

The use of integer optimisation-based approaches is often
limited by the simplifying assumptions they make, which
are not suitable for real-time applications. Accordingly, we
employRL to address this issue approximately, thereby facil-
itating real-time decision-making. In the context of RL, the
state vector x(t) is replaced by the state s(t) of the RL agent.
The state vector s(t) comprises all pertinent information that
characterizes the present status of the production system.

In general, RL can obtain the optimal policy by learning
from the interaction with the environment. The RL problem

is modelled as a Markov Decision Process (MDP) with a
tuple < S, A, P , R, E > (Sutton & Barto, 2020):

• S: set of all states.
• A: set of executable actions of the agent.
• P: transition distribution, Pa

ss′ � P(St+1 � s′|St � s,
At � a).

• R: reward function, and rt represents the reward obtained
after taking an action at time t .

• E : set of states that have been already reached.

RL does not require a model of the dynamics of the envi-
ronmental system. It is called model-free. The RL agent
interacts with the environment in a closed-loop and learns
to solve the underlying MDP optimally. Based on the state
st ∈ S of the environment observed at the time t , the RL
agent chooses an action at ∈ A according to its strategy π .
Choosing this action transforms the environment into a sub-
sequent state st+1 of the environment. The RL agent receives
a reward rt+1 that depends on the observed state st , the action
at , and the next state st+1, according to the underlying MDP.
Through repeated interaction with the environment, the RL
agent’s algorithm aims to maximise the cumulative reward.
Based on the reward, the RL agent adjusts its strategy π . The
strategy π∗ that maximises the cumulative reward is called
the optimal strategy,whichoptimally solves theMDPaccord-
ing to the given reward function R(St , At , St+1), defined by
the reward rt+1 (Sutton & Barto, 2020).

In contrast to value-based methods, such as Deep-Q-
Learning (DQN), there is a category of algorithms that learn
the policy directly. For instance, Proximal Policy Optimiza-
tion (PPO) extracts the policy from action-values. The use
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Table 1 Selected hyperparameters for the PPO RL agents

Hyperparameter Value

Minibatch size 128

Discount factor 0.99

Clip range 0.2

Train batch size 1000

Learning rate 1e-5

Neural network – hidden layers 512, 256, 128, 64, 32

Activation ReLu

Optimizer Adam

The pseudocode for the PPO algorithm is presented in Fig. 5

of the PPO algorithm results in enhanced sample efficiency
and robustness when utilizing policy-based approaches. For
decision making in the disassembly process, we have opted
for PPO, as explained in detail in reference Schulman et al.
(2017). Among the available reinforcement learning algo-
rithms that are designed to process continuous state spaces
while making discrete decisions, PPO stands out due to its
computational simplicity and robustness in dynamic environ-
ments. Unlike Advantage Actor-Critic (A2C), which relies
on synchronous updates and faces challenges with scalabil-
ity, PPO employs a clipped surrogate objective function that
stabilises training and prevents policy updates from diverg-
ing. Compared to Trust Region Policy Optimisation (TRPO),
PPO achieves a similar level of stability without the compu-
tational overhead associated with constrained optimisation,
making it more efficient for large-scale systems. Further-
more, PPO’s balance between exploration and exploitation
allows it to adapt effectively to uncertainties, such as varying
core qualities and disassembly depths, which are charac-
teristic of remanufacturing processes (Mnih et al., 2016;
Schulman et al., 2017). Figure 10 presents the training per-
formance comparison between PPO, DQN, and A2C. In this
study, approaches based on purely continuous action spaces
were not considered, as the disassembly decision-making
process inherently requires discrete actions. While methods
like Soft Actor-Critic (SAC) and Deep Deterministic Pol-
icy Gradient (DDPG) are well-suited for continuous control
problems, our focus remains on reinforcement learning algo-
rithms that efficiently handle discrete decision-making in
dynamic environments.

Table 1 presents a brief overview of the selected hyper-
parameters. The hyperparameters were optimised by prelim-
inary experiments. The agent modules implement the RL
algorithms and their respective parameter configurations.
While some RL algorithms require episodes for optimal
strategy implementation, defining fixed episodes is not fea-
sible for continuous manufacturing processes and represents
a different modelling design option. This paper presents a

departure from the established applications of RL in board
or computer games by employing action-based definitions.
The definition used for episodes is grounded in the number
of performed actions. It is worth noting that the decisions of
an RL agent ahead may impact the number of actions taken
by an RL agent behind them.

Table 1 displays the selected hyperparameters of the RL
agent types.

As mentioned earlier, we have created two types of RL
agents. The corresponding RL agent type is activated (refer
to Fig. 1 for more information), and a request for decision
is made. Subsequently, the decision is executed, and the RL
agent obtains a reward. Two RL agent types, namely the core
agent and the component agent type, are considered:

• Core agent type: This type of RL agent makes all decisions
that affect the entire core and thus all components that
have not yet been disassembled. If the chosen action is to
‘scrap’, all remaining components within the core will not
be reworked.

• Component agent type: This type of RL agent makes every
decision that affects a single component. I.e., it does not
impact the other components or the whole remaining core.
The decision only affects the component being currently
disassembled.

This part of the section presents the state space collected
from the environment and provided as measurements to the
corresponding RL agent types.

• Failure rate λ(t) of each component i in order j at time t:
λi j (t)

• Service level of each component i for order j at time t :
SLi j (t)

• Proportionalmonetary value of component i (V p
i ) is amet-

ric used to compare each component to the total value of
the core. The higher V p

i , the greater the advantage gained
from reusing the component i.

V p
i � V r

i

V r
c

(19)

• Remaining delivery time for the current order j at time t
(T L j (t)) can be calculated using the values DTj , the start
time of processing for order j (t j ) and the current time t .
The value t j is e.g., minutes from the beginning of the shift
the order j was started.

T L j (t) � DTj − (
t − t j

)
DTj

(20)

• Proportional remaining cores for order j at any time t
(CL j (t)) can be calculated with C j and the number cores
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Fig. 5 Pseudo code proximal
policy optimization algorithm
(Schulman et al., 2017)

that have already been disassembled for order j (Cd
j ). This

leads to the following formula:

CL j (t) � C j − Cd
j (t)

C j
(21)

• Core(s) in buffer in front of disassembly station at time t
(Cdis

que(t)) indicates that at time t , there is at least one core
in the buffer before the disassembly station. The number
of cores present in the buffer area in front of disassembly
station at time t (Bdis(t)) is necessary for this state.

Cdis
que(t) �

{
1, i f Bdis(t) �� 0
0, i f Bdis(t) � 0

(22)

This state is related to the remaining time for order j.

Relative values were chosen over absolute values for cer-
tain state values to facilitate interpretation by the RL agent
types. This decision resulted in improved outcomes dur-
ing the simulation. The monetary value is not limited to
representing economic metrics such as purchase price. If
additional information – such as energy consumption or envi-
ronmental impact – is available, it can be included to refine
the value further. This comprehensive approach allows the
monetary value to reflect a broader range of factors, enhanc-
ing its role as an indicator of component importance.

We now present the reward function. We defined two
general functions that address both optimisation goals SLi j
and OT D. These two functions are then integrated into the
reward function of the individual RL agent type separately.
As a result, the optimisation goals are in conflict with one
another, making the formulation of an appropriate reward
structure a challenging task. Through a process ofmeticulous
manual fine-tuning, guidedby theperformanceof themodels,
we have developed the following reward structure.

Figure 6 shows the structure of the reward function for
each RL agent type.

Key elements of the reward function include:

• Growth Rate k: Determines the steepness of the SL
reward curve RSLi j

(t), enabling sensitivity adjustments
for various use cases. The inflection point (I P) aligns the

function’s growth with critical thresholds in the decision-
making process.

• RSLi j
(t) incorporates V p

i , to gain a higher reward for com-
ponents with a higher monetary value.

• k, I P , γ and β need to be adjusted to fit the specific use
case. Their functions are responsible for either positively
amplifying rewards or progressively increasing punish-
ments.

• Selection of k, I P and γ also affects the response of the
RL agent types to changes in the state.

• ROT D j (t) varies depending onwhether the scheduled time
has already elapsed orwhether the task is still being carried
out within the time frame.

For the component agent type, the service level reward
function RSLi j

(t) evaluates only the component currently
undergoingdisassembly and requiring a decision.Other com-
ponents are excluded from the decision-making process at
this stage. The priority of an optimisation goal is determined
individually using a weighting factorw f . To prevent the per-
ception of an objective being disproportionately affected by
an order j with a high number of cores, the reward is nor-
malised by dividing it by the defined Si j .

In contrast, the final reward function of the core agent
type differs as it does not consider individual component val-
ues. Instead, itmeasures the overall service level by averaging
the remaining components – those not yet disassembled and
still subject to future decisions. Here, i(t) refers to the current
stage of disassembly, where i(t) � 2 indicates the second
component is being disassembled. The variable n represents
the total number of components intended for remanufac-
turing. The final reward functionRc(t), incorporates c, the
number of decision points for the core agent, and n(t), the
number of components yet to be disassembled at timet . For
instance, n(t) � 3 implies three components remain for dis-
assembly after the first core decision.

The cumulative reward function R f (t) for the compari-
son outlined in Sect. "Results and discussion" is obtained
by combining the reward functions for the component agent
type (Ri (t)) and the core agent type (Rc(t)):
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Fig. 6 Structure of the reward function for each RL agent type

R f (t) �
n∑

i�1

Ri (t) +
n−1∑
c�1

Rc(t) (23)

The variablen−1 represents the number of decision points
that the core agent typemust consider.Asmentioned, the core
agent typemakes one decision less than the component agent
type because the component agent type decides on the last
component in the core, making a core decision unnecessary.

The decision regarding disassembly presents two options
in the action space. Both core and component agent types
have two available actions, resulting in the action space A.

A � {disassemble, scrap} (24)

The actions of ‘disassemble’ and ‘scrap’ should be evalu-
ated separately for both types of RL agents. If the core agent
type selects the ‘disassemble’ option, it indicates a decision
to continue considering the core for disassembly. However,
if the chosen action is ‘scrap’, the entire core, including all
remaining components, will not be reworked.

If the component agent type selects ‘disassemble’, the
component is disassembled and inspected for damage at the

next workstation. It is important to note that the selection
of ‘disassembly’ does not guarantee that the component is
free of damage. As previously stated, the components will
be inspected after disassembly and may be scrapped due to
damage. Consequently, the decision to label a component as
‘scrap’ solely applies to that specific component and not to
other components for the same component agent type.

Practical case study and validation of the RL
approach

The experiment models a disassembly system, which
includes three test environments: (1) a single disassembly
station, (2) parallel disassembly stations, and (3) a disas-
sembly line. Additionally, the model represents the stations
pre-cleaning and analysing D0, disassembly, inspection and
rework.

Figure 7 illustrates the structure of the disassembly test
environments. The green arrow represents the decision ‘dis-
assemble’, while the red arrow symbolizes the decision
‘scrap’.
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Fig. 7 Structure of test environment 1, 2 and 3

The details of the test environments will be provided sub-
sequent to the discussion of the general topics. Within each
disassembly station, e.g. D1.1, operations denoted as OPi are
listed below, representing the tasks performed at the respec-
tive disassembly station. Preceding each operation OPi are
two decision points, see Fig. 1. Prior to the final operation
(OP3), only a decision point for the component agent type
exists. It should be noted that at this decision point, no fur-
ther components are to be considered for disassembly. D0

represents the pre-cleaning and analysis station. The analy-
sis station is responsible to estimate λ and assigns q to the
core/component. And the arrows show the material flow as
well as the decision by the RL agent types through the indi-
vidual workstations. I N 1,2, 3 is the inspection and RW 1,2, 3

is the rework of the components, which are then transported
to one of the component stocks or will be scrapped, if they
are not reusable.

Adetailed explanation of the test environments is provided
below:

(1) Disassembly test environmentwith a single disassembly
station D1.1

• At disassembly station D1.1, a single worker will
completely disassemble the core, performing opera-
tions OP1, OP2 and OP3. Consequently, other cores
before D1.1 must wait until the current core is fully
disassembled, or until the RL agent decides to stop
the operation. In this test environment, the worker
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Fig. 8 OEM remanufacturer´s circular supply chain

will require more time to disassemble all the cores,
and the state space will be updated without any delay
caused by parallel decision-making. The RL agent
types were trained in this test environment.

(2) Disassembly test environment with two parallel disas-
sembly stations D1.1 and D1.2

• In this test environment we will duplicate the single
disassembly station D1.1, and assign a second worker
to disassemble another core in parallel at D1.2. The
main difference from test environment 1 is that the
state space update will be delayed or abrupt because
of the parallel decision-making, resulting in an uncer-
tainty.

(3) Disassembly test environment with a disassembly line

• In this test environment, three disassembly stations
D1.1, D1.2 and D1.3 are arranged in sequence. Each
station is responsible for a specific disassembly oper-
ation: OP1, OP2 or OP3.After a station completes its
designated disassembly operation, the core is trans-
ferred to the next station. However, this transfer is
contingent on the decision of the core agent type,
which will only initiate the move when it decides
to disassemble the next component. This setup will
accelerate the disassembly process.

To evaluate the developed decisionmodel, a practical case
study was conducted at an OEM remanufacturer for electric
power steering (EPS) systems. This application was chosen
due to the high complexity of disassembly processes in EPS
remanufacturing. EPS systems comprise various mechani-
cal and electronic components, such as the steering control
unit (SCU), ball nut assembly, and sensor unit (SU), whose
condition significantly influences the disassembly strategy.

The company operates within a closed-loop supply chain,
which includes both the original supply chain for manu-
facturing EPS units for new vehicles and a reverse supply
chain for remanufacturing EPS units at the end of their life
for the automotive aftermarket. Additionally, the recycling
material flow ensures the return of materials to the rawmate-
rial stream. Despite the profitability of remanufacturing, the
OEM remanufacturer prioritises meeting its delivery obli-
gation period, ensuring component availability after series
production ends. Within this process, the remanufacturer
operates in a collaborative three-party framework, working
closely with both the reverse logistics supplier and the auto-
motive customer to facilitate efficient operations.

Figure 8 illustrates the circular supply chain of the OEM
remanufacturer.

The data collection process combines real production data
with simulated disassembly scenarios. Observations from the
actual remanufacturing environment – including processing
times, disassembly steps, and quality data of returned EPS
systems – were incorporated into the simulation to replicate
real-world conditions as accurately as possible. By inte-
grating real process data with simulated learning, the RL
approach can be comprehensively evaluated to ensure align-
ment with practical constraints and industry requirements,
forming a robust foundation for assessing its effectiveness in
industrial applications.

Through simulation, the RL agent types were exposed to
a wide range of variations in the state space across numerous
training episodes. This extensive exploration enabled the RL
model to adapt to diverse disassembly conditions and opti-
mise its decision-making strategy.

To support the transition from simulation to real produc-
tion, potential discrepancies between simulated and actual
production environments can be mitigated by applying a low
learning rate. This adjustment allows the agent to adapt to
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evolving process conditions while maintaining stable and
reliable decision-making.

Scalability is a crucial aspect of the RL approach, espe-
cially when applied to various remanufacturing systems.
Remanufacturing environments can vary significantly in
terms of complexity, product types, and operational pro-
cesses. A scalable RL solution ensures that the agent can
adapt to these diverse conditions, handling different types
of components and quality classes efficiently. As the reman-
ufacturing system expands or changes, the RL agent must
be able to scale its operations without compromising per-
formance. We demonstrate this scalability with our different
test environments and defined scenarios. In these scenarios,
the RL agent types do not need to communicate directly
with each other; instead, changes in the state space alone
are sufficient to inform decision-making. This independence
highlights the RL approach’s ability to efficiently manage
complex remanufacturing systems by relying solely on state
space updates, ensuring integration and operation across var-
ious system configurations.

As mentioned, this study explores different combinations
of RL agent types that primarily focus on decision-making
but differ in their level of decentralization. The action space
and the reward function are the same for all combinations
and will not be mentioned separately.

The six combinations are as follows:

1st combination: 1 core agent & 1 component agent

In each case, the following states are observed: a single core
agent responsible for all core decisions, and a separate com-
ponent agent accountable for all component decisions. At the
third disassembly step, only the component agent determines
the fate of the final component, making any extra decision-
making by a core agent unnecessary. This is applicable to
all combinations. The state space of RL agents is defined as
follows:

• Core Agent (12 states) λi (t), SLi j (t), V
p
i , T L j (t), CL j

(t), Cdis
que(t) f ori � 1,2, 3; j � 1,2, . . . , N

• Component Agent at the decision point preceding OP1
(6 states) λ1(t), SL1 j (t), V

p
1 , T L j (t), CL j (t), Cdis

que(t)
f or j � 1,2, . . . , N

• Component Agent at the decision point preceding OP2
(6 states) λ2(t), SL2 j (t), V

p
2 , T L j (t), CL j (t), Cdis

que(t)
f or j � 1,2, . . . , N

• Component Agent at the decision point preceding OP3
(6 states) λ3(t), SL3 j (t), V

p
3 , T L j (t), CL j (t), Cdis

que(t)
f or j � 1,2, . . . , N

It should be noted that in the first step, the core agent
receives all 12 states, but at the second decision point, the

values of component 1 are irrelevant and are therefore set
to 0. Depending on the decision point before the individual
OPi , the component agent obtains a total of six states, cor-
responding to the component currently being disassembled.

2nd combination: 2 core agents & 1 component
agent

In this combination, a separate core agent takes action at each
of the two core decision points before OP1 and OP2. The
state space of RL agents is defined as follows:

• Core Agent 1 (12 states) λi (t), SLi j (t), V
p
i , T L j (t), CL j

(t), Cdis
que(t) f ori � 1,2, 3; j � 1,2, . . . , N

• Core Agent 2 (9 states) λ2,3(t), SL2,3 j (t), V
p
2,3, T L j (t),

CL j (t), Cdis
que(t) f or j � 1,2, . . . , N

• Component Agent (6 states): The same as in combination
1.

3rd combination: 1 core agent & 3 component
agents

The 3rd combination involved implementing a centralised
core agent with decentralised component agents. The state
spaces only change for the component agents, and each
individual component agent observes the state of the com-
ponent for which they are responsible. The state space of the
core agent remains the same as in the first combination. For
instance, the state space of the component agents is:

λi (t)SLi j (t), V
p
i , T L j (t), CL j (t), Cdis

que(t) f ori � 1,2,
3; j � 1,2, . . . , N

4th combination: 2 core agents & 3 component
agents

The 4th combination represents the most decentralised
approach. In this method, a separate RL agent is responsible
for making decisions for both the core and the component at
every point. The state space of the core agent is equivalent
to that of combination 2, while that of the component agents
corresponds to combination 3.

5th combination: 3 component agent

The 5th combination consists of three component agents and
therefore one of the agents makes the decision for its compo-
nent only. The decisions of the core agent type are disabled
for this combination, meaning that the decision for the core
is always ‘Disassemble’ and the action is taken into account
in the reward to ensure comparability of results. The state
space corresponds to combinations 3 and 4.
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Fig. 9 Software implementation—interactions between different system components

6th combination: 1 component agent

The 6th combination includes a component agent that makes
decisions for each individual component decision point. In
this case, the decision for the core is also deactivated, similar
to the 5th combination. The state space is the same as that of
the component agent in combinations 1 and 2.

The 5th and 6th combinations are used to test whether the
core agent type is necessary or whether the component agent
types are sufficient for decision-making.

The system comprises a simulation model, created using
MATLAB (Version 2020b) and Simulink, which provides
a virtual representation of the disassembly system. The RL
agents are trained and tested using the RLlib library, while
an API library in Python is used to establish communication
between the simulation and the RL agents. The simula-
tion model requests a decision when necessary and provides
rewards immediately after-action execution. As previously
mentioned, real production data from the practical use case
was incorporated to parameterise the model, ensuring align-
ment with actual manufacturing conditions.

Figure 9 illustrates the interaction between each compo-
nent.

The simulation comprises several processes, including an
order creation process that simulates the arrival of orders at
the source. New orders are generated including the target
stock and the IR used. Each core of the generated order is
randomly assigned a quality class at the analysing station,

simulating the uncertainty in core quality. The probability
of failure associated with each quality class was derived
from real production experience, ensuring a realistic rep-
resentation of failure rates. The implementation prioritised
clear modularisation and structuring through object-oriented
programming. Individual modules can be easily replaced or
expanded, to adapt the simulation model to changes in the
real production environment. A timeline of events is estab-
lished through the use of discrete event simulation (DES).

We used a Windows-based devise with an AMD Ryzen 7
5700X 8 core processor with 3.4GHz and aRAMmemory of
32 GB, and an SSD for storage. A powerful computer should
be used for implementation in a real disassembly system.

As scalability plays a crucial role in real-world remanufac-
turing applications, the computational complexity of training
the RL agent is a critical consideration for understanding the
resources required and the feasibility of the approach. In this
study, the RL agent was trained over 1.5 million episodes
with changing values per episode: normally distributed tar-
get stock Si j (mean 50 and standard deviation 20) and a
uniformly distributed IR between 1.3 and 1.7. The RL agents
were trained in their combinations in test environment 1 (see
Fig. 7). The training process, executed on the specified hard-
ware configuration, extended over a duration of 10 days.
Throughout the training, RAM memory usage was a sig-
nificant constraint. The training required a storage space of
4 GB to save progress. The computational complexity analy-
sis evaluates how the decision-making process scales with an
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Fig. 10 Training performance
comparison between PPO, DQN
and A2C

increasing number of components, with the results detailed
in Sect. "Results and discussion" (scenario 4).

To provide a basis for comparison, additionalmethodswill
be considered. The DQN algorithmwas selected for compar-
ison with the PPO algorithm. The DQN agent is based on the
6th combination and is trained in a similar manner to the PPO
agents. The nextmethod is the basic heuristic, which involves
disassembling the components without considering the state
space. The final method is the One Disassembly heuristic,
which involves disassembling the components until the stock
value of the individual component reaches the target stock
level, after which the remaining components are scrapped.
This One Disassembly heuristic is designed to achieve the
defined service level optimisation goal, whereby the differ-
ent RL combinations must perform better in terms of on-time
delivery. The comparisons are based on the reward function,
using the average reward over 10 episodes to ensure a stable
assessment and minimize the influence of outliers.

Figure 10 illustrates the training performance comparison
between the PPO (6th combination), DQN and A2C algo-
rithms (based on the 6th combination).

Based on the training performance, we decided to take
the PPO and the DQN algorithm for our case study and not
to further pursue the A2C algorithm. The exclusion of A2C
from further testing is due to its inability to show significant
performance improvements in our environment.

To evaluate the effectiveness of decision making in the
disassembly process, we defined five scenarios. The first two
scenarios will be simulated and compared in the various test
environments with the defined purposes and are designed to
identify the optimal PPO agent combination, which will then
be employed in the subsequent three scenarios. Subsequently,
scenarios 3 to 5 will be simulated and compared using only
test environment 1. The objective of the three last scenarios is
to assess the impact of varying control parameters, the stabil-
ity and variability across a broader range of episodes, and the
scalability of the RL approach, as illustrated in scenario 5. In

this instance, the optimal PPO combination derived from the
two scenarioswill be employed,with theDQNand additional
heuristics utilised to facilitate a comparative analysis of the
outcomes. Each combination of PPO agents, the DQN agent
and the other heuristics, are evaluated through the mean final
cumulative reward achieved which is calculated by a sample
of ten simulation replications per scenario with varying seeds
to account for stochasticity. The overall increase in system
efficiency is presented in Sect. "Results and discussion".

The first scenario entails a comparative analysis of the
various PPO combinations with the DQN agent, the basic
heuristic, and theOneDisassembly heuristic, across the three
specified test environments.

The following variables are defined as basic for the pur-
poses of each simulation, when there is no other definition
mentioned:

• Si j mean 50 and standard deviation 20.
• Uniformly distributed IR between 1.3 and 1.7.
• Probability of failure and related quality class (λ � 5%

(q � 1), λ � 20%(q � 2), λ � 40%(q � 3)) and
quality class related variable processing times (Table 2).

• 3 components intended for remanufacturing.
• The relevant processing times are presented in Table 2.

In the second scenario, only cores of quality class 3 will
be available. The presence of poor-quality cores will result
in increased processing times and higher failure rates. This
scenario will demonstrate the impact of poor-quality cores
on the reward.

In the third scenario, we analyse the influence of changing
control parameters and validate the effect on the reward. The
following control parameters will be changed:

a. Changing processing times (see Table 5 and Table 6).
b. Changing monetary values.
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Table 2 Processing time PT q
i disassembly station for each component

i and based on q

Disassembly step Processing Time PTq
i (mean, standard

deviation)

Disassembly
Component 1

PT 1
1 � (70s, 2s) per Component

PT 2
1 � (100s, 5s) per Component

PT 3
1 � (140s, 10s) per Component

Disassembly
Component 2

PT 1
2 � (120s, 2s) per Component

PT 2
2 � (150s, 5s) per Component

PT 3
2 � (190s, 10s) per Component

Disassembly
Component 3

PT 1
3 � (40s, 2s) per Component

PT 2
3 � (50s, 5s) per Component

PT 3
3 � (90s, 10s) per Component

c. Increased probability of failure: λ � 10%(q � 1), λ �
30%(q � 2), λ � 60%(q � 3).

The fourth scenario is designed to assess the feasibility of
handling a greater number of components in the remanufac-
turing process. Its objective is to illustrate the adaptability
of the proposed approach without requiring retraining, while
also evaluating the computational complexity as the number
of decision points increases.

The final scenario presents a comparison of the perfor-
mance of the PPO and DQN agents with the two heuristics
under training conditions, with the objective of demonstrat-
ing the robustness of the algorithms and the variability.

Table 2 lists the disassembly times per component i and
estimated quality class based on λ. The processing times
were extracted from real production data and represented as
normally distributed values.

If the component agent type decides to not rework the
component, then the disassembly process time is reduced by
10 s.

The processing times for the other process steps in the
remanufacturing process are as follows:

• Pre-cleaning: mean 100; standard deviation 10
• Analysing: mean 300; standard deviation 20
• Finale Inspection and cleaning: mean 80; standard devia-
tion 10

The monetary values for the individual components were
selected as follows: V1 � 50, V2 � 150, and V3 � 10. This
is essential for accurately interpreting outcomes and guiding
decision-making byRL agents within the given combination.
For this particular application, we selected a value of 0.4 for
both γ and β, k � 10 and I P � 0.5, as it yielded the most

favourable outcomes in the simulation analyses. For Ri (t)
and Rc(t), we use the weighting factor w f � 0.75.

Results and discussion

The different combinations of PPO agent types were com-
pared using a basic heuristic, One Disassembly heuristic and
a DQN agent similar to the 6th combination. The highlighted
results in blue represents the combination that achieved the
best performance in their respective scenarios.

Scenario 1

Scenario 1 was conducted in three different test environ-
ments, and the PPO agents’ combinations, DQN agent, as
well as theBasic andOneDisassembly heuristicswere tested.
The results show different performance profiles in each test
environment, measured by the average reward (R f ) and stan-
dard deviation. Table 3 shows the results for scenario 1.

In the test environment 1, the PPO agents with the
6th combination achieved the highest average reward of
55.46, followed by the DQN agent with 52.65 and the
One Disassembly heuristic with 54.75. The Basic heuristic
demonstrated the lowest performance with 39.46.

The results for the second test environment indicate that
the 6th combination (55.01) and the DQN agents (54.97)
achieved similarly high average rewards. The One Dis-
assembly heuristic had a lower average of 52.83 in this
environment, while the Basic heuristic also performed lower
at 40.27. These results suggest that the 6th combination and
the DQN agent remain competitive in this environment.

Figure 11 illustrates the distribution of the cumulative
reward over the different test environments.

Overall performance in scenario 1 across all test environ-
ments:

• PPO agents’ combination: The 6th combination demon-
strated the best overall performance, with an average of
54.88 and a standard deviation of 1.81. This indicates a
high degree of consistency and effectiveness across all
environments. The second combination also demonstrated
satisfactory performance (average: 47.71, standard devia-
tion: 4.27). The service levels of individual components
were as follows on average: 0.98 for Component 1, 0.99
for Component 2, and 0.96 for Component 3. These results
demonstrate that the RL agent effectively incorporates the
higher monetary value into its decision-making process.

• DQN agent: The DQN agent demonstrated robust perfor-
mance, with an overall average of 53.31 and a standard
deviation of 5.83. However, its performance exhibited
greater variability than that of the best PPO combination.

123



Journal of Intelligent Manufacturing

Table 3 Scenario 1: Comparison

of mean final reward R f across
test environments

Test environment 1 2 3 Overall
average

R f

Standard
Deviation

PPO-Agents 1st Combination 43,91 37.75 43.94 41.87 5.63

2nd Combination 48.67 49.43 45.02 47.71 4.27

3rd Combination 43.41 44.78 44.8 44.33 3.1

4th Combination 46.73 49.46 46.42 47.23 4.45

5th combination 44.32 46.2 48.86 46.46 3.22

6th combination 55.46 55.01 54.63 54.88 1.81

DQN Agent 52.65 54.97 52.3 53.31 5.83

Basic Heuristic 39.46 40.27 40.92 40.24 2.46

One Disassembly
Heuristic

54.75 52.83 50.74 53.11 5.93

The overall average and standard deviation are given in bold
The best result in the individual test environment are given in italics

Fig. 11 Distribution of the cumulative reward over different test environments in scenario 1

• Basic and One Disassembly heuristic: The Basic heuristic
was observed to be the least effective across all environ-
ments, with an overall average of 40.24 and a low standard
deviation of 2.46. In contrast, the OneDisassembly heuris-
tic achieved an overall average of 53.11, with a higher
variation (standard deviation: 5.93), indicating that it per-
forms well in some environments but is less consistent
overall.

The One Disassembly heuristic is designed to simulate
the optimum service level. The standard deviation demon-
strates the impact of the uncertainties in the remanufacturing

system. The results demonstrate that the RL agents, specif-
ically the 6th combination and the DQN agent, outperform
the heuristic in terms of service level and on-time delivery.
The 6th combination proved to be particularly effective and
consistent across all environments in scenario 1.

Scenario 2

The second scenario is employed to simulate the situation in
which only cores of poor quality are received and must be
processed. In this case, the cores have a quality class of 3.
The objective is to measure the extent to which the results of
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Table 4 Scenario 2: Comparison

of mean final reward R f over test
environments

Test Environment 1 2 3 Overall
average

R f

Standard
Deviation

PPO-Agents 1st Combination 34.06 31.12 32.59 32.49 5.03

2nd Combination 29.64 34.35 40.1 34.7 6.05

3rd Combination 33.96 41.28 38.12 37.79 5.77

4th Combination 32.16 42.78 40.8 38.58 6.17

5th combination 34.61 47.2 42.2 41.35 5.29

6th combination 40.7 45.74 44.17 43.54 6.33

DQN Agent 24.05 39.09 43.07 35.39 6.1

Basic Heuristic 35.62 42.6 41.25 39.82 5.56

One Disassembly
Heuristic

35.51 41.42 42.88 39.93 5.04

The overall average and standard deviation are given in bold
The best result in the individual test environment are given in italics

the various approaches are influenced by the poor quality of
the cores.

Table 4 shows the results of the scenario 2.
In the first test environment, the 6th combination achieved

the highest average reward of 40.7, outperforming the DQN
agent, which exhibited a notably lower average of 24.05. The
average rewards for the Basic and One Disassembly heuris-
tics were found to be 35.62 and 35.51, respectively. The
performance of the PPO agents was superior in this envi-
ronment, indicating that more advanced PPO configurations
can be highly effective. It is noteworthy that the poor qual-
ity of the cores has a significant impact on the reward. This
can be observed based on the results for the Basic and One
Disassembly heuristics, which are typically not that close.

In the second test environment, the 6th combination once
again demonstrated robust performance, with an average
reward of 45.74. In this environment, the 5th combination
outperformed the 6th combination, with an average reward
of 47.2. The One Disassembly heuristic and Basic heuristic
achieved similar results, with averages of 41.42 and 42.6,
respectively. The DQN agent scored 39.09, reflecting com-
petitive but slightly lower performance compared to PPO
agents and heuristics.

In the third test environment, the 6th combination demon-
strated the highest average reward, with a value of 44.17.
The DQN agent demonstrated a notable improvement, with
an average of 43.07, while the 3rd combination achieved an
average of 38.12 for the PPO agents. The Basic heuristic
and One Disassembly heuristic were relatively similar, with
averages of 41.25 and 42.88, respectively. The DQN agent
showed considerable efficacy, indicating its growing effec-
tiveness in this environment.

Figure 12 illustrates the cumulative reward outcomes
across all episodes and test environments for scenario 2, pre-
sented as a box plot.

Overall performance in scenario 2 over all test environ-
ments:

• PPO agents’ combinations: The 6th combination achieved
the highest overall average reward of 43.54, with a stan-
dard deviation of 6.33, indicating both high performance
and variability. The 5th combination also demonstrated a
notable level of success, with an average of 41.35.

• DQNagent: TheDQNagent had an overall average reward
of 35.39 with a standard deviation of 6.1. While compet-
itive, it generally lagged behind the best-performing PPO
combinations.

• Basic and One Disassembly heuristic: The Basic heuristic
had an overall average of 39.82 with a standard deviation
of 5.56. With an overall average reward of 39.93 and a
standard deviation of 5.04, the One Disassembly heuristic
demonstrated similar performance to the Basic heuristic
and showed consistent results across the environments.

Overall, the 6th combination consistently outperformed
other methods, demonstrating both high rewards and effec-
tiveness across varying test environments.

This scenario illustrates the influence of low-quality cores
on the reward and the Basic heuristic, in comparison to sce-
nario 1, which is closely aligned with the One Disassembly
heuristic. The quality of the cores has a considerable impact
on the outcome or reward of the remanufacturing system.

In the remaining scenarios, thePPOagentswill continue to
use the 6th combination, as this achieved the highest overall
reward. A comparison ismadewith theDQNagent, the Basic
heuristic and the One Disassembly heuristic.
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Fig. 12 Distribution of the cumulative reward over different test environments in scenario 2

Scenario 3

The third scenario examines the impact of modifications to
the control parameters. In this context, three key parameters
exert a significant influence on decision-making processes
and, consequently, on the level of reward. The impact of each
parameter is subsequently examined. The scenario 3 will be
simulated and compared in test environment 1.

Modification of process times

As a consequence of the modified process times, the planned
lead time for the order is also subject to alteration. The fol-
lowing section will analyse whether the RL agent achieves
a higher reward compared to the One Disassembly heuristic,
which determines outcomes independently of adherence to
on-time delivery, given that the framework conditions have
changed.

The initial step is to alter the process times in a manner
that results in the last and, simultaneously, most inexpensive
component having the longest process time.

Table 5 shows the changed processing time PT q
i for the

individual component.
The 6th combination achieved the highest overall aver-

age reward of 52.25, with a relatively low standard deviation
of 3.97. This indicates that the 6th combination not only
produced the highest rewards but also demonstrated consis-
tency and stability in performance across different test runs,
thereby providing evidence that it is a robust and reliable
combination.

Table 5 Processing times PT q
i variation for evaluation

Disassembly step Processing time PTq
i (mean, standard

deviation)

Disassembly
Component 1

PT 1
1 � (50s, 2s) per Component

PT 2
1 � (70s, 5s) per Component

PT 3
1 � (110s, 10s) per Component

Disassembly
Component 2

PT 1
2 � (80s, 2s) per Component

PT 2
2 � (100s, 5s) per Component

PT 3
2 � (140s, 10s) per Component

Disassembly
Component 3

PT 1
3 � (130s, 2s) per Component

PT 2
3 � (150s, 5s) per Component

PT 3
3 � (190s, 10s) per Component

The DQN agent achieved an average reward of 51.59,
which is comparable to the performance of the 6th combina-
tion. However, the DQN agent showed a considerably higher
standard deviation of 8.35, indicating greater variability in
its performance across different test environments. This vari-
ability indicates that while the DQN agent can achieve high
rewards, it is less reliable than the PPO agent combination.

The mean reward achieved by the One Disassembly
heuristic was 50.34, with a standard deviation of 5.68.
Although it demonstrated satisfactory performance, it was
outperformed by both the 6th combination and the DQN
agent. Both approaches resulted in a better outcome with
respect to the multi-objective optimisation issue.

123



Journal of Intelligent Manufacturing

Table 6 Processing time PT q
i variation with increased time for high

value component

Disassembly step Processing Time PTq
i (mean, standard

deviation)

Disassembly
Component 1

PT 1
1 � (30s, 2s) per Component

PT 2
1 � (60s, 5s) per Component

PT 3
1 � (100s, 10s) per Component

Disassembly
Component 2

PT 1
2 � (220s, 2s) per Component

PT 2
2 � (250s, 5s) per Component

PT 3
2 � (290s, 10s) per Component

Disassembly
Component 3

PT 1
3 � (40s, 2s) per Component

PT 2
3 � (50s, 5s) per Component

PT 3
3 � (90s, 10s) per Component

The Basic heuristic produced the lowest average reward
(39.7) of all the methods under consideration. It is signifi-
cantly less effective than more advanced techniques such as
PPO and DQN agents.

In the second step, the process times are modified so that
the component with the highest value has the longest process
time. The respective process times are presented in Table 6.

In the conducted experiments, the 6th combination
achieved the highest average reward of 49.61, with a rela-
tively low standard deviation of 2.48, indicating consistent
performance across different test environments. The One
Disassembly heuristic closely followed, with an average
reward of 48.84 and a standard deviation of 5.36, showing a
slightly higher variability. The DQN agent, while effective,
obtained a lower average reward of 42.78 and exhibited the
highest variability with a standard deviation of 9.24, sug-
gesting inconsistent results. In contrast, the Basic heuristic
performed the worst, achieving a significantly lower average
reward of 33.36.

Monetary value

As part of the investigation into the influence of changed
process times on the decision-making of the RL agent, it is
also necessary to analyse the extent to which adjustments
are made to other monetary values. This is a relevant area
of investigation because it has been demonstrated that the
sequence of components linked to monetary values has no
influence on the reward. Instead, the RL agent adapts and
continues to achieve a high reward. The following variations
are taken into account in the study:

1. V1 � 10, V2 � 50, and V3 � 150
2. V1 � 150, V2 � 10, and V3 � 50

In both variations, the 6th combination achieved the high-
est reward value in comparison to the other methods. The
mean cumulative reward is approximately similar in both
cases, with a value of 52.99 and 52.32, respectively. The
decision-making process, as measured by the service levels
of individual components, adjusted accordingly to the modi-
fied monetary values. In the first case, the service levels were
0.91 for Component 1, 0.90 for Component 2, and 0.89 for
Component 3. In the second case, the service levels were 0.94
for Component 1, 0.87 for Component 2, and 0.89 for Com-
ponent 3. The DQN agent achieved an average cumulative
reward of 50.96 and 49.07. The One Disassembly heuristic is
closely aligned with the RL agents, with average cumulative
rewards of 50.31 and 52.14. In contrast, the Basic heuris-
tic demonstrated the lowest reward, with average cumulative
rewards of 41.22 and 40.84.

Upon analysis of the service level state of the components,
it became evident that the RL agents consider the mone-
tary value of the component and adapt their decision-making
accordingly.

Increased failure probability

The final modification is related to the probability of failure.
As part of this, the impact of an increased probability of
failure across all quality classes on the reward is examined.
The probability of failure was modified as follows:

• Changed probability of failure λ: λ � 10% (q � 1), λ �
30%(q � 2), λ � 60%(q � 3)

In this experimental setup, the failure probability of com-
ponents was adjusted to increase the likelihood of failures
across all quality classes, simulating an overall decline in
component quality. Under these conditions, the 6th combina-
tion demonstrated the highest average reward of 47.55, with
a standard deviation of 7.32, indicating moderate variabil-
ity in performance. The One Disassembly heuristic followed
with an average reward of 45.11 and a standard deviation
of 6.07, showing slightly more consistent results. The Basic
heuristic achieved a similar reward of 44.12 but with a lower
variability, as indicated by its standard deviation of 3.32. The
DQN agent, however, yielded the lowest average reward of
36.65 and a standard deviation of 7.54, highlighting both
reduced performance and relatively high variability under
these altered conditions.

Scenario 4

In the conducted experiments, the proposed approach for
component disassembly was tested in various scenarios. Ini-
tially, the effectiveness of the methods was investigated in a
case involving three components. From these scenarios, the
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6th combination achieved the best results. This combination
employs a single component agent that makes disassembly
decisions of the currently considered component.

A significant benefit of this 6th combination is the con-
figuration of its state space, which enables the extension to
multiple components to be disassembled. In this scenario, the
RL agent observes only the value of the affected component,
thereby enabling adaptation to different scenarios without
the necessity for retraining. This configuration enables the
demonstration of the scalability of the RL agent.

To analyse computational complexity and to assess the
scalability of the RL agent, the disassembly process was
simulated with an increasing number of components: four
components and ten components. An increase in the num-
ber of components introduces greater complexity, enabling a
more detailed assessment of the agent’s adaptability to vary-
ing conditions. As the number of components increases, the
number of disassembly decisions per episode grows propor-
tionally. The computation time scales with:

• The number of disassembly steps required per component.
• The increased number of core agent and component agent
decisions.

• The time required to process additional reward updates and
environmental interactions.

While alternative RL agent combinations (e.g., those with
multiple core agents)would increase the state space, our anal-
ysis shows that the selected configuration maintains compu-
tational efficiency without introducing significant overhead
from an RL training perspective.

The performance of the 6th combination was once more
evaluated in comparison with other methods, namely the
DQN agent, the One Disassembly heuristic, and the Basic
heuristic. In terms of cumulative reward, the 6th combination
demonstrated the most optimal performance, with a mean
cumulative reward of 128.99. In comparison, the DQN agent
achieved a mean cumulative reward of 99.66, the One Dis-
assembly heuristic yielded 124.66, and the Basic heuristic
obtained 95.51.

The comparative results show that the RL agent in the 6th
combination exhibits consistent and scalable performance
in both lower and higher complexity scenarios. This high-
lights the agent’s ability to respond to a larger number of
components without retraining and still develop an effective
disassembly strategy.

The results demonstrate the scalability and robustness of
the RL-based approach, particularly in complex scenarios
with an increased number of components (e.g., 10 com-
ponents). The method consistently outperforms traditional
approaches, ensuring feasibility for larger-scale implementa-
tions. Since no retraining is required, the RL model remains
applicable across various disassembly configurations. The

computation time scales predictablywith the number of com-
ponents, increasing by approximately 16% when moving
from 3 (1 h and 6 min) to 4 (1 h 17 min) components and by
120.5% when scaling to 10 components (2 h 50 min).

Scenario 5

To illustrate the complexity of decision-making, 100
episodes were simulated in scenario 5. This approach was
designed to assess the variability, robustness, and scalability
of the selected methods. The results confirm that the chosen
state values allow for optimal decision-making based on the
optimisation objective. To ensure comparability, the simula-
tion environment was consistent with the training phase of
the RL agents.

Figure 13 illustrates the comparison of the cumulative
reward over 100 episodes in the training test environment.

The results demonstrate that the 6th combination achieved
the highest average reward of 53.43 with a standard devia-
tion of 4.07, indicating both a high level of performance and
robustnesswith lowvariability. TheOneDisassembly heuris-
tic resulted in a reward of 51.48 and a standard deviation of
6.68, indicating a satisfactory level of performance, albeit
with a marginally higher degree of variability. The DQN
agent demonstrated a comparable reward of 50.02, however,
with a higher standard deviation of 7.98, indicating greater
sensitivity to different scenarios. The Basic heuristic per-
formed notably less effectively, with an average reward of
39.76 and the lowest variability, as indicated by its standard
deviation of 2.65. These findings reinforce the efficiency of
the state selection methodology for optimal decision-making
and demonstrate the adaptability of the proposed approach
to varying degrees of decision-making complexity.

The proposed RL-based framework demonstrates several
key advantages, particularly in the context of dynamic and
uncertain disassembly environments:

• Adaptability to Dynamic Systems The framework lever-
ages PPO to adapt to changing operational conditions,
such as varying disassembly depths and unpredictable core
qualities. This adaptability ensures theRLagents canmake
effective decisions even in environmentswhere quality and
component availability are uncertain.

• Scalability for Complex Systems As illustrated in Scenario
4, the framework scales effectively with an increasing
number of components per product. For instance, simu-
lations involving up to 10 components per product – a
significant number in industrial contexts – highlight that
the RL agents maintain performance without significant
degradation. The results demonstrate the system’s ability
to handle longer disassembly times and manage increased
failure probabilities, showcasing its robustness in complex
settings.
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Fig. 13 Comparison of the cumulative reward over 100 episodes in training test environment

• Optimisation of Key Performance Metrics The approach
prioritises critical metrics such as on-time delivery (OTD)
and service level (SL). By dynamically balancing these
objectives, the framework ensures that decisions alignwith
operational objectives while minimising delays and max-
imising overall efficiency.

• Integration of Data-Driven Decision-Making The RL
agents incorporate real-time data, such as failure rates and
service levels, into their decision-making processes. This
integration allows the framework to dynamically adjust
actions based on the current state, enhancing its respon-
siveness and accuracy.

• Potential for Customisation Theweighting systemused to
train the RL agents offers flexibility to prioritise objectives
based on organisational objectives. For example, weights
can be adjusted to account for factors such as energy
consumption or environmental impact, enabling the frame-
work to support sustainability initiativeswhilemaintaining
economic performance.

• Industrial Relevance and Practicality The framework has
been designed with industrial applicability in mind. It
addresses common challenges in remanufacturing, such
as uncertainty in core and component quality, as well
as variability in processing times, making it suitable for
deployment in real-world settings.

Conclusion

The process of decision-making in the context of disassem-
bly presents a significant challenge due to the high degree
of unpredictability inherent to used products. The existing
literature predominantly addresses deterministic conditions,
which are insufficient for fully capturing the complexities
of real-world disassembly. To address this limitation, our
study presents a RL-based approach, specifically tailored for
decision-making in the disassembly of cores. This method
takes into account the inherent uncertainties associated with
the process and considers the competing optimisation goals
of improving service levels and ensuring on-time delivery.

The principal benefit of our RL approach is its capac-
ity to make decisions based on production states without
the necessity for a complete and detailed system model.
By incorporating real-time production states, the RL algo-
rithm is capable of adapting to changes within the system
in real time, thereby optimising decisions for disassembly
tasks under uncertain conditions. Furthermore, the technique
is capable of efficiently balancing multiple objectives.

The results of our validation demonstrate that the pro-
posed RL approach outperforms traditional heuristic and
other decision-making algorithms. In particular, it achieves a
22% higher reward than a basic heuristic method, a 12%
improvement over the DQN algorithm, and a 4% higher
reward than the One Disassembly heuristic. These findings
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illustrate the robustness and efficiency of our approach across
a range of disassembly scenarios.

Moreover, our findings indicate that the RL approach is
scalable. The system is capable of adapting to a range of
configurations without the necessity for retraining, thereby
ensuring a high degree of flexibility in different production
environments. This scalability is particularly advantageous
for industries where system conditions can change fre-
quently, and the capacity for quick adaptation is crucial.

In the future, the RL solution has the potential to be imple-
mented in the real world through the integration of data with
existing processes. By establishing a connection with live
data streams, the algorithm is able to make real-time deci-
sions in production settings, thereby further enhancing its
practical application. Furthermore, this RL-based approach
can be extended by integrating with other algorithms that
address related challenges in remanufacturing, such as dis-
assembly line balancing or planning and control problems.
This would result in a more comprehensive decision-making
framework for complex manufacturing systems.
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