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Abstract— This paper considers the problem of how uniform
quantization affects the maximum likelihood estimation of the
parameters of a probability density function representing a
compound distribution. As a measure of the information loss
due to quantization, the loss of Fisher information is used. The
main contribution of the paper is the approximation which
characterizes the asymptotic behavior of the loss allowing
a significant reduction of the computational complexity. We
further investigate how to choose the quantization interval
to guarantee a predefined loss of Fisher information. An
extensive numerical simulation demonstrates the efficiency of
the approximation.

I. INTRODUCTION

The knowledge of propagation characteristics of a radio
channel is an important challenge for the successful use of
wireless sensor networks in industrial environments [1], [2],
[3]. Since the location of large objects, e.g., large metal
objects, heavy machines with large structures etc., frequently
changes, it may cause a significant variability in the received
signal strength (RSS). From the literature we know that the
choice of fading distribution can have a considerable impact
on the latency, the energy consumption, and the resulting
average bit error rate (BER) of the network [2], [4], [5].

The channel power gain often contains a shadowing com-
ponent that can be modeled by a lognormal (LN) distribution
and a fast fading component that can be modeled by a
Gamma (G) distribution. Then, the overall fading is the prod-
uct of two independent random variables (G and LN) that
corresponds to the sum of two independent random variables
in the dB-domain. The resulting compound probability den-
sity function (pdf) is the convolution of the two distributions.
In [4], it was shown that fading models that are based on
compound distributions are most appropriate for describing
the channel power gain over long time horizons in industrial
environments. The investigation was based on three long
term measurements campaigns conducted at three different
process industries, such as, the paper mill in Iggesund, the
iron ore mill in Garpenberg, and the rolling mill in Sandviken
(all are located in Sweden).

The parameters of the proposed compound distribution
in [4] can be estimated by the maximum likelihood (ML)
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method, which provides consistent estimates [2], [6]. How-
ever, assuming that the RSS observations are received in
quantized bins (e.g., in [4] the sensor nodes with resolution
∆ = 1 dBm were used), some amount of information that
the observations carry about the unknown parameters may
be lost, see, e.g. [7], [8]. To obtain accurate parameter
estimates is essential for the design of wireless control
systems for industrial use. The use of a correct fading
distribution means that the bit error rate of the radio links
will neither be overestimated nor underestimated. Hence, the
energy expenditure at the sensor nodes can be optimized,
see [4], which is particularly important for harvesting based
systems. When dealing with quantized data, two situations
can be discerned: the employed sensor nodes either have a
fixed resolution, e.g., 1 dBm, as described above, or it can be
selected by the user. The results obtained in this paper give
important insights and guidelines for both of these cases.

It is well known that Fisher information is a classical way
to measure the amount of information that the observations
carry about the unknown parameter [9], [10]. In the present
paper, we use the Fisher information as a measure of the
information that may be lost due to quantization. Then the
appropriate quantization interval can be chosen such that
a certain maximum value of the relative loss of Fisher
information is guaranteed. Note that, there is no analytical
way to compute the integral that arises in the convolution of
G- and LN-distribution. Hence, the loss should be computed
numerically and it may take a lot of computational resources
to characterize the quantization interval which guarantees a
desired prespecified loss of Fisher information.

The main contribution of the paper consists of the approx-
imation for the Fisher information loss based on a concept
of the generalized f -divergence and the result in [11], which
characterizes the asymptotic behavior of the divergence loss
for quadratic f and fine quantization. The proposed approx-
imation allows us to characterize a quantization interval that
guarantees a certain maximum value of relative loss of Fisher
information. The provided approximation will significantly
reduce the computational complexity.

The paper is organized as follows. In Section II the
general problem of how to characterize the loss of Fisher
information due to quantization for the compound distribu-
tion is described. Section III presents the fine quantization
approximation of the loss for the cases of one or two
unknown parameters. Section IV is devoted to numerical
simulations and the analysis of the obtained results. Finally,
in Section V, conclusions are drawn.



II. PROBLEM STATEMENT

As noted in the introduction, the long term fading charac-
teristics for radio channels can be modeled by the compound
distribution

p(y |ϕ) =

∫ ∞
−∞

p1(y − v |m) p0(v |σ)dv, (1)

where ϕ = [m,σ]T is the parameter vector, y is continuous
received signal power in dBm, and p1 and p0 are the dB
representations of the G- and the LN-distributions with the
parameters m and σ, respectively [2], [4], [12].

In linear power, the G-distribution is represented by

p1(x |m) =
mm

Γ(m)x̄m
xm−1e−m

x
x̄ , (2)

where Γ(·) denotes the gamma function, x̄ is the mean linear
power and m ≥ 1 is the Nakagami-m fading parameter. In
the dB-domain, the G-distribution is given by

p1(y |m) =
mm

µΓ(m)
em

y−ȳ
µ e−me

y−ȳ
µ
, (3)

where y = µ lnx represents the corresponding power in dB
and µ = 10/ln 10, ȳ = µ ln x̄. The LN-distribution in the
dB-domain transforms to the normal (N) distribution

p0(y|σ) =
1√
2πσ

e
−y2

2σ2 (4)

with zero mean and standard deviation σ > 0.
Consider a set of measurements Y = [y1, . . . , yK ] and a

likelihood function

P(ϕ | Y) =

K∏
i=1

p(yi |ϕ).

We assume yi (i = 1, . . . ,K) to be independent. We use
maximum likelihood estimation to estimate the unknown
parameters ϕ. Then the ML estimate of the parameter vector
ϕ is such that it maximizes P(ϕ | Y), i.e.,

ϕ̂ = arg max
ϕ

P(ϕ | Y) = arg max
ϕ

lnP(ϕ | Y).

For simplicity, we will start with the case when only one of
the parameters (σ or m) is unknown. Introduce the following
notation:

θ =

{
σ, if σ is unknown, m is fixed,
m, if m is unknown, σ is fixed.

(5)

The amount of information that the observations carry about
the unknown parameter can be measured by the Fisher infor-
mation, that is, the variance (which equals the second central

moment) of the score function Ψ(θ | Y) =
∂

∂θ
lnP(θ | Y),

i.e., Iθ = E
{

[Ψ(θ | Y)]
2 | θ

}
. Note that the Fisher infor-

mation exists, since the pdf p is smooth with respect to the
parameters (for θ > 0 and m ≥ 1).

Under the assumption that the observations Y are inde-
pendent it follows (see Corollary 5.9 in [13]) that

Iθ = Kiθ, (6)

where K is a number of observations and

iθ = E
{

[ψ(y | θ)]2 | θ
}

=

∫ ∞
−∞

[ψ(y | θ)]2 p(y | θ)dy, (7)

and ψ(y | θ) = ∂p(y | θ)
∂θ

1
p(y | θ) .

Assume that the set of received measurements is obtained
from a coarse quantizer, i.e., the points yk are obtained in

bins, where the k-th bin interval Ik =

[
yk −

∆

2
, yk +

∆

2

]
for some ∆ > 0. Then the distribution corresponding to
p(y | θ) is defined by

q(y | θ) =
1

∆

∫
Ik

p(z | θ)dz, y ∈ Ik. (8)

Thus, the quality of estimation based on quantized observa-
tions can be measured via

i∆θ = E
{[
ψ∆(y | θ)

]2 ∣∣∣ θ} , (9)

where ψ∆(y | θ) = ∂q(y | θ)
∂θ

1
q(y | θ) . In this paper, we study the

problem of how to characterize the loss of Fisher information
due to uniform quantization, i.e.,

d∆
θ = iθ − i∆θ . (10)

III. FINE QUANTIZATION APPROXIMATION

Since the functions p(y | θ) and
∂p(y | θ)
∂θ

are continuous,
from Theorem 8.1 in [14] we have

∂q(y | θ)
∂θ

=
1

∆

∫
Ik

∂p(z | θ)
∂θ

dz, y ∈ Ik,

where θ is defined by (5). Then the asymptotic behavior of
d∆
θ can be characterized by the following theorem.
Theorem 1: The loss of Fisher information due to quan-

tization d∆
θ ≥ 0 can be assessed as

lim
∆→0

d∆
θ

∆2
=

1

12
E

{[
∂ψ(y | θ)
∂y

]2
∣∣∣∣∣ θ
}
. (11)

Proof: See Appendix I.

Denote d̃∆
θ = ∆2

12 E

{[
∂ψ(y | θ)
∂y

]2 ∣∣∣∣ θ} . From Theorem 1 we

have that d∆
θ ∼ d̃∆

θ for small ∆.

A. Two dimensional case

Now assume that both parameters σ and m are unknown.
Then the Fisher information takes the form of a 2×2 matrix

Iϕ =

 E
{

[ψ(y |m)]
2
∣∣∣ ϕ} E {ψ(y |m)ψ(y |σ) | ϕ}

E {ψ(y |m)ψ(y |σ) | ϕ} E
{

[ψ(y |σ)]
2
∣∣∣ ϕ}


=

[
im im,σ
im,σ iσ

]
, (12)

where

im,σ = E {ψ(y |m)ψ(y |σ) |ϕ}

=

∫ ∞
−∞

ψ(y |m)ψ(y |σ)p(y |ϕ)dy.



Similarly to (9) and (12) we define

i∆m,σ = E
{
ψ∆(y|m)ψ∆(y|σ)

∣∣ ϕ} (13)

and
I∆
ϕ =

[
i∆m i∆m,σ
i∆m,σ i∆σ

]
, (14)

respectively. Then the loss of Fisher information (in a matrix
form) due to uniform quantization is

D∆
ϕ = Iϕ − I∆

ϕ =

[
d∆
m d∆

m,σ

d∆
m,σ d∆

σ

]
, (15)

where d∆
m,σ = im,σ − i∆m,σ .

Theorem 2: The loss d∆
m,σ can be assessed as

lim
∆→0

d∆
m,σ

∆2
=

1

12
E

{
∂ψ(y |m)

∂y

∂ψ(y |σ)

∂y

∣∣∣∣ ϕ} . (16)

Proof: See Appendix II.
From Theorems 1 and 2 we can conclude that

D∆
ϕ ∼

[
d̃∆
m d̃∆

m,σ

d̃∆
m,σ d̃∆

σ

]
,

for small ∆, where d̃∆
m,σ = ∆2

12 E
{
∂ψ(y |m)

∂y
∂ψ(y |σ)

∂y

∣∣∣ ϕ}.

IV. PERFORMANCE ANALYSIS

Without loss of generality assume x̄ = 1 in (2).

A. Unknown σ, fixed m

Assume that the parameter m is fixed, e.g., m = 3, and
the standard deviation σ is unknown, i.e., θ = σ.

The dependence of Fisher information numbers, iσ and
i∆σ , on σ, c.f. (7) and (9), is shown in Fig. 1. We see that for
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Fig. 1. Fisher information for continuous and quantized measurements.

small σ the observations carry almost no information, since
the distribution p changes barely in σ-direction for small
values of σ (see Fig. 2). This means that near the maximum
likelihood estimate the maximum is flat, i.e., there are many
nearby values of σ with a similar log-likelihood. As a result,
the Fisher information is low. When σ starts to increase,
the support of the distribution p0(y |σ) becomes larger, and
the variability of convolution (1) with respect to σ increases

significantly. As a result, we have large values of
∂p(y |σ)

∂σ
and the maximum of iσ is attained at σ = 2.25.

Fig. 2. The compound distribution p(y |σ).

If quantized measurements are used, then the Fisher
information, i∆σ , has a similar behavior. The actual and
approximated relative loss of Fisher information

r∆
θ =

d∆
θ

iθ
, r̃∆

θ =
d̃∆
θ

iθ
, (17)

respectively, are depicted in Fig. 3, from which we see that
we lose more information for small σ.
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Fig. 3. The relative loss of Fisher information due to quantization: solid
lines – the actual relative loss r∆σ , dashed lines – the approximated relative
loss r̃∆σ .

This result is intuitively expected. For small σ the com-
pound distribution p(y |σ) has small support and a steep bell
shaped curvature. Hence, the effect of quantization is higher
than for large σ, when p(y |σ) has wide support.

The maximum value of ∆ guaranteeing that the relative
loss r∆

σ does not exceed, say, 2%1, i.e.,

∆max
σ = max

{
∆
∣∣ r∆
σ ≤ 0.02

}
, (18)

is provided in Fig. 4. As expected, we note that we can
increase the quantization interval for large σ and we have
to use more accurate quantization to keep the relative loss
within a 2% interval for small σ where the distribution is
peaky and has small support.

1Depending on the accuracy required this value could, of course, be
selected both smaller and larger



Fig. 4. The maximum value of ∆ for which the relative loss of iσ does
not exceed 2%. Note that the plot of actual values of ∆max

σ is disturbed
due to errors in the numerical integration.

We see that in a case of 2% relative loss the approxima-
tion d∆

σ is sufficiently good. This allows for a significant
reduction in computational load and time when we need
to characterize a quantization interval which guarantees an
appropriate quality of the ML estimates. Indeed, to compute
the approximated loss, d̃∆

σ , for different values of ∆ we have
to calculate the right-hand side of (16) (that does not depend
on ∆) and then just multiply it by ∆2, while computing the
actual loss, d∆

σ , we need to calculate the functions ψ∆(y, σ)
for every ∆ that may take a lot of computational resources.

B. Unknown m, fixed σ

Assume now that the parameter σ is fixed, σ = 1, and the
fading parameter m is unknown, i.e., θ = m.

Fig. 5 shows the dependence of the distribution p(y |m)
on the parameter m and the argument y. We can see that
with the growth of m the density function p(y |m) becomes
more peaky as well as the width of its support decreases.
Also from Fig. 6 it is easy to conclude that p(y |m) is more

Fig. 5. The compound distribution p(y |m).

sensitive to the variations of the parameter m for small values
of m, which means a high value of Fisher information.

Fig. 7 illustrates the actual and approximated relative
loss of Fisher information, r∆

m and r̃∆
m respectively. The

maximum value of ∆ guaranteeing that the relative loss of
Fisher information does not exceed 2%, i.e., r∆

m ≤ 0.02

Fig. 6. Fisher information for continuous and quantized measurements

Fig. 7. The relative loss of Fisher information due to quantization: solid
lines – actual relative loss r∆m, dashed lines – approximated relative loss
r̃∆m.

is shown in Fig. 8. From Figs. 7 and 8 we see that the
quatization interval should be smaller for large values of m,
where the distribution has small support and a steep bell
shaped curvature.

Fig. 8. The maximum value of ∆ for which the relative loss of im does
not exceed 2%.

From Fig. 8 we can also conclude that in the case of
unknown m the approximation is accurate as well.



Fig. 9. The maximum value of ∆ for which the approximated relative loss does not exceed 2% for each component of the matrix Iϕ

C. Unknown m and σ

Assume that both parameters m and σ are unknown.
Introduce the notation ∆̃max

σ that is obtained from (18) by
replacing r∆

σ by r̃∆
σ , see (17), i.e., the maximum value of

∆ guaranteeing that the approximated relative loss of iσ
does not exceed 2%. The notations ∆̃max

m and ∆̃max
m,σ can

be defined similarly.
Fig. 9 shows the maximum values of ∆ for which the

approximated relative loss of the corresponding component
of Fisher information matrix (12) does not exceed 2%. We
can see that

∆̃max
σ < ∆̃max

m,σ < ∆̃max
m (19)

for every fixed m and σ (as an example, see the red point
locations for which ∆max and m are the same). This is also
confirmed by a closer numerical investigation. Hence, if we
take the value of ∆̃max

σ as a suitable quantizer interval, then
we are guaranteed that the approximated relative loss of each
component, iσ , im and im,σ , will not exceed 2%.

Denote by S(m,σ) the width of 98%-support of the
distribution p(y |m,σ), i.e.,

S(m,σ) = yr − yl,

where
∫ yl
−∞ p(y |m,σ)dy =

∫∞
yr
p(y |m,σ)dy = 0.01.

Note that, S(m,σ) cannot by itself characterize a suitable
quantization interval. For example, in Fig. 10 we see that
the width of support of the two distributions (p(y | [1, 0.05])
and p(y | [3, 5]), respectively) is the same, i.e., S(1, 0.05) =
S(3, 5). However, the distribution from the left-hand side of
Fig. 10 has a higher peak and steeper slope that requires
a more fine-grained quantizer compared with the right-hand
side distribution. As a result, we obtain that ∆̃max

σ = 0.74
for m = 1, σ = 0.05 and ∆̃max

σ = 1.97 for m = 3, σ = 5.
Hence, we can conclude that the loss of Fisher information
due to quantization mainly depends on the curvature of
the distribution and may be numerically characterized by
approximation (16).

The number of quantized bins that cover the 98%-support
of p(y |m,σ) and provide at most 2% approximated relative

Fig. 10. Two distributions that have the same width of support while the
quantization intervals providing 2% relative loss are different.

loss of Fisher information can be computed as⌈
S(m,σ)

∆̃max
σ

⌉
,

where dze denotes the least integer greater than z, and is
illustrated in Fig. 11.

Fig. 11. The number of quantized bins obtained from ∆̃max
σ

V. CONCLUSIONS
The problem of how to choose the quantization interval

which provides an appropriate loss of Fisher information is



considered. The main contribution lies in the approximation
of the information loss that allows a significant reduction of
computational complexity.

The next step in this research will be to extend the results
to the case of variable quantization that may reduce the
number of quantized bins while keeping the relative loss of
Fisher information within a prescribed bound. Another inter-
esting future research topic will be to investigate relations to
Bayesian approaches.
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APPENDIX I
PROOF OF THEOREM 1

Consider a convex function f : IR → IR, a measurable
function l : IR → IR, and a probability measure P on
(IR,B), where B is the Borel σ-algebra. The generalized
f -divergence can be defined as follows (see [11]):∫ ∞

−∞
f(l(x))P (dx).

Then the generalized f -divergence lost to uniform quantiza-
tion can be written as

d∆(f, l, P ) =

∫ ∞
−∞

f(l(x))P (dx)−
∫ ∞
−∞

f(l∆(x))P (dx),

where l∆(x) =
1

P (Ik)

∫
Ik

l(z)P (dz) for x ∈ Ik.

Define f(x) = x2 and l(y) = ψ(y | θ). Then

d∆
θ =

∫ ∞
−∞

(
[ψ(y | θ)]2 −

[
ψ∆(y | θ)

]2)
p(y | θ)dy

=

∫ ∞
−∞

(
l2(y)− l2∆(y)

)
P (dy) = d∆(f, l, P ),

and from Theorem 1 in [11] we immediately have

d∆(f, l, P ) =

∫ ∞
−∞

(l(y)− l∆(y))2 P (dy)

=

∫ ∞
−∞

[
ψ(y | θ)− ψ∆(y | θ)

]2
p(y | θ)dy ≥ 0,

(20)

and

d∆
θ = d∆(f, l, P ) ∼ ∆2

12

∫ ∞
−∞

[
dl(y)

dy

]2

P (dy)

=
∆2

12
E

{[
∂ψ(y | θ)
∂y

]2
∣∣∣∣∣ θ
}
.

(21)

This completes the proof.

APPENDIX II
PROOF OF THEOREM 2

Let l(y) = ψ(y |m) + ψ(y |σ). Denote

d∆
Σ =

∫ ∞
−∞

[
(ψ(y |m) + ψ(y |σ))

2

−
(
ψ∆(y |m) + ψ∆(y |σ)

)2]
p(y |ϕ)dy.

Then from (21) we obtain

d∆
Σ = d∆(f, l, P ) ∼ ∆2

12

∫ ∞
−∞

[
dl(y)

dy

]2

P (dy). (22)

On the other hand we have

d∆
Σ =

∫ ∞
−∞

[(
[ψ(y |m)]

2 −
[
ψ∆(y |m)

]2)
+
(

[ψ(y |σ)]
2 −

[
ψ∆(y |σ)

]2)
+ 2

(
ψ(y |m)ψ(y |σ)− ψ∆(y |m)ψ∆(y |σ)

) ]
p(y |ϕ)dy

= d∆
m + d∆

σ + 2 d∆
m,σ.

(23)
Hence,

d∆
m,σ =

1

2

(
d∆

Σ − d∆
m − d∆

σ

)
. (24)

Therefore, from (24) taking into account (22) and (21) we
obtain

d∆
m,σ ∼

∆2

24
E

{[
∂ψ(y |m)

∂y
+
∂ψ(y |σ)

∂y

]2
∣∣∣∣∣ ϕ
}

− ∆2

24

(
E

{[
∂ψ(y |m)

∂y

]2
∣∣∣∣∣ ϕ
}

+ E

{[
∂ψ(y |σ)

∂y

]2
∣∣∣∣∣ ϕ
})

=
∆2

12
E

{
∂ψ(y |m)

∂y

∂ψ(y |σ)

∂y

∣∣∣∣ ϕ} .
This completes the proof.


