
OTT
O

-V
O

N
-G

U
ER

IC
KE-UNIVERSITÄ

T
M

A
G

D
E

B
U

RG

Otto–von–Guericke–Universität Magdeburg

Studienarbeit

Supervisory Control of a

Manufacturing Cell: Modeling

and Implementation
von

Steffi Klinge
(***** in Burg)

14. September 2007

Eingereicht an die: Otto–von–Guericke–Universität Magdeburg

Fakultät für Elektrotechnik und Informationstechnik

Prüfungsamt

Universitätsplatz 2

39016 Magdeburg,

Deutschland

Prüfer: Prof. Dietrich Flockerzi

Max Planck Institut

Dynamik komplexer technischer Systeme

Sandtorstraße 1

39106 Magdeburg

Deutschland

Betreuer: Prof. José E. Ribeiro Cury

Prof. Max Hering de Queiroz

Departamento de Automação e Sistemas

Centro Tecnológico

Universidade Federal de Santa Catarina

Florianópolis - SC

CEP 88040-900

Brasil

Table of contents

List of figures vi

List of tables vii

Outlines and objectives ix

Preface xi

Acknowledgments . xi
Declaration of originality . xii

Introduction 1

1 Theory and tools 3

1.1 Introduction . 3
1.2 Discrete Event Systems . 4

1.2.1 Languages . 4
1.2.2 Automata . 5

1.3 Supervisory Control Theory . 9
1.3.1 Construction of an optimal, nonblocking supervisor . . . 9
1.3.2 Reduction of supervisors 10

1.4 Tools . 11
1.4.1 TCT . 12
1.4.2 GRAIL . 12
1.4.3 IDES . 12

2 Models and specifications 15

2.1 Introduction . 15
2.2 Testbed . 16

2.2.1 Verbal description . 16
2.2.2 Sensors and actuators 17

iii

iv

2.2.3 Desired proceeding . 18
2.3 Similarities . 19

2.3.1 Modeling the plant . 19
2.3.2 Modeling the specifications 20

2.4 Model 1 . 21
2.4.1 Modeling the robot . 21
2.4.2 Modeling the specifications without rework 21
2.4.3 Modeling the specifications with rework 1 24
2.4.4 Modeling the specifications with rework 2 28

2.5 Model 2 . 31
2.5.1 Modeling the robot . 31
2.5.2 Modeling the specifications without rework 32
2.5.3 Modeling the specifications with rework 1 33
2.5.4 Modeling the specifications with rework 2 36

2.6 Model 3 and 4 . 37
2.6.1 Modeling the robot . 37
2.6.2 Modeling the specifications without rework 38

2.7 Comparison . 39

3 Supervisors 43

3.1 Introduction . 43
3.2 Monolithic supervisors . 44
3.3 Modular supervisors . 44

3.3.1 Results . 45
3.3.2 Conflicts . 52

3.4 Comparison . 57

4 Implementation 59

4.1 Introduction . 59
4.2 General information . 59

4.2.1 Hierarchical structure 60
4.2.2 Initializing the system 61
4.2.3 Implementation of transitions 61
4.2.4 Programming languages 62

4.3 Manufacturing cell . 64
4.3.1 Initialization and reinitialization 64
4.3.2 Siemens PLC . 64
4.3.3 Altus PLC . 66

Conclusions 69

A IDES2ST 71

A.1 Introduction . 71
A.2 IDES2ST.java . 71
A.3 ControlSystem.java . 74
A.4 Automaton.java . 78
A.5 State.java . 87
A.6 Event.java . 89
A.7 Transition.java . 91

Bibliography 95

List of figures

1.1 A simple automaton . 6
1.2 A not accessible and not coaccessible automaton 7
1.3 A simple workstation . 8

2.1 Photo of the testbet . 16
2.2 Scheme of the testbet . 17
2.3 Photo of pieces of work . 17
2.4 Model: drilling and welding station 19
2.5 Model: table . 19
2.6 Model: test . 19
2.7 Model: port 1 and port 2 . 20
2.8 Specification: mutual exclusion, E11, E12 and E13 20
2.9 Specification: avoid moving empty table, E2 21
2.10 Model 1: robot . 22
2.11 Specification model 1 without rework: mutual exclusion, E14 . . . 22
2.12 Specification model 1 without rework: operating sequence, E31 . . 22
2.13 Specification model 1 without rework: operating sequence, E32 . . 23
2.14 Specification model 1 without rework: operating sequence, E33 . . 23
2.15 Specification model 1 without rework: operating sequence, E34 . . 23
2.16 Specification model 1 without rework: corresponding outcome, E4 24
2.17 Specification model 1 without rework: get new pieces, E5 24
2.18 Specification model 1 rework 1: alternative routine, E6 25
2.19 Specification model 1 rework 1: mutual ecxlusion, E14 25
2.20 Specification model 1 rework 1: operating sequence, E31 26
2.21 Specification model 1 rework 1: operating sequence, E32 26
2.22 Specification model 1 rework 1: operating sequence, E33 27
2.23 Specification model 1 rework 1: operating sequence, E34 27
2.24 Specification model 1 rework 1: corresponding outcome, E4 28
2.25 Specification model 1 rework 1: get new pieces, E5 28

v

vi

2.26 Specification model 1 rework 2: operating sequence, E33 29
2.27 Specification model 1 rework 2: operating sequence, E34 30
2.28 Specification model 1 rework 2: corresponding outcome, E41 30
2.29 Specification model 1 rework 2: only one piece, E6 31
2.30 Model 2: robot . 32
2.31 Specification model 2 without rework: mutual exclusion, E14 . . . 32
2.32 Specification model 2 without rework: operating sequence, E31 . . 33
2.33 Specification model 2 without rework: operating sequence, E34 . . 33
2.34 Specification model 2 without rework: corresponding outcome, E4 34
2.35 Specification model 2 without rework: get new pieces, E5 34
2.36 Specification model 2 rework 1: alternative routine, E6 34
2.37 Specification model 2 rework 1: mutual ecxlusion, E14 35
2.38 Specification model 2 rework 1: operating sequence, E31 35
2.39 Specification model 2 rework 1: operating sequence, E34 36
2.40 Specification model 2 rework 1: corresponding outcome, E4 36
2.41 Model 3: robot . 37
2.42 Model 4: arm . 37
2.43 Model 4: grabber . 38
2.44 Specification model 3 without rework: Robot control, E6 38
2.45 Specification model 3 without rework: Mutual exclusion, E14 . . . 39

3.1 Reduced supervisor model 1 without rework: mutual exclusion, R11 45
3.2 Reduced supervisor model 1 without rework: avoid empty table, R2 46
3.3 Reduced supervisor model 1 without rework: operating sequ., R31 46
3.4 Reduced supervisor model 1 without rework: corres. outcome, R4 46
3.5 Reduced supervisor model 1 without rework: get new pieces, R5 . 46
3.6 Reduced supervisor model 1 rework 1: alternative routine, R6 . . . 47
3.7 Reduced supervisor model 1 rework 1: operating sequence, R31 . . 48
3.8 Reduced supervisor model 1 rework 1: get new pieces, R5 48
3.9 Reduced supervisor model 1 rework 2: operating sequence, R33 . . 49
3.10 Reduced supervisor model 1 rework 2: corres. outcome, R41 50
3.11 Reduced supervisor model 1 rework 2: only one piece, R6 50
3.12 Reduced supervisor model 2 without rework: mutual exclusion, R14 51
3.13 Reduced supervisor model 2 without rework: corres. outcome, R4 51
3.14 Supervisor model 3: robot control, S6 53
3.15 Reduced supervisor model 3: robot control, R6 53
3.16 Scheme of supervisors and parts of the plant 54
3.17 Reduced coordinator for model 2 without rework: Cred,1 56
3.18 Reduced coordinator for model 2 without rework: Cred,2 56

4.1 Hierarchical structure . 60
4.2 Ladder diagram: an example . 63

List of tables

2.1 Inputs . 18
2.2 Outputs . 18
2.3 Physical possibilities of the models 39
2.4 Size of models without rework . 40
2.5 Size of models with rework . 40
2.6 Size of specifications without rework 41
2.7 Size of specifications with rework 42

3.1 Size of monolithic supervisors . 44
3.2 Local and reduced supervisors for model 1 without rework 45
3.3 Local and reduced supervisors for model 1 with rework 1 47
3.4 Local and reduced supervisors for model 1 with rework 2 49
3.5 Local and reduced supervisors for model 2 without rework 50
3.6 Local and reduced supervisors for model 2 with rework 1 52
3.7 Local and reduced supervisors for model 2 with rework 2 52
3.8 Local and reduced supervisors for model 3 without rework 53
3.9 Coordinators for model 2 and 3 . 56
3.10 Reduced supervisors for model 1, 2 and 3 without rework 57
3.11 Reduced supervisors for model 1 and 2 with rework 58

vii

Outlines and objectives

The goal of this thesis is the comparison of different approaches to supervisor
design in conjunction with a concrete practical application to a small manu-
facturing cell.

In the course of this thesis, the student should become familiar with the
basics of Automata and Supervisory Control Theory since the understanding
of the possibilities and the limits of automata and supervisors is fundamental
for a successful realisation of the project.

The practical part of the work deals with a mechanical model of a manufac-
turing cell. The student should be able to create and compare different models
of the plant – restrictive small models as well as flexible large models.

In the next step, different types of supervisors — for instance of monolithic,
modular or hierarchical nature — should be implemented using software tools
such as TCT, GRAIL or IDES. The complexity of the model together with its
potential blocking problems will influence the choice of the software tool used.

The third part of the work should show tests of the implemented supervisors
on the plant. It should be possible to control the plant with different models
and supervisors for different requirements and specifications.

Finally the student is asked to compare the various models and supervisors,
to indicate advantages and disadvantages of the different approaches and to
highlight their capabilities and limits.

ix

Preface

Acknowledgments

First of all I would like to thank Prof. Jörg Raisch, Technische Universität,
Berlin, Germany, for making the connection to Brazil.

Furthermore I would like to express my deep gratitude to Prof. José E. R.
Cury and Prof. Max H. de Queiroz, Universidade Federal de Santa Catarina,
Florianópolis, Brazil, for their support during my stay, their motivation and
their suggestions to improve my work.

Especially I would like to thank Florian Knorn for his ceaseless constructive
critic, his motivation and his endless patent while answering my questions.

Thanks to Lenko Grigorov, Queen’s University, Kingston, Canada, for his
help, his suggestions and the realization of a lot of changes in IDES.

Thanks to Harald Bauer, Friedrich-Alexander-Universität Erlangen-Nürnberg,
for his patience while explaining Java–routines and his help while writing
IDES2ST, Luis Gustavo Marquez and Guilherme Siviero Lise, Universidade
Federal de Santa Catarina, Florianópolis, Brazil, for programming the sub-
routines, Christiano Casanova, Universidade Federal de Santa Catarina, Flori-
anópolis, Brazil, for his suggestions and the Friedrich–Naumann–Stiftung for
the founding.

xi

xii

Declaration of originality

I hereby declare that this thesis and the work reported herein was composed
and originated entirely by myself. Information derived from the published and
unpublished work of others is acknowledged in the text and a list of references
is given in the bibliography.

Steffi Klinge

Introduction

Whenever the choice to use a discrete approach to solve a problem, especially a
technical problem, there are two basic options to model and control a system.
A very common and also often used way to model systems are Petri Nets, first
developed by C.A. Petri in 1962, [20]. This approach is an efficient possibility
to handle most of the problems occurring in technical issues. In many cases
nevertheless Petri Nets are not necessary. Often real problems allow to use the
most basic class of DES models (Discrete Event System), which are automata.
They are easy to understand and to analyse. Although there exist situations
where automata would grow huge or even infinitely, many problems can be
solved with automata in an efficient way.

In order to control automata P.J. Ramadge and W.M. Wonham developed
the Supervisory Control Theory in the 1980’s,[21]. The main idea is to formu-
late rules which should not be violated by the plant. These specifications are
modeled as one or more automata. After building the synchronous product of
the plant and the specification a supervisor can be created automaticly.

Finally a supervisor is an automaton as well, which is tracking the actions of
the plant and disabling undesired controllable events in order to avoid violation
of specifications or blocking. Blocking would mean that one or more sequences
of events lead to an situation from which it is not possible to complete a
desired task, which whould mean to reach a marked state, without violating a
specification.

Even though this sounds easy, modeling the real system and compose the
specifications in order to get an optimal solution is not trivial. As real world
often handles with continuous variables as e.g. time, velocity or distance it
depends completely on the developer how to define an event in the model.
To define quite a lot of different events describing in a very specific way every
physical event of the plant with the objective of receive a flexible but sometimes
huge plant is also possible as combine some of these events in order to get a
smaller but more restrictive model.

After obtaining the model of the free plant formulating the specifications
is the next task. Security reasons can call for specifications as well as required
work flows. A good knowledge both of the real technical system and the ab-
stract model is absolutely needed to express specifications as automata. Yet
to bear all undesired but possible actions of the plant is normally very com-
plex. Also it is almost always possible to find more than one solution to assure
the compliance of requirements. So obtained supervisors can vary in size and
restrictions.

For the purpose of achieving only one supervisor, that makes sure that
every specification respected, building the synchronous product of all automata

1

2

representing different demands would be the next step. This procedure can
cause a huge, inscrutable supervisor, which cannot be analyzed or debugged.

This problem can be a reason to implement a modular solution. To do so
from every automaton representing a specification a local supervisor is com-
puted. On the one hand changes in the specifications can be realized easily
and the resulting local supervisors are smaller and easier to understand and to
debug, on the other hand a local approach can lead to a conflicting problem.
As every modular supervisor only attend to one specification the interaction
between them can result a situation where the completion of a task is not
possible or even all events are disabled by the local supervisores.

To solve this problem it may help to reduce the number of local supervisors
by building the synchronous product of specifications causing a blocking situ-
ation. Also it could be serviceable to add a further specification which avoids
the blocking situation. Both of these ways assume that the developer already
has an idea where exactly the problem occurs. Yet to detect the reason for the
blocking is not trivial and requires an excellent knowledge of the plant and the
specifications.

Chapter 1

Theory and tools

This chapter gives a short overview about what Dis-
crete Event Systems are, how to model them by au-
tomata, what are supervisors and how to compute
them, as well as an introduction to the tools used in
this project to model and compute supervisors.

1.1 Introduction

In industry often high numbers of different processes have to be coordinated.
In some applications only the start and the end of procedures or moves, the
quantity of items or sensors with a defined, bounded and small number of
output signals are important. In these cases it is always good to think about
modeling the system by an automaton.

As long as systems only work with one piece at a time a simple sequence
control may be sufficient to control the plant. Once the handling of more pieces
is desired or a more robust solution is required the construction of a supervisor
may help to solve the problem.

This chapter will try to explain the most basic definitions used in Discrete
Event Theory, specially to handle with automata and Supervisory Control
Theory. As a lot of very good literature about these theories is available,
we will only try to give a short overview. All definitions and theorems are
taken from [8], [28], [23], [26], [25], [18] and [24].

There are quite a lot of divers software tools available. They differ in terms
of visualization, appliance, the used algorithms, the capability of handling with
hugh automata and their velocity. In this project three tools have been used:
TCT, developed by the Systems Control Group of the University of Toronto,
Grail for Supervisory Control, developed by the Department of Automation
and Systems (DAS) of the Federal University of Santa Catarina (UFSC), and
IDES, developed by the Department of Electrical and Computer Engineering
of the Queen’s University.

3

4 CHAPTER 1. THEORY AND TOOLS

1.2 Discrete Event Systems

1.2.1 Languages

Before we start talking about Discrete Event Systems it is recommendable to
clarify basic definitions. In literature a lot of definitions for the terms system
and event can be found.

We will understand a system as a combination of components that act to-
gether to perform a function not possible with any of the individual parts as
mentioned in [19].

Also we want an event to occur instantaneously, causing transitions from
one state value to another, like it is expressed in [8]. The definitions in this
section are based on [8] and [28].

All events of a system build the discrete event set or alphabet Σ.

Definition 1.2.1 (Language). A language L defined over an alphabet Σ is a
set of finite-legth strings formed from events in Σ.

The countable infinite set of all finite strings of elements of Σ and the empty
string ǫ is called the Kleene – closure Σ∗.

If there is a string s = tuv, so

• t is called a prefix of s,

• u is called a substring of s and

• v is called a suffix of s.

Example 1.2.2. For Σ = {a, b, c} some possible languages would be

• L1 = {ǫ, a, bb, abb} ,

• L2 = {ǫ,c, cc} or

• L3 = Σ∗ = {ǫ, a, b, c, aa, ab, ac, ba, bb, . . .}.

It is easy to see, that every language over Σ is a subset of Σ∗.

Definition 1.2.3 (Concatenation). Let L1 and L2 be two languages with
L1, L2 ⊆ Σ∗, then L1L2 is the concatenation of them with

L1L2 := {s ∈ Σ∗ : (s = s1s2) , (s1 ∈ L1) and (s2 ∈ L2)}.

Example 1.2.4. Let L4 be the concatenation of L1 and L2 of Example 1.2.2.

L4 = L1L2 = {ǫ, a, bb, abb, c, ac, bbc, bbcc, abbc, cc, acc, abbcc}

Definition 1.2.5 (Prefix – Closure). Let L ⊆ Σ∗, then

L̄ := {s ∈ Σ∗ : ∃t ∈ Σ∗(st ∈ L)}

A language is called prefix – closed, if it contains every prefix of every string of
the language, L = L̄.

Example 1.2.6. Looking at the languages defined in Example 1.2.2:

1.2. DISCRETE EVENT SYSTEMS 5

• L̄1 = {ǫ, a, b, ab, bb, abb}

• L2 is prefix – closed.

Definition 1.2.7 (Kleene – Closure). Let L ⊆ Σ∗, then

L∗ := {ǫ} ∪ L ∪ LL ∪ LLL ∪ . . .

Example 1.2.8. The Kleene – closure of L1 of Example 1.2.2 is

L∗
1
= {ǫ,a, bb, abb, aa, bba, abba, bbbb, abbbb, aabb, bbabb, abbabb, aaa, . . .}

Discrete Event Systems can be described by languages. If a physical system
generates a set of events Σ, the behaviour of the plant can be described by
L,Lm ⊆ Σ∗. The language L is formed by all strings representing the possible
physical events of the plant. Lm ⊆ L includes all strings of L, which correspond
to completed tasks.

To express languages in a formal way regular expressions are a good choice.
It is a defined as follows:

• ∅ is a regular expression representing the empty language.

• ǫ is a regular expression meaning the language {ǫ}.

• δ is a regular expression denoting the language {δ} ∀δ ∈ Σ.

• If s and r are regular expressions thus rs, r∗, s∗ and (r+ s) (what means
r or s) are as well.

• Every regular expression can be obtained by applying the rules above a
finite number of times.

1.2.2 Automata

Under an automaton we will understand a form to describe two languages
representing the behavior of a system and thus to present a Discrete Event
System. It can be visualized by a directed graph, which consists of nodes
representing states of the system and directed arcs between them representing
transitions.

Definition 1.2.9 (Deterministic Automaton). A deterministic Automaton G
is a five – tuple

G = (X,Σ, f, x0,Xm)

where:

• X is the set of states,

• Σ is the set of events, which define the alphabet of the generated language,

• f : X × Σ → X is the, possibly partial, transition function,

• x0 is the initial state and

• Xm ⊆ X is the set of marked states.

6 CHAPTER 1. THEORY AND TOOLS

Figure 1.1: A simple automaton

3

21

b, c

a, b

c

a

b

Every language, which can described using a regular expression, can also
be expressed as an finite automaton, where the set of states is finite.

Example 1.2.10. The automaton in Figure 1.1 describes a Discrete Event Sys-
tem with the event set Σ = {a, b, c} and three states, X = {1,2,3}. The marked
states are Xm = {1,3} ⊆ X , visualized by a double circle, and the initial state
is 1, marked by an arrow. The transition function f is partial in this case.

f(1,a) = 1, f(1,b) = 2,
f(2,a) = f(2,b) = 2, f(2,c) = 3,

f(3,b) = f(3,c) = 1

The transitions f(1,c) and f(3,a) are not defined.

The transition function f can be extended to f̂ , which can operate sequences
of transitions in the following way:

f̂(x,ǫ) := x

f̂(x,δ) := f(x,δ), δ ∈ Σ

f̂(x, sδ) := f(f̂(x,s),δ), s ∈ Σ∗, δ ∈ Σ

Example 1.2.11. So the extended transition function of the automaton of Figure 1.1
would be

f̂(1, abc) = f(f̂(1,ab),c) = f(f(f(1,a),b),c) = f(f(1,b),c) = f(2,c) = 3

As we said an automaton G is presenting two languages. The generated
language L(G) and the marked language Lm(G), which are defined as follows.

L(G) := {s ∈ Σ : f̂(x0,s) is defined}

Lm(G) := {s ∈ L(G) : f̂(x0,s) ∈ Xm}

Example 1.2.12. The languages corresponding to the automaton in Figure 1.1
are

L(G) = (a∗b(a+ b)∗c(b+ c))∗ (ǫ+ a∗ + a∗b(a+ b)∗(ǫ+ c+ c(b+ c)))

Lm(G) = (a∗b(a+ b)∗c(b+ c))∗ (a∗ + a∗b(a+ b)∗(c+ c(b+ c)))

Definition 1.2.13 (Equivialent Automaton). Two automaton G1 and G2 are
said to be equivalent if

L(G1) = L(G2) and Lm(G1) = Lm(G2)

1.2. DISCRETE EVENT SYSTEMS 7

Definition 1.2.14 (Accessible Part). A state x of G is said to be accessible if
in the language generated by G, L(G), exists at least one sequence of events
s ∈ L(G), which satisfies

x = f̂(x0, s)

All accessible states of an automaton build the accessible part Ac(G). A au-
tomaton is said to be accessible if Ac(G) = G.

Definition 1.2.15 (Coaccessible Part). A state x of G is said to be coaccessible
if in the marked language generated by G, Lm(G), there exists at least one
sequence of events s ∈ Lm(G), which goes through x. All coaccessible states
of an automaton build the coaccessible part CoAc(G). An automaton is said
to be coaccessible or nonblocking if CoAc(G) = G or

Lm(G) = L(G)

.

Definition 1.2.16 (Trim Part). An automaton or a part of an automaton,
which is accessible and coaccessible, is said to be trim or the trim part.

Figure 1.2: A not accessible and not coaccessible automaton

1 5

3

4

62

a

c

a

c

b

b

Example 1.2.17. The automaton shown in Figure 1.2 is neither accessible nor
coaccessible. The accessible part contains the states XAc = {1,2,3,4,6}. The
states XCoAc = {1,2,3,5,6} are coaccessible and the states {1,2,3,6} build the
trim part of the automaton. Although in state 6 no more transition is possible,
it is coaccessible, because it is marked.

Definition 1.2.18 (Blocking). An automaton G is said to be blocking, if

Lm(G) ⊂ L(G).

Example 1.2.19. The automaton in Figure 1.2 is blocking because from state
4 it is not possible to reach a marked state.

abb ∈ L(G) but abb /∈ Lm(G)

Often it is useful to model small parts of a bigger system and afterwards
add them to the complete model. Therefore the parallel composition is used.

8 CHAPTER 1. THEORY AND TOOLS

Definition 1.2.20 (Parallel Composition). The parallel composition of the
automata G1 and G2 is the automaton

G1||G2 := Ac(X1 ×X2,Σ1 ∪Σ2, f1||2, (x01 ,x02), Xm1
×Xm2

)

with

f1||2 : (X1 ×X2)× (Σ1 ∪ Σ2) → (X1 ×X2)

f1||2((x1,x2),δ) :=

(f1(x1,δ),f2(x2,δ)) if δ ∈ Σ1 ∩ Σ2 and δ ∈ Σ1(x1) ∪Σ2(x2)
(f1(x1,δ),x2) if δ ∈ Σ1, δ /∈ Σ2 and δ ∈ Σ1(x1)
(x1,f2(x2,δ)) if δ ∈ Σ2, δ /∈ Σ1 and δ ∈ Σ2(x2)
undefined otherwise

Note, that Σ(x) is the set of all events, which can occur in a state x.
The parallel composition is commutative and associative.

G1||G2 = G2||G1 G1||(G2||G3) = (G1||G2)||G3

Since now we did not make any difference between events assuming their
behavior would be equal. In fact two properties of events need to be explained
before talking about Supervisory Control Theory.

An event is said controllable if it can be prevented from happening, or
disabled, by supervisors. An uncontrollable event cannot be prevented from
happening. The disjoint subsets of controllable events Σc and the uncontrol-
lable events Σuc build the event set of a system.

Σ = Σc∪̇Σuc

In the following controllable events will be illustrated as a solid arrow and
uncontrollable ones as a dashed arrow, as shown in Figure 1.3.

Figure 1.3: A simple workstation

finish

start

Example 1.2.21. A simple system could be a single machine as in Figure 1.3
processing a piece of work. The event start to start the process is controllable
while the event finish only depends on the machine and cannot be prevented
to happen.

Another important property of events is observability. An event, which can
be detected by the supervisor is called observable, one, that cannot be seen by
the supervisor is said to be unobservable. The disjoint subsets of observable
events Σo and unobservable events Σuo build the event set of a system.

Σ = Σo∪̇Σuo

As all events in the future example of this work will be observable, the prob-
lem of unobservability won’t be discussed here any further. To learn more about
dealing with unobservability chapter 3.7 of Introduction to Discrete Event Sys-
tems by Cassandras and Lafortune, [8], is recommended.

1.3. SUPERVISORY CONTROL THEORY 9

1.3 Supervisory Control Theory

1.3.1 Construction of an optimal, nonblocking supervisor

After discussing basic facts about Discrete Event Systems, now we want to
introduce Supervisory Control Theory.

One of the most important elements of continuous control is the idea of
feedback. One or more output signal from the system is used to calculate
the best input signals in order to influence the behavior of the system and its
outputs.

This main idea fits also to supervisors in Discrete Event Systems. Observ-
able events can be detected by sensors in order to disable controllable events
according to these informations to influence the systems behavior.

A supervisor is an automaton S, with the same event set as the plant G,
ΣG = ΣS . The occurrence of an event in the plant will also cause transitions
in the supervisor. In each state of the supervisor one or more controllable
event can be disabled in G in order to satisfy given specifications. Certainly
the language generated by the controlled system can be smaller or equal than
L(G). If the System is controllable, the controlled System S/G can be described
by the parallel composition S||G.

K := L(S/G) = L(S||G) ⊆ L(G) Lm(S/G) = Lm(S||G) ⊆ Lm(G)

K is the language generated by the controlled system.
To control a DES using a supervisor the following steps need to be imple-

mented.

1. Model the plant, which should be controlled.

2. Create automata that represent the specifications, which should be re-
spected.

3. Generate a nonblocking and optimal supervisor.

Often the system can be divided in smaller parts. After modeling all parts
separately the plant G is obtained by building the parallel composition of all
parts.

Normally the controlled system should satisfy more than one specification
Ei. The conjunction of all specifications is build by the parallel composition E
of all automata representing individual requirements.

How to model a plant and its specification will be discussed further in
Chapter 2.

The plant G and the conjunction of requirements E now are taken to build
the supervisor S in the following steps.

1. Build the parallel composition of the plant G and the conjunction of all
specifications E: R = G||E

2. Delete all non accessible and non coaccessible states of R.

3. Find all forbidden states. If there aren’t any , R = S.

10 CHAPTER 1. THEORY AND TOOLS

4. Delete all forbidden states and go back to step 2.

A state q = (x,·) of R is said to be forbidden, if an uncontrollable event
δ ∈ Σuc could occur in the plant, δ ∈ ΣG(x), but not in R, δ /∈ ΣR(q). Or,
in other words, the supervisor would have to prevent the occurrence of an
uncontrollable event, that cannot be disabled.

The result of this algorithm is the supervisor S = (Ω,Σ,fs,ω0,Ωm). To every
state in this automaton corresponds a list of controllable events, which could
occur in the plant in the certain state, but not in the supervisor and thus must
be disabled.

It is easy to see, that the algorithm to compute a supervisor above will
always converge. The worst case would be an empty supervisor when all states
were deleted.

Definition 1.3.1 (Controllability). Let K and M = M̄ be languages over
event set Σ. Let Σuc be a designated subset of Σ. K is said to be controllable
with respect to M and Σuc if

KΣuc ∩M ⊆ K.

1.3.2 Reduction of supervisors

To create a supervisor often the parallel composition of parts of the plant and
of divers automata representing specifications need to be built. That can cause
an exponential growth in the worst case. So even for small systems supervisors
can reach huge sizes.

The main problem with very big supervisors is not only the needed memory
space for implementation but also the loss off understandability.

In order to solve this problem, A.F. Vaz and W.M. Wonham developed in
[25] a first idea how to reduce supervisors, which was taken up in [18], [26] and
[24]. We only want to give a short introduction to this algorithm, based on
[25].

First we have to define a supervisor S as a combination of an automaton
{Q,Σ,ξ,q0,Qm}, and a control law ψ : Q×Σ → {0,1,dc}. (Note, that S now is
a six – tuple.) ψ is defined as follows.

Definition 1.3.2 (Control Law).

ψ(q,δ) =

0 if δ is disabled , (∃s ∈ K : ξ(q0,s) = q,sδ ∈ L, sδ /∈ K)
1 if δ is enabled , (∃s ∈ K : ξ(q0,s) = q,sδ ∈ K)
dc if δ don’t care , (∃s ∈ K : ξ(q0,s) = q,sδ /∈ L)

The main idea is to merge states in covers.

Definition 1.3.3 (Cover of S). A cover of a supervisor S = {Q,Σ,ξ,q0,Qm,ψ}
is a family C = {Qi,i ∈ I} of subsets of Q with the following properties

(∀i)Qi 6= ∅;

for a subset Im ∈ I,

Qm = ∪{Qi|i ∈ Im}, Q−Qm = ∪{Qi|i ∈ I − Im};

1.4. TOOLS 11

(∀i,δ) : (∃y ∈ Qi)ξ(y,δ) is defined

⇒ (∀q ∈ Qi)(∃j) · ξ(q,δ) is defined ⇒ ξ(q,δ) ∈ Qj

(∀i, δ)(∀x,y ∈ Qi)ψ(x,δ) 6= dc 6= ψ(y,δ) ⇒ ψ(x,δ) = ψ(y,δ)

That means basicly, that marked and non marked states are merged in cov-
ers. The cover elements behave in the same way under the transition function
and they exhibit uniform control action at those states where control matters.

We define a reduced supervisor S̄ as follows

Definition 1.3.4 (Reduced Supervisor).

S̄ = {I,Σ,ξ̄,i0,Im,ψ̄}

select i0 ∈ I such that q0 ∈ Qi0;

define ξ̄ : I × Σ → I as follows:

for δ ∈ Σ,i ∈ I select j ∈ I such that ξ̄(i,δ) := j;

define ψ̄ : I × Σ → {0,1,dc} as follows:

for δ ∈ Σ, i ∈ I, if there exist q ∈ Qi such thatψ(q,δ) 6= dc

then let ψ̄(i,δ) := ψ(q,δ);

otherwise let ψ̄(i,δ) := dc.

Normally there are more than one possibility to build covers. So there will
be more than one possible reduced supervisor, depending on the selection of
covers. But clearly every reduced supervisor has to generate the same language
in combination with the plant.

L(S/G) = L(S̄1/G) = L(S̄2/G)

1.4 Tools

To handle bigger systems it is recommendable to use some software tools as
GRAIL, IDES or TCT. The implemented algorithms can be used to model,
analyze and edit automata as well as compute supervisors and, at least in
GRAIL and TCT, reduce supervisors. IDES can even be used to generate
PLC–code as Instruction List.

There exist of course more programs or toolboxes, that treat discrete event
systems. Since we just used GRAIL, IDES and TCT, we will only introduce
these three tools.

12 CHAPTER 1. THEORY AND TOOLS

1.4.1 TCT

TCT was developed by the Systems Control Group of the University of Toronto.
It is a clearly arranged program for the “synthesis of supervisory controls for
untimed discrete-event systems.”,[28]. Automata are saved as a a five-tuple

[Size, Init,Mark, V oc, T ran]

Size is the number of states. The states will be numbered {0, 1, 2, . . . Size−
1}. The initial state, Init, is allways 0. A list of all marked states is saved
as Mark. Vocal states, Voc, are represented as a pair [I,V], representing the
positive integer output I at state V . Transitions are saved as triples [exit state,
event, entrance state] in the list Tran.

Events can be named by positive integers between 0 and 999. Odd numbers
represent controllable events, even numbers uncontrollable ones.

Among other things procedures to create, edit and show automata, add
selfloops, build the trim part of an automaton, build the parallel composition
of two automata, reduce a supervisor and test for conflicts and isomorphism
are available.

For Windows and Linux the tool can be downloaded fromWonham’s webpage,[7].

1.4.2 GRAIL

In 1994 GRAIL was introduced by Raymond and Wood, [22]. Grail is a sym-
bolic computation environment for finite-state machines, regular expressions,
and other formal language theory objects., [3].

GRAIL is written in C++ and can handle regular expressions, automata
and finite languages as well. The newest version (GRAIL 3.0 / GRAIL+) is
available at Raymond’s webpage [3].

The group of José E. R. Cury of the Departamento de Automação e Sistemas
of the Universidade Federal de Santa Catarina also implemented a Multitask-
ing toolbox, a Hierarchical toolbox and Condition/Event toolbox, which are
available at Cury’s webpage, [5].

Use of GRAIL is less restrictive than TCT. States are also named with
natural numbers and the initial state has not to be 0. Event names can contain
numbers and letters as well as underlines. It is also possible to create batch
files to combine different functions.

To learn more about GRAIL a small guide is available on Raymond’s, [3],
and on Cury’s webpage, [5]. We also can recommend C. Reiser’s masterthesis,
[23].

1.4.3 IDES

If a more user friendly program is desired, IDES may be a good choice. This
java based program was developed by the DES Lab at Queen’s University.

It allows a visual approach as automata are created and edited via drag
and drop with the mouse. All common routines to process automata are im-
plemented. Unfortunately an algorithm to reduce supervisors has not been
implemented yet. The IDES.jar file, which runs under Windows, Linux and
MacOSX, can be downloaded at the webpage [4]. A short users guide is avail-
able on the page as well.

1.4. TOOLS 13

In this project an experimental version of IDES with some additional fea-
tures was used. Some often used automata are available as templates ore can
be added to the templates library. After creating a template the user can eas-
ily combine different parts of the plant and specifications via arcs. It is also
possibly to generate PLC–code (Instruction List), import and export files from
and to GRAIL and TCT. More information will be available at [16].

Chapter 2

Models and specifications

Here we want to introduce the little mechanical model
of a fabric cell, which will be controlled later via mod-
ular and monolithic supervisors. First a description
of the physical system is presented, followed by the
description of four possible ways to model the plant
and their specifications for three of the four models.
Finally these models will be compared.

2.1 Introduction

In real life most systems are based on continuous processes and can be de-
scribed with continuous variables as velocity, time or high quite well. In some
situations modeling a system with a continuous approach is possible but not
recommended, because that would cause a huge systems with a lot of informa-
tion, which is not needed to control the system. To model such a system as a
Discrete Event System, it can help to reduce the model and focus only on the
details needed to control the system.

To decide how actions of the real system are represented by events is a not
trivial task. According to requirements different ways to model the system
are possible. A very detailed model, which works with many specific events
is a good way to describe the system close to the real problem. Very precise
information can be a big advantage on the one hand but will lead to a larger
model, which can be difficult to handle.

Corresponding to targeted control requirements, building a more abstract
model can help to reduce the size of the model. To decrease the number of
events some events can be merged. This reduction in complexity will lead to a
smaller and easier to treat model. But the loss of details also involve a loss of
information which may reduce the possible control also.

To model a real system as a Discrete Event System depends on the desired
control tasks as well as the need of detailed information about the system state.
After introducing the model of a fabric cell, in Section 2.2, four different ways
to model it as a set of automata, in Section 2.4, Section 2.5 and Section 2.6,
and the comparison of them, in Section 2.7, will follow in this chapter.

Some of the presented ways to model the specifications in the following
chapter are based on [17].

15

16 CHAPTER 2. MODELS AND SPECIFICATIONS

2.2 Testbed

The manufacturing cell, shown in Figure 2.1 was constructed by students of
Curso Superior de Tecnologia em Automação Industrial – CSTAI of the Cen-
tro Federal de Educação Tecnológica de Santa Catarina – CEFETSC in Flori-
anópolis, Brazil, [2].

Figure 2.1: Photo of the testbet

2.2.1 Verbal description

In Figure 2.2 a plan of the cell is presented. The central element is the robot,
which can rotate 360 ◦ in both directions. The locations around the robot are
numbered from 0 to 6. It is not possible to rotate more than 360 ◦. If the robot
arm passes the region between 6 and 0 it will be detected by sensor. The drive
mechanism is realized by a stepper motor with two inputs. The first one for
the direction of rotation and the second for the steps.

The grabber can close and open in order to grab or release a piece of work. It
is also driven by a stepper motor with two inputs for the direction of rotation
and the steps. The maximal opening position is detected by a mechanical
sensor.

The rotation of the table in both directions is also driven by a stepper motor
with two inputs for the direction of rotation and the steps. A sensor can be
used to detect the table position at a certain place.

Pieces can arrive at two ports: port 1 at place 1 (standard input) and port
2 at place 6 (rework input). Incoming pieces has to be transported to the
table at place 2. If new pieces arrive at a port, they will be detected by the
corresponding mechanical sensor at the port.

Around the table three workstations for drilling, welding and testing the
pieces are modeled. A motor at the drilling station simulates the drilling pro-

2.2. TESTBED 17

Figure 2.2: Scheme of the testbet

cess. A capacitive sensor can detect if a piece of work is placed in front of the
drilling station. The weld is simulated by a LED and a capacitive sensor to
detect pieces. The test station is represented by an inductive sensor that can
distinguish between an approved and a disapproved piece of work.

Pieces of work are plastic cylinders with a diameter of 4cm and a height of
2cm with or without a metallic screw on top, shown in Figure 2.3. Pieces with
a screw should be approved, pieces without one should be disapproved.

Figure 2.3: Photo of pieces of work

The grabber can release pieces of work at three outcomes situated at posi-
tion 3 (approved pieces), 4 (disapproved pieces) and 5 (rework) between the
table at position 2 and the second port at position 6.

2.2.2 Sensors and actuators

A table with the inputs and outputs is shown in Table 2.1 and Table 2.2.

18 CHAPTER 2. MODELS AND SPECIFICATIONS

Table 2.1: Inputs

In Sensor type Location Function
E1 mechanical port 1 detects arriving pieces at port 1
E2 mechanical grabber detects if the grabber is opened
E3 mechanical robot arm detects arm in reference position
E4 mechanical table detects a certain table position
E5 capacitive drill detects pieces in front of drilling station
E6 capacitive weld detects pieces in front of welding station
E7 inductive test detects if pieces are with or without screw
E8 mechanical port 2 detects arriving pieces at port 2

Table 2.2: Outputs

Out Actuator type Location Function
S1 stepper motor grabber information about direction of rotation
S2 stepper motor grabber number of steps
S3 stepper motor robot arm information about direction of rotation
S4 stepper motor robot arm number of steps
S5 stepper motor table information about direction of rotation
S6 stepper motor table number of steps
S7 DC motor drill simulate drilling
S8 LED weld simulate welding

2.2.3 Desired proceeding

Pieces coming from the standard income (port 1) should be transported by the
robot to the table and pass the drilling and the welding station. Afterwards
pieces need to be tested. If the test is positive, which means that the piece of
work holds a screw, the pieces should be deposited at outcome 3. Disapproved
pieces should go to outcome 5. They will be reworked in a separated, not
modeled section.

After being reworked, pieces will enter in the system again via the second
port at position 6. These pieces must not be drilled or welded again. They
only need to be tested. Approved pieces should be deposited at outcome 3. If
a piece is disapproved the second time, it will not be reworked again and is
deposited at outcome 4.

That can be realized in different ways. It is possible to put pieces from port
2 at the table, rotate the table 90 ◦ counterclockwise, test it, rotate the table
90 ◦ clockwise and deposit the piece at the corresponding outcome.

Also it may be possible to always rotate the table clockwise. So if a piece
stems from port 2, it should be ignored at the drilling and the welding station,
tested and put away properly.

2.3. SIMILARITIES 19

2.3 Similarities

2.3.1 Modeling the plant

Four different ways to model the plant described in Subsection 2.2.1 will be
presented below. Although every model has its special characters some parts
are the same in every approach. The automata modeling the table, the drill,
the weld, the test and the two ports are equal in these four models.

The drill and the weld are modeled in a similar way. The automata, pre-
sented in Figure 2.4, consist of two states and two transitions. If the event
stdri or stwel occurs the plant will move from the initial state 0 (idle) to 1
(working). These events are controllable and start the drilling or the welding
procedure. When finishing the routine, the uncontrollable event fidri or fiwel
will cause the transition back to the state 0. The initial state is marked because
a completed task would mean, that the drilling or the welding was finished.

Figure 2.4: Model: drilling and welding station

10

fidri

stdri

10

fiwel

stwel

The automaton representing the table, shown in Figure 2.5 is almost like
modeling the drill and the weld. But the table can move in both directions,
so three events are needed: stclock to start the table rotating 90 ◦ clockwise,
stcounter to start the table rotating 90 ◦ counterclockwise and fitab to represent
the finish of a rotation. The three states represent the status of the table: 0 if
it is idle, 1 if it is rotating clockwise and 2 if it is rotating counterclockwise.

Figure 2.5: Model: table

2 10

ficlock

stcounter

ficounter

stclock

In some cases it will not be necessary to let the table rotate counterclock-
wise. So only states 0 and 1 and the events stclock and fitab are needed.

The test is started by the controllable event sttes. It can finish in two ways.
If the piece got a screw on its top, it should be detected by the sensor and the
event fipos will occur, otherwise the event fineg will occur. So the automaton
would consist of two states and three transitions.

In some situations it can be helpful to have two events to start the test,
sttes1 and sttes2, as we see later. The automaton with two states and four
transitions is shown in Figure 2.6.

Figure 2.6: Model: test

10

fipos, fineg

sttes1, sttes2

20 CHAPTER 2. MODELS AND SPECIFICATIONS

The arrival of pieces at port 1 and 2 will be modeled by the events arr1
and arr2. As they do not depend on other events they are represented by two
simple automaton with one state and a selfloop, illustrated in Figure 2.7.

Figure 2.7: Model: port 1 and port 2

0

arr1

0

arr2

If a piece of work is located at the drilling or the welding station, it will be
detected by one of the two capacitive sensors. The signals are modeled by two
automata with a single state and a selfloop, representing the uncontrollable
events sigdri or sigwel, respectively.

The most important part of the plant is the robot with the rotating arm and
its grabber. It was modeled in four ways, mentioned in the following sections
(Section 2.4, Section 2.5 and Section 2.6).

2.3.2 Modeling the specifications

Mutual exclusion, E11 – E13

In any case it is important to make sure, that the table is not moving while
a workstation, like the drill, the weld or the test, is working. This can be
avoided by specifications of the kind mutual exclusion. It make sure, that only
one process can run at a time. There are shown in Figure 2.8.

Figure 2.8: Specification: mutual exclusion, E11, E12 and E13

10

fidri, ficlock, (ficounter)

stdri, stclock, (stcounter)

10

fiwel, ficlock, (ficounter)

stwel, stclock, (stcounter)

10

fipos, fineg, ficlock, (ficounter)

sttes1, (sttes2), stclock, (stcounter)

Avoid moving empty table, E2

One of the most important elements in the manufacturing cell is the table,
which moves pieces of work from one workstation to another. Although it is
important to make sure that the table is able to move in most situations, it
should not rotate while it is empty.

To detect, if a piece of work is located on the table, several events are used.
A piece at the drilling station can be detected by sigdri or fidri, if you make
sure, that the drill only runs with a piece.

The same can be said for the events sigwel and fiwel, corresponding to the
welding station. A piece located at the test station is detected by the events
corresponding to the test result, fipos or fineg.

2.4. MODEL 1 21

If the robot put a piece on the table, it cannot be detected by a sensor.
Nevertheless the table should rotate 90 ◦ clockwise. The event corresponding
to the action release a piece at the table differs according to the model of the
robot. It will be called releasepiece here and will be substituted later by the
corresponding event of every model.

At least one of these events is needed to move from state 0 to 1 from which
the event stclock to rotate the table clockwise is allowed.

Figure 2.9: Specification: avoid moving empty table, E2

10

fidri, sigdri, fiwel, sigwel, fipos, fineg, releasepiece

stclock

fidri, sigdri, fiwel, sigwel, fipos, fineg, releasepiece

2.4 Model 1

2.4.1 Modeling the robot

It is easy to see, that the position 2 is the most important around the robot.
So the situation robot is situated next to the table with an open grabber will be
the initial state.

A piece can be taken from port 1 at position 1. The event stgra1 means
that the grabber starts to move towards position 1, closes the grabber in order
to get a piece from port 1, moves back to position 2 and opens the grabber to
release the piece. The end of this procedure is detected by the uncontrollable
event figra1.

The events stgra6 and figra6 describe the action of getting a piece from the
second port at position 6. It is only needed if the model includes the rework.

After processing a piece at the workstations it should be taken from the
table, moved to the corresponding outcome, the grabber should open to release
the piece and move back to the table. The events stput3, stput4 and fiput are
needed in any case, stput5 only if the rework is modeled as well. Because all
procedures to put away a piece end with the same event, fiput, only 4 states to
model this simple robot are needed. The automaton is shown in Figure 2.10.

2.4.2 Modeling the specifications without rework

To start to model all specifications for the first model, we will begin without
the rework. So the table only need to rotate clockwise (stclock, ficlock), only
one test routine (sttes1) is needed. The model of the robot in composed of
three states and five transitions (stgra1, figra1, stput3, stput4, fiput).

Approved pieces will be put to outcome 3 (stput3), disapproved ones to 4
(stput4). Now some more specifications than in Subsection 2.3.2 on page 20
are needed.

Mutual exclusion, E14

It is not desired that the table is moving while the robot is acting next to
it. Because the model of the robot is very simple, from the moment of the

22 CHAPTER 2. MODELS AND SPECIFICATIONS

Figure 2.10: Model 1: robot

2

1

3

0

stgra6

stput3, stput4, stput5

figra1

figra6

fiput

stgra1

occurrence of stgra1, stput3 or stput4 till figra1 or fiput, respectively, no in-
formation about the actual position of the robot is available. So in order to
avoid collisions between the table and the robot it has to be avoided, that they
work at the same time. This specification is modeled by a simple two states
automaton, demonstrated in Figure 2.11.

Figure 2.11: Specification model 1 without rework: mutual exclusion, E14

10

ficlock, figra1, fiput

stclock, stgra1, stput3, stput4

Operating sequence, E3’s

If a piece of work was put on the table, it should be impossible to put a new
one without rotating the table before. Furthermore every piece coming from
port 1 should be drilled once. The automaton representing this specification is
shown in Figure 2.12.

Figure 2.12: Specification model 1 without rework: operating sequence, E31

21 30
figra1

stdri

stclock

stdri

stclock

figra1

If a piece was drilled, one want to make sure, that it won’t be drilled twice.
Also it is desired to make sure that a piece is welded once after being drilled.
To guarantee this operating sequence the specification E32 is used, displayed
in Figure 2.13.

In the same way E33 is used to make sure, that a welded piece is tested
afterwards, shown in Figure 2.14.

2.4. MODEL 1 23

Figure 2.13: Specification model 1 without rework: operating sequence, E32

21 30
fidri

stwel

stclock

stwel

stclock

fidri

Figure 2.14: Specification model 1 without rework: operating sequence, E33

21 30
fiwel

sttes1

stclock

sttes1

stclock

fiwel

Also after testing the piece once, the table should transport it to the po-
sition, where the robot can grab it and put it away, either to outcome 3 or
4. As long as the place at the table next to the robot is empty (states 0 and
1), it is allowed to release new pieces there. The event figra1 can occur. The
automaton is illustrated in Figure 2.15.

Figure 2.15: Specification model 1 without rework: operating sequence, E34

21 30
fipos, fineg

stput3, stput4

figra1

stclock

stput3, stput4
figra1

stclock

fipos, fineg

Chose the corresponding outcome, E4

It is fundamental to assure to put every piece to the corresponding outcome.
Approved ones should be put at 3, disapproved ones to 4. The automaton in
Figure 2.16 consists of seven states. If no piece has been tested, it is in state
0, if the test result is positive (fipos) it moves to state p, in case of a negative
result (fineg) to n. After rotating the table it is possible that the next piece was
tested before the first one was taken away from the table. So as to memorize
the test result information the states pp, pn, np and nn are needed.

Get new pieces, E5

The robot only should move to position 1 to get a new piece (stgra1) , if one
arrived at port 1 (arr1). If one piece arrived, it is mechanically not possible,
that a second piece arrives before taking away the first. As the arrival was
modeled as simple automaton with an uncontrollable selfloop (Figure 2.7), it

24 CHAPTER 2. MODELS AND SPECIFICATIONS

Figure 2.16: Specification model 1 without rework: corresponding outcome, E4

n

pn nn

p

pp

np

0

fineg

stput4

fineg

stput3

stput3

fipos stput4

stput4

fineg

stput3

fipos

fipos

is necessary to add a selfloop at state 1 of the specification in Figure 2.17, in
order to get a non empty supervisor.

Figure 2.17: Specification model 1 without rework: get new pieces, E5

10 arr1

stgra1

arr1

2.4.3 Modeling the specifications with rework 1

As managed before, pieces coming from port 2 at position 6 only need to be
tested. One idea to realize it, would be the following: Get a piece from port 2,
put it onto the table, rotate the table 90 ◦ counterclockwise, test the piece and
put it to outcome 3 or 4, respectively.

Alternative routine, E6

We could call the treatment of pieces coming from the first port as standard.
When getting a reworked piece the system should handle it in the way explained
above and till putting it to the corresponding outcome interrupt the standard
routine. The operational procedure for the alternative routine is organized by
the specification E6, presented below in Figure 2.18.

The alternative routine starts if a piece was taken from the second port
(figra6). After rotating the table counterclockwise, testing the piece and ro-
tating the table clockwise to the original position, it is put to outcome 3 or 4
depending on the test result.

As long as the system is handling pieces in the normal way, it should be
possible to rotate the table only clockwise, get new pieces from port 1, test
them or put them to 3 and 5, so the corresponding events are added as a
selfloop on state 0. All events not mentioned in E6 won’t be disabled in any
state.

2.4. MODEL 1 25

Figure 2.18: Specification model 1 rework 1: alternative routine, E6

2

46

1

35

0

figra1, fipos, fineg, stclock, stput5

stclock
stput3

fineg

figra6

stput4

stcounter

fipos

stclock

Actually the occurrence of all of them (for example stdri or stwel) will not
be possible during the alternative routine. Later on we will see how other
specifications will be modified to assure the desired behavior.

Mutual exclusion, E1’s

Now, as we also need to rotate the table counterclockwise, to take pieces from
the second port at position 6 and put pieces to the outcome 5, from where
from it goes to the not modeled rework part, the events stcounter, ficounter,
stgra6, figra6 and stput5 has to be added to E14. The extended automaton is
shown in Figure 2.19

Figure 2.19: Specification model 1 rework 1: mutual ecxlusion, E14

1
0

stclock, stcounter, stgra1, stgra6, stput3, stput4, stput5

ficlock, ficounter, figra1, figra6, fiput

stcounter and ficounter also need to be extended to the specifications E11,
E12 and E13.

Operating sequence, E3’s

While handling standard pieces the operating sequences should be passed as
mentioned in Subsection 2.3.2 and Subsection 2.4.2. But when entering at the
alternative they should pause and after passing the routine continue at the
same state.

For every state where you can enter to the alternative routine an extra
state is added, corresponding the pausing standard routine. In this pausing
state all events off the normal operating sequence, which are needed while the
alternative routine, are added as a selfloop to these states (e.g. stclock).

With which events the transition from a standard procedure state to a
alternative procedure state and the transition back are made, depend on the
specification.

The extended specification E31 is demonstrated in Figure 2.20. Only in the
states 0 and 2 it is possible to enter the alternative routine with the event

26 CHAPTER 2. MODELS AND SPECIFICATIONS

figra6. States 1 and 3 correspond to situations, where a piece from port 1
already occupies the place on the table next to the robot.

As the events stput3, 4 or 5 are not part of E31 and before completing the
alternative procedure it is not possible to get pieces from port 1 (stgra1 and
figra1), the event stclock can be used as the transition back to the standard
routine.

Figure 2.20: Specification model 1 rework 1: operating sequence, E31

2

4

1 3

5

0

figra6

stclock figra1

figra6

stdri

figra1

stclock stclock

stdri
stclock

In the specifications E32 and E33 a transition from a standard situation
to a state corresponding to the alternative routine is always possible. The
transition from the standard to alternative routine is made by the clockwise
and counterclockwise rotation of the table.

Figure 2.21: Specification model 1 rework 1: operating sequence, E32

2

4
6

1 3

75

0

ficounterstclockstclock stclock

stwel

ficounter

stclock

ficounter

fidri

stclock

stwel

ficounter

fidri

stclock

Because testing a piece during the alternative procedure should be possible
as well, a selfloop with sttes1 has to be added to the states 4 to 7 in Figure 2.22.
Otherwise sttes1 would be disabled in these states.

New pieces should only be grabbed if the place on the table next to the
robot is not occupied by a piece coming from the test station. So entering
the alternative procedure as well as getting a new piece from port 1 is only
possible at state 0 and 1 in Figure 2.23. Because the event stput3 is also part
of the alternativ routine, stput3 and stput4 are used in stead of stclock to mark
the transition back to the standard routine. If stclock would have been used
to mark the transition back to the standard routine, stput3 and stput4 would
have to be added on state 0 and 1 in order not to disable them. That would
mean, that stput3 is not disabled at state 0. So the robot could execute the
corresponding subroutine without a piece located on the table. The occurrence
of stput4 would be disabled by the specification E6.

2.4. MODEL 1 27

Figure 2.22: Specification model 1 rework 1: operating sequence, E33

2

4
6

1 3

75

0

ficounterstclockstclock

sttes1

stclock

sttes1

ficounter

stclock

sttes1

ficounter

sttes1

fiwel

stclock

sttes1

sttes1

ficounter

fiwel

stclock

Figure 2.23: Specification model 1 rework 1: operating sequence, E34

2

4

1 3

5

0

stput4, stput3

stput3, stput5figra1

fipos, fineg

stput3, stput4

figra1

fipos, fineg

stput5, stput3

stclock

stclock

fipos, fineg

figra6

stclock

figra6

fipos, fineg

stclock

Choose the corresponding outcome, E4

The automaton E4 organizes where to release pieces during the standard rou-
tine. Also the extended automaton in Figure 2.24 care only about putting the
pieces from port 1 to the corresponding outcome. Where to put reworked pieces
after testing them is organized by E6, Figure 2.18.

If two pieces were tested (states pp, pn, np and nn) without putting them
away, the place on the table next to the robot is occupied. So get a new piece
from port 2 and enter the alternative routine should not be possible and thus
no extra state was added.

Get new pieces, E5

Now it is possible to get pieces of work from port 1 and port 2, if a piece
arrives at one of them. If at ports a new piece comes in, it would be possible
to get them corresponding to the order of their arrival. Here we prefer to get
a reworked piece, if pieces arrive at both ports. The automaton modeling this
specification can be seen in Figure 2.25.

28 CHAPTER 2. MODELS AND SPECIFICATIONS

Figure 2.24: Specification model 1 rework 1: corresponding outcome, E4

n

pn

napa

nn

p

pp

0a

np

0
stput3

fipos, fineg

fineg
stput3

stput3

figra6

stput5 fipos

stput5

fineg

fipos

stput3, stput4

fipos, finegfipos, fineg figra6

stput3, stput4
fipos

figra6
stput5

stput3, stput4

fineg

Figure 2.25: Specification model 1 rework 1: get new pieces, E5

21

12

0

arr1
arr2

arr1

arr1, arr2

arr2

arr2

stgra6

stgra6

stgra1

arr1

2.4.4 Modeling the specifications with rework 2

Another possibility to realize the treatment of the reworked pieces would be to
rotate the table always clockwise. Thus reworked pieces should be ignored at
the drilling and the welding station.

The automata for the specifications E11 to E14 (mutual exclusion) will be
the nearly same as in Figure 2.8 and Figure 2.19. Of course we don’t need
the events stcounter and ficounter because the table does not require to rotate
counterclockwise.

The events sigdri and sigwel in E2, Figure 2.9, will assure, that the table
can rotate even if there is only a reworked piece on the table, which is not
treated at the drilling and the welding station.

2.4. MODEL 1 29

The specification E5, Get new pieces, will stay the same as in the first
rework part in Figure 2.25.

Operating sequence, E3’s

The operating sequences shown in Figure 2.20 and Figure 2.13 don’t have to
be changed. Only if a piece was taken from port 1 it will be drilled and only a
drilled piece will be welded. So reworked pieces of worked will be ignored both
at the drilling and the welding station.

However, the automaton in Figure 2.14 cannot be used anymore. It would
only allow to test pieces from port 1, because they were drilled before.

We need to know, if a piece has been at the drilling station before rotating
the table. The signal given by the sensor at the welding station (event sigwel)
will show if a piece of work is situated at this workstation. If there was a piece,
but it was not drilled it is reworked one. Pieces from port 1 will be drilled and
detected by the sensor.

Now we will use two different events to represent the test of a piece. All
states in Figure 2.26 are named by two digits. The first one corresponds to the
piece at the testing station (0 = no piece, 1 = piece from port 1, 2 = piece
from port 2), the second to the piece at the welding station.

Figure 2.26: Specification model 1 rework 2: operating sequence, E33

10

12 22

20

01

11 21

02

00

fiwel
sttes1 sttes2

sttes1

sigwel
sigwel

stclock

sigwel

sigwel

stclock

sigwel

fiwel

sigwel

fiwel

sttes2

fiwel

fiwel

sttes1 sttes2

fiwel

sigwelsigwel

sigwel

stclock

Reworked pieces will be tested by the routine 2 (sttes2), pieces from port
1 by 1 (sttes1). Physically both test routines are the same. Later on we will
see, why it will help to make a difference between them.

Also the last specification to organize the operating sequence of Figure 2.15
need to be changed. As the events stput5 and figra6 now are needed as well,
they have to be added. The result is presented in Figure 2.27.

Chose the corresponding outcome, E4’s

To choose the corresponding outcome now depends not only on the test result
but also on the origin of the piece of work. It would be possible to create an
automaton, which saves all information about the origin and the test result of
a piece in order to distinguish between the three different outcomes.

30 CHAPTER 2. MODELS AND SPECIFICATIONS

Figure 2.27: Specification model 1 rework 2: operating sequence, E34

21 30

stput3, stput5, stput4

stclock

figra1, figra6

fipos, fineg

figra1, figra6

stput5, stput4, stput3

fipos, fineg

stclock

The automaton would have to save at least the information about three
places on the table, drilling and test station and next to the robot and would
probably grow because of that. By inventing a second test event, we can save
the information about the origin of the piece by the corresponding test routine,
realized by the automaton E33, shown in Figure 2.26.

Pieces, which were treated the first time, will be tested by using the event
sttes1 and can be put to outcomes 3 or 5. Reworked pieces will be tested by
using sttes2 and should be put to 3 or 4, because they won’t be reworked again.
So the state 12 in ?? means, that first sttes1 and then sttes2 occurred. So the
first piece was a standard one and should be put to outcome 3 or 5 and the
second piece is already reworked and corresponds to the outcome 3 or 4.

Figure 2.28: Specification model 1 rework 2: corresponding outcome, E41

2

12
22

1

11 21

0

stput4, stput3

sttes2

sttes2

stput3, stput5

stput3, stput4

sttes2

sttes1

stput3, stput4

sttes1

stput3, stput5

stput3, stput5

sttes1

The test result is also important to distinguish between the three outcomes.
The specification E42 is almost the same as in Figure 2.16 on page 24. The
only difference will be, that disapproved pieces can be put to outcome 4 or
5. So from the sates n, nn, pn not only the event stput4 but also stput5 is
possible.

Sure, if a test result is positive the piece should go to outcome 3 and the
origin of the piece is irrelevant. It would be possible to create a specification
which combines both E41 and E42.

The solution chosen here follows more the idea of modular control, where it
is preferred to build more and smaller specifications. So the variation of small
details should not cause the changing of a lot of specifications.

2.5. MODEL 2 31

Only one piece at a time, E6

Till now it would be possible to get two pieces from different ports or both
from port 2 without rotating the table. To avoid this a simple automaton with
two states (0 if there is no piece on the table next to the robot, 1 if the place
is already occupied), presented in Figure 2.29.

Figure 2.29: Specification model 1 rework 2: only one piece, E6

10

figra1, figra6

stclock

stclock

2.5 Model 2

2.5.1 Modeling the robot

The Automaton to model the robot we created in the section above, Section 2.4,
is a small but quite restrictive one. If the robot released a piece at one of the
outcomes and want to get a piece from the second port afterward, it has to
move back to position 2 next to the table before going back the same way to
port 2 at position 6. (See Figure 2.2.)

Another problem in the first model is that between the occurrence of the
events stgra1 and figra1 no information about the actual position of the robot
is available. So even if the grabber is empty or not next to the table it is not
possible to detect. That is why we have to avoid the movement of the robot
and the rotation of the table at the same time.

Thus, now we want to create another possible automaton to model the
robot. The second model of the robot is less restrictive and features more
possibilities to influence the movements of the robot.

Now not only the move from and towards position 2 (next to the table) is
possible. Also the motion from position 3, 4 and 5 towards port 2 at position
6 will be modeled now. This will be necessary to get a reworked piece after
releasing one at an outcome.

To detect more details about the actual position of the robot we will estab-
lish a security range around the table from position 1 to 3. In this area we will
avoid to move the closed grabber of the robot and the table at the same time.

As you can see in Figure 2.30, this extensions lead to a greater model with
more transitions and states. The names of the most important states are
generated by the position and the actual condition of the grabber (open or
closed).

The events st21 and fi21 model the movement from position 2 to 1 and
the closure of the grabber. The move back to the table and the opening of the
grabber is presented by st12 and fi12.

After closing the grabber at the table and moving to position 3 (st23 and
fi23), you can as well move to 4 or 5 by st34 or st35, respectively. The
occurrence of the event fi23 will tell us, that the robot has left the security
area around the table and it is possible to rotate the table.

32 CHAPTER 2. MODELS AND SPECIFICATIONS

Figure 2.30: Model 2: robot

4c

5c

1c

3c

3c2o

fi42

st12

fi52 st34

fi32o

fi35
st56

fi21

st32o

fi34

fi32c

st52

st26

st42

st35

st32c

fi23st23

fi63

st46

st36

fi12

st21

At every outcome it is possible to open the grabber and go to position 2 or
6 by st32o, st42, st52, st26, st36, st46 or st56, respectively. (The o at st32o
means, that the grabber will be open while moving back towards the table.)

After moving to position 6 the grabber will close automatically and move
back to position 3 (finish of this process is detected by fi63), before moving
with the closed grabber to position 2 and opening the grabber at the table by
st32c and fi32c.

2.5.2 Modeling the specifications without rework

Again we want to start to model all specifications without respecting the rework
unit. Thus the states and events corresponding with position 5 or 6 are not
needed, (st35, fi35, st52, fi52, st·6, fi63, st32c, fi32c).

The specifications E11 to E13, Figure 2.8, will remain like in model 1. The
releasepiece–event in E2, Figure 2.9, will be replaced by fi12.

Mutual exclusion, E14

One reason to model the robot in the second way was to obtain more detailed
information about the actual position of the robot. This information now is
used in specification E14, Figure 2.31.

Figure 2.31: Specification model 2 without rework: mutual exclusion, E14

10

ficlock, fi12, fi23

stclock, st12, st23

Only if the grabber is closed and the robot is acting in the security area
around the table the table is not allowed to rotate. As well entering or leaving

2.5. MODEL 2 33

the area around the table with a closed grabber while the table is rotating
won’t be admitted.

Operating sequence, E3’s

The specifications concerning the operating sequences will almost remain as for
model 1. Thus the robot is not a part of the second and the third specification,
they can be used without any change, Figure 2.13 and Figure 2.14.

In E31 and E34 the events figra1, stput3 and stput4 will be replaced by fi12
and st23.

Figure 2.32: Specification model 2 without rework: operating sequence, E31

21 30

stdri

stclockfi12

stdri

fi12

stclock

Figure 2.33: Specification model 2 without rework: operating sequence, E34

21 30 fipos, fineg

fi12

st23

stclock

fi12

fipos, fineg

st23
stclock

Chose the corresponding outcome, E4

As seen before approved pieces should be put to outcome 3, disapproved ones
to outcome 4. The automaton in Figure 2.34 consists of 15 states. Since we let
the table rotate while putting away a piece of work and after leaving the safety
zone a third piece can be tested. Thus we need to remember the testresult of
at most three pieces.

Get new pieces, E5

Also the specification to make sure, that the robot only move towards port 1,
if a piece arrived, remains almost the same as in Figure 2.17. The event stgra1
has to be replaced by st21.

2.5.3 Modeling the specifications with rework 1

As managed in Subsection 2.5.3, pieces coming from port 2 at position 6 only
need to be tested. So after getting a piece from port 2, put it onto the table,
rotate the table 90 ◦ counterclockwise, test the piece and put it to outcome 3
or 4, respectively.

34 CHAPTER 2. MODELS AND SPECIFICATIONS

Figure 2.34: Specification model 2 without rework: corresponding outcome, E4

pn

ppn npp

pp

ppp npn

n

nnppnp

nn

p

nnnpnn

np

0

fineg

st32o
fineg

st42

fineg

st32o

fipos fineg

fipos

st32o

st42

fineg

fipos

fipos

st32o

st42

st32o
st42

st42

st42

st42

st32o

fineg

st32o

fipos

fipos

finegfipos

Figure 2.35: Specification model 2 without rework: get new pieces, E5

10

st21

arr1

arr1

Alternative routine, E6

Again we will call the treatment of pieces coming from the first port as standard
and the one for pieces from port 2 alternative routine. The operational proce-
dure for the alternative routine is organized by the specification E6, presented
below in Figure 2.36.

Figure 2.36: Specification model 2 rework 1: alternative routine, E6

2 4

6

1

3

5

0

stclock

fi23

st32o, st36

stclock
stcounter

fi23

fi32c

fipos

st42, st46

fineg

stclock, fipos, fineg, fi12, fi23, st32o, st36, st52, st56

2.5. MODEL 2 35

Now the alternative routine starts if a piece was taken from the second port
and released at the table (fi32c). After rotating the table counterclockwise,
testing the piece and rotating the table clockwise to the original position, it is
put to outcome 3 or 4 depending on the test result.

To make sure, that the grabber closes in order to get the piece of work after
rotating clockwise or within the standard routine, the event fi23 is added as a
selfloop to the states 0, 5 and 6. The supervisor will disable the event st23 at
all other states.

Mutual exclusion, E1’s

Again we have to add the counterclockwise rotation of the table to all specifi-
cations. The specification E14 has to be changed in order to adjust it to the
robot.

Figure 2.37: Specification model 2 rework 1: mutual ecxlusion, E14

10

ficlock, ficounter, fi12, fi23, fi32c

stclock, stcounter, st12, st23, st32c

While the robot is putting a piece on the table or moving a piece away the
table should not rotate.

Operating sequence, E3’s

The automaton shown in Figure 2.21 and Figure 2.22 can be adopted directly
to the second model, because they do not include any event of the robot.

On E31, shown in Figure 2.38, and E34, illustrated in Figure 2.39, some
little changes has to be realized. In E31 we will replace the events figra1 and
figra6 by fi21 and fi32c.

Figure 2.38: Specification model 2 rework 1: operating sequence, E31

2

4

1 3

5

0

stclockfi32c

stclock

stdri

fi12fi12

stdri

stclock fi32c

stclock

In E34stput3 and stput4 have to be replaced by st23 also.

Chose the corresponding outcome, E4

As in Figure 2.34 we need 15 states to remember the testresults of three pieces.
Only if the place on the table next to the robot is empty, the entrance into the
alternative routine by fi32c is possible.

36 CHAPTER 2. MODELS AND SPECIFICATIONS

Figure 2.39: Specification model 2 rework 1: operating sequence, E34

2

4

1 3

5

0

ficounter

fi12, fi32c

fipos, fineg

ficounter

st23

fipos, fineg, stclockfipos, fineg, stclock

stclock

st23

fipos, fineg

st23

stclock, fi12, fi32c
st23

Figure 2.40: Specification model 2 rework 1: corresponding outcome, E4

0A

pn

ppn npp

pA

pp

ppp npn

nA

n

nnppnp

nn

p

nnnpnn

np

0

fipos

st32o, st36

st52

fineg

fipos

st32o, st36
st52, st56

st52

fi32c

fipos

st52, st56

fineg

fineg

fipos, fineg

fipos

fi32c

fipos

st52, st56fipos

st52

fipos, fineg

st52

st32o

fineg
fineg

fi32c

fineg

fineg

fipos
st32o

st32o, st36, st42, st46

st32o

fipos, fineg

st32o, st36

st32o, st36, st42, st46

st32o, st36, st42, st46

st32o

Get new pieces, E5

E5 need to be modified as well, but will stay in the same structure. Only the
events stgra1 and stgra6 have to be replaced by st21, st26, st36, st46 and st56.

2.5.4 Modeling the specifications with rework 2

The idea to realize the rework in the second way is the same as in Subsection 2.4.4.

Because the replacements of events will be similar as mentioned before, we
will not show them in this section but just give an short overview.

2.6. MODEL 3 AND 4 37

The E1’s are the same as in Subsection 2.5.3 without the events stcounter,
ficounter. E34 will stay as in Subsection 2.5.2, E33 is equal to Figure 2.26.

To differentiate between the corresponding outcome, we will again use the
information about the chosen testroutine and the testresult. The only difference
will be, that we need to remember three testroutines and testresoults. So both
automata have 15 states.

An automaton to make sure not to put two pieces on the table at the same
place is needed as well.

2.6 Model 3 and 4

2.6.1 Modeling the robot

It would be possible to model the robot in an even less restrictive way. Every
rotation of the robot from one position to another could be modeled separately.

The events representing the opening and closing of the grabber are only
modeled at the positions where needed.

The model 3, shown in Figure 2.41 has states 23 and 34 transitions.

Figure 2.41: Model 3: robot

12 45

3

6c

6

34

4o

1c

23

4

56

1

4332 54

2o

21

5

5o

65

3o

2c

2

fi32

st45fi12

stclo6

fiope3

fi45 fi56

ficlo1

st56

st54

ficlo6ficlo2

fi54

stclo1

st23

fiope4stope3

fi21 st65

fi23

st43

stope2
fiope5

st32

fi34

stclo2

st34

stope5stope4

fi43 fi65

fiope2

st12

st21

It is easy to see, that on the one hand this model gives the robot more
possibilities to move. On the other hand a specification is needed to assure, that
the events to close and open the grabber occur alternately. The information
about the actual condition of the grabber is not saved in the states of the
model.

It would be possible to model the rotating arm and the grabber of the
robot separately as well. The two automata are presented in Figure 2.42 and
Figure 2.43

Figure 2.42: Model 4: arm

4 62 531

fi65

st23

fi43

st45

st32 st54st43fi21

fi34

fi32
fi54

st21

fi56fi45st34fi12

st65

st56fi23st12

38 CHAPTER 2. MODELS AND SPECIFICATIONS

Figure 2.43: Model 4: grabber

closedopen

stclose

fiopen

ficlose

stopen

With this model it would be possible to rotate the robot and open or close
the grabber at the same time. Sure, that would give us a lot of possibilities to
control the robot, but in this application it is not needed. So using this model
would lead us to a complexity of the plant, which cannot be handled by the
used tools.

Only the model of the robot, which would be the synchronous product of
the Figure 2.42 and Figure 2.43 would consist of 64 states and 144 transitions.

We can see, that modeling every move of the robot separately causes very
complex systems. So we will only try to model the system with the third model
of the robot without rework. Therefor we can cut the states and transitions
corresponding to the fifth and sixth position.

2.6.2 Modeling the specifications without rework

Robot control, E6

We do not want to open the robot the grabber when it is already open or try
to close the close grabber again. Closing and opening the grabber on position
2 one after another does not make a lot sense as well and should be avoided.
Therefor a three states automaton, Figure 2.44, is created.

It forces the robot, once it moved from position 2 to 1, to close the grabber,
move back to position 2 and open the grabber again.

Then, once closed the grabber at position 2, it is only possible to move to
position 3 or 4, open the grabber to release a piece and moving back with the
open grabber.

Figure 2.44: Specification model 3 without rework: Robot control, E6

21 0

stclo1 stope3, stope4

stclo2

st23, st34st12

st21, st32, st43

stope2

Mutual exclusion, E14

Thus the robot is controlled and influenced by E6 in Figure 2.44, we can used
this information about the robots behavior to modify the automaton E14.

2.7. COMPARISON 39

While the the robot is moving with a new piece from port 1 to the table
and opening the grabber we do not want the table to move. The same counts
if the grabber is closing in order to put a treated piece away.

Figure 2.45: Specification model 3 without rework: Mutual exclusion, E14

10

ficlock, fiope2, fi23

stclock, st12, stclo2

Operating sequence, E3’s

The two automata in Figure 2.13 and Figure 2.14 remain as mentioned before.
In Figure 2.12 and Figure 2.15 the events figra1, stput3 and stput4 have to

be replaced by fiope2 and stclo2.

Corresponding outcome, E4

With 15 states the automaton record again the testresult of three pieces. Ap-
proved pieces should be put to outcome 3, stope3, disapproved ones to 4, stope4.

Get new pieces, E5

The robot can only move from 2 to 1 if a piece arrived at the first port.

2.7 Comparison

In this section four different ways to model the robot have been presented.
Depending on the application, every model can be more or less useful. It is
necessary to find the best tradeoff size of the model on the one hand and the
possibilities of the plant on the other hand. In this section we want to give
an overview and compare the models in terms of their size, their features and
their potentials.

First of all, it is useful to keep in mind, what is physical possible in every
model. A short overview is given in Table 2.3.

Table 2.3: Physical possibilities of the models

Model 1 2 3 4
Move to port 2 without moving to the table first n y y y
Detect if the robot has left the area around the table n y y y
Move the robot step by step to every position n n y y
Move the robot and open the grabber at the same time n n n y

In Table 2.4 the number of states of all parts of the four models without
the rework part and of the synchronous product of all parts of the plant (G)
are shown.

Here is it easy to see, that even in the simple approach, without the possi-
bility to rework pieces, models can grow very fast. Model 1 is 13 times smaller
than model 4.

40 CHAPTER 2. MODELS AND SPECIFICATIONS

Table 2.4: Size of models without rework

Model 1 2 3 4
Table 2 2 2 2
Drill 2 2 2 2
Weld 2 2 2 2
Test 2 2 2 2
Port 1 1 1 1 1
Signal drill 1 1 1 1
Signal weld 1 1 1 1
Robot 3 10 15 10

4
Total without rework (G) 48 160 240 640

Table 2.5: Size of models with rework

Model 1 2 3 4
Table 3 / 2 3 / 2 3 / 2 3 / 2
Drill 2 2 2 2
Weld 2 2 2 2
Test 2 2 2 2
Port 1 1 1 1 1
Port 2 1 1 1 1
Signal drill 1 1 1 1
Signal weld 1 1 1 1
Robot 4 16 23 16

4
Total rework 1 (G) 96 384 552 1536
Total rework 2 (G) 64 256 368 1024

In Table 2.5 you can see, that not only the decision to realize the rework
section in the model or not but also the way how it is realized influence the
size of the uncontrolled plant.

Looking on the possibilities of the cell and keeping the desired behavior of
it in mind, it gets clear, that model 3 and 4 are able to realize exactly the same
desired behavior of the plant as the second model but are 1.5 or 4 times bigger
than model 2.

The main problem of the first model is, that the robot and the table cannot
move at the same time and the robot always has to go back to the table before
moving to the second port. But the model is the smallest one and if the table
and the robot are not the velocity determinant elements, this model could be
an excellent choice.

If a monolithic supervisor is required, the synchronous product of all spec-
ifications is needed. According to the desired features of the plant and the
wanted behavior of the controlled plant the result can grow fairly large.

So it is important to have a look at the size of the modeled specifications as
well. A summary of all created specifications is given below in Table 2.6 and
Table 2.7.

2.7. COMPARISON 41

Table 2.6: Size of specifications without rework

Model 1 2 3
Mutual exclusion (table, drill), E11 2 2 2
Mutual exclusion (table, weld), E12 2 2 2
Mutual exclusion (table, test), E13 2 2 2
Mutual exclusion (table, robot), E14 2 2 2
Avoid rotating empty table, E2 2 2 2
Operating sequence (robot, drill), E31 4 4 4
Operating sequence (drill, weld), E32 4 4 4
Operating sequence (weld, test), E33 4 4 4
Operating sequence (test, robot), E34 4 4 4
Corresponding outcome (robot, test), E4 7 15 15
Get new pieces (robot, port 1), E5 2 2 2
Robot control (robot), E6 - - 3
Total, E = ||Ei 3464 30180 12412
E||G 1049 3614 6330

When building a synchronous product of two automata with a number of
states a and b the result could have c = ab states in the worst case. Looking at
the size of the product of all specifications, E, make clear, that even with small
and concise specifications the product of them can lead to hardly manageable
automata.

Comparing the size of the specifications at Table 2.6 it is interesting that
the specifications for model 2 have the same number of states as those for
model 3. But the usage of different events and the additional appearance of
the specification E6 with three states, which only influences the behavior of
the robot, leads to an automaton, that is smaller than the one for the second
model.

If the rework is not implemented, it is not necessary that the robot moves
to port 2. So the only disadvantage of system 1 compared to system 2 is, that
the table and the robot cannot work on the same time. But, in return the
generated automaton is almost nine times smaller.

In Table 2.7 it is interesting to see, that the uncontrolled plant is greater
if the rework is realized in the first way, but the specifications in this case are
smaller than in the second approach. With this information it is not possible
yet to know which controlled system will be smaller in the end.

As you can see, it was not possible to build the synchronous product of the
second model and its specification for rework 2. So it is not possible either to
build the monolithic supervisor with this method and the used tools.

42 CHAPTER 2. MODELS AND SPECIFICATIONS

Table 2.7: Size of specifications with rework

Model, rework 1, rw 1 1, rw 2 2, rw 1 2, rw 2
Mutual exclusion, E11 2 2 2 2
Mutual exclusion, E12 2 2 2 2
Mutual exclusion, E13 2 2 2 2
Mutual exclusion, E14 2 2 2 2
Avoid rotating empty table, E2 2 2 2 2
Operating sequence, E31 6 4 6 4
Operating sequence, E32 8 4 8 4
Operating sequence, E33 8 9 8 9
Operating sequence, E34 6 4 6 4
Corresponding outcome, E4 10 7 18 18

7 15
Get new pieces, E5 4 4 4 4
Alternative rout/one piece, E6 7 2 7 2
Total, E = ||Ei 36192 57920 483000 2530816
E||G 4388 6120 13773 -

Chapter 3

Supervisors

Having modeled the plant and the specifications as
automata, they will be used in this chapter to cal-
culate supervisors to control the system. After the
introduction, not only the monolithic approach but
also how to create modular supervisors and the prob-
lems and chances resulting from this approach will be
discussed.

3.1 Introduction

Building the automata to model the uncontrolled plant and the specifications
characterizing the desired behavior of the plant is the first and most difficult
step to realize a supervisor.

How to create an optimal, nonblocking supervisor has been discussed in
Subsection 1.3.1 on page 9. This routine is well defined and can be done by
several tools. Some of them (TCT, GRAIL and IDES) have been presented
shortly in Section 1.4 on page 11.

It is not always possible to calculate a supervisor. If the plant is not able
to realize the wanted behavior without the possibility of the occurrence of an
undesired uncontrollable event, the supervisor will be empty. In this case the
plant is not controllable in the wanted way.

Even if it is possible to create an optimal, nonblocking supervisor, this
does not automaticly mean that this is the best way to implement the system.
Often supervisors obtain a huge number of states and events, which would have
had to be implemented. Depending on the used PLC or micro controller the
implemented system may need to much space on the disc.

Because the supervisor contains information about both the plant and the
control sequences, it can be reduced. The result would be a reduced super-
visor, which can be a lot smaller than the original supervisor and need to be
implemented with the plant.

Although a reduced supervisor will exist in most cases, in some situations
they cannot be calculated, because the used tools cannot handle the complexity
of the system.

Choosing a modular approach would be another possibility to control these
systems by Supervisory Control Theory. Calculating a number of small, local

43

44 CHAPTER 3. SUPERVISORS

supervisors instead of a monolithic one, may help to reduce the complexity
of the system. A less complex system is not only easier to implement but
also easier to understand, to realize small changes and to debug. The main
disadvantage of a modular approach is the risk to get into a conclict situation.

In this chapter these two ways to obtain one or more supervisors to con-
trol the manufacturing cell will be presented. After presenting the resulting
monolithic supervisors for the first three models in Section 3.2, the modular
approach with the resulting supervisors and the handling of conflicting situa-
tions is discussed in Section 3.3. Before talking about how to implement the
results on a PLC in Chapter 4 on 59, the different supervisors will be compared
in Section 3.4.

3.2 Monolithic supervisors

The first step to generate a monolithic, optimal and nonblocking supervisor
is to build the synchronous product (parallel composition) of the plant G and
the specification E. The result is besides the model of the plant and of all
specifications the largest automaton, which can occur during the calculation.
As most programs only use a limited space on the hard disk, they cannot handle
large and very complex systems. So, however, it may be possible to create a
monolithic supervisor in theory, it does not have to be possible in practice by
using standard tools.

The result of the routine described in Subsection 1.3.1 on page 9 is always
an optimal, nonblocking supervisor, which generates the maximal controllable
language of the system or an empty supervisor, if the system is not controllable
with respect to the desired specifications.

As you can see in Table 3.1 not in all cases the calculation of the monolithic
supervisor was feasible. The synchronous product of the plant G and the
specification E is too large. While computing the supervisor TCT went out
of memory. Later on, in Subsection 3.3.1, we will see, how the monolithic
supervisor can be calculated in another way.

Table 3.1: Size of monolithic supervisors

Model 1 2 3
without rework 1326 3264 5760
rework 1 4132 12156 -
rework 2 6084 - -

Although most monolithic supervisors could be computed, the reduction
of them did not succeed. As the monolithic supervisors are too large to be
implemented and impractical to debug, another approach to control the system
is needed.

3.3 Modular supervisors

Every specification controls a certain part of the plant. So, to realize this spec-
ification and to calculate an adequate local supervisor only the local plant is re-

3.3. MODULAR SUPERVISORS 45

quired. The routine to compute remains how it was described in Subsection 1.3.1
on page 9.

3.3.1 Results

Model 1

For all specifications for the first model without the possibility to rework pieces
local supervisors were computed and reduced by TCT. The size of the local
plants G, specifications E, local supervisors S and reduced supervisors R are
resumed in Table 3.2.

Table 3.2: Local and reduced supervisors for model 1 without rework

Gi Ei Si Ri

Mutual exclusion, 11 4 2 3 2
Mutual exclusion, 12 4 2 3 2
Mutual exclusion, 13 4 2 3 2
Mutual exclusion, 14 6 2 4 2
Avoid rot. empty table, 2 48 2 96 2
Operating sequence, 31 12 4 40 4
Operating sequence, 32 8 4 24 4
Operating sequence, 33 8 4 24 4
Operating sequence, 34 12 4 30 5
Corresponding outcome, 4 6 7 30 7
Get new pieces, 5 3 2 6 2

The first four reduced supervisors are fairly similar to their specifications.
R11 is shown in Figure 3.1.

Figure 3.1: Reduced supervisor model 1 without rework: mutual exclusion,
R11

10

ficlock, fidri

stclock, stdri

stclock, stdri

In state 1 the events stclock and stdri have to be disabled. In R12, R13 and
R14 instead of stdri the events stwel, sttes1, stgra1, stput3 or stput4 have to
be disabled, respectively.

To avoid the rotation of the empty table, the specification E2 was created.
The supervisor with 96s can be reduced to a reduced supervisor with only two
states, presented in Figure 3.2.

As the four supervisors organizing the operational sequence are similar, only
the first resulting reduced supervisor is shown in Figure 3.3.

The resulting reduced supervisor to make sure, that every piece of work is
put to the correct port according to the testresult R4 is shown in Figure 3.4.
In the states pp, pn, np and nn the event sttes1 is disabled as well. Actually

46 CHAPTER 3. SUPERVISORS

Figure 3.2: Reduced supervisor model 1 without rework: avoid empty table,
R2

10

stclock

fidri, sigdri, fiwel, sigwel, fipos, fineg, figra1

fidri, sigdri, fiwel, sigwel, fipos, fineg, figra1

stclock

Figure 3.3: Reduced supervisor model 1 without rework: operating sequ., R31

21 30
figra1

stdri

figra1

stclock, stgra1

stclock

stdri

stgra1

stdri stdri, stgra1 stclock stclock, stgra1

this is not needed because if two pieces have been tested without putting them
away, the supervisor R34 will disable the event sttes1. If a deactivation of sttes1
is not wanted in R4, it would be possible to add selfloops with fipos and fineg
at the corresponding state.

Figure 3.4: Reduced supervisor model 1 without rework: corres. outcome, R4

n

pn nn

p

pp np

0

fipos

fipos

stput3

sttes1 sttes1

stput3

fineg

stput4 fineg

stput3

fipos

stput4

stput4

fineg

sttes1

stput3, stput4

stput4 stput3

sttes1, stput4 sttes1, stput3

sttes1, stput4 sttes1, stput3

The simple two state supervisor R5 is shown in Figure 3.5. If port 1 is
empty (no peace arrived), the event stgra1 has to be disabled.

Figure 3.5: Reduced supervisor model 1 without rework: get new pieces, R5

10

stgra1

arr1

arr1

stgra1

For the realization of the rework part in the first way, the specifications
are already modeled. The size of the local plants G, specifications E, local
supervisors S and reduced supervisors R are presented in Table 3.3

3.3. MODULAR SUPERVISORS 47

Table 3.3: Local and reduced supervisors for model 1 with rework 1

Gi Ei Si Ri

Mutual exclusion, 11 6 2 4 2
Mutual exclusion, 12 6 2 4 2
Mutual exclusion, 13 6 2 4 2
Mutual exclusion, 14 12 2 6 2
Avoid rot. empty table, 2 96 2 192 2
Operating sequence, 31 24 6 84 5
Operating sequence, 32 12 8 40 11
Operating sequence, 33 12 8 40 10
Operating sequence, 34 24 6 66 8
Corresponding outcome, 4 8 10 46 14
Get new pieces, 5 4 4 16 4
Alternative routine, 6 24 7 28 9

First we want to have a look at the R6, in Figure 3.6, which organize the
alternative procedure.

Figure 3.6: Reduced supervisor model 1 rework 1: alternative routine, R6

fipos

ficounter

fineg

fipos, fineg

stclock

sttes1

stclock, stgra1, stput3, stput5

sttes1, stgra6

stclock

fipos
stput3

sttes1

stput4

ficounterstcounter, ficounter

fineg

ficounter

figra6

stclock, stgra1, stput3, stput5

stcounter, stput4 stcounter, sttes1,

stgra6, stput4

stclock, sttes1,

stgra1, stgra6,

stput3, stput4,

stput5

stclock, stcounter,

stgra1, stgra6,

stput3, stput4,

stput5

stclock, stcounter,

stgra1, stgra6,

stput3, stput4,

stput5

stcounter, sttes1,

stgra1, stgra6,

stput3, stput4,

stput5

stcounter, sttes1,

stgra1, stgra6

stput3, stput4,

stput5

stclock, stcounter,

sttes1,

stgra1, stgra6,

stput4, stput5

stclock, stcounter,

sttes1,

stgra1, stgra6,

stput3, stput5

The resulting supervisors R11, R12, R13 and R14 are almost the same as
in the version without rework. The events stcounter and ficounter have to be
added and in state 1 stcounter need to be disabled as well.

Although the supervisor S2 is not the same as in Table 3.2, the reduced
supervisor is the equal to Figure 3.2.

The supervisors to organize the operation sequences were changed in or-
der to realize the rework of pieces by adding states. Only the first reduced
supervisor R31 is shown in Figure 3.7.

The resulting reduced supervisor R4 to chose the corresponding outcome is
quite large and not very concise. Also the specification E4, Figure 2.24 on page
28, is symmetric, R4 is not. This result show, that not only one way to reduce
a supervisor is possible. It is possible to find an reduced supervisor, which is
symmetric. To test, if an automaton R is a potential reduced supervisor for a
plant G, we have to test, if the language and the marked language generated
R||G are the same as the ones generated by the supervisor S. So it would be

48 CHAPTER 3. SUPERVISORS

Figure 3.7: Reduced supervisor model 1 rework 1: operating sequence, R31

4

31 20
figra1 stclock

figra6

figra1

stdri
figra6

stdri

stgra1

stclock

stclock, stgra1

stdri stdri, stgra1, stgra6 stclock stdri, stgra1, stgra6

stdri, stgra1, stgra6

possible to create a symmetric automaton and test, if it is a reduced supervisor
for R4. To learn more about symmetry, [12] and [11] are recommended.

R5, the reduced local supervisor to organize how to get new pieces is pre-
sented in Figure 3.8.

Figure 3.8: Reduced supervisor model 1 rework 1: get new pieces, R5

21

12

0

arr1

stgra1

arr2, arr1

arr2

arr2

arr2

stgra6

stgra6

arr1

arr1

stgra1

stgra1stgr6

The specifications to realize the rework section in the second way were
modeled in Subsection 2.4.4 on page 28. The resulting local supervisors and
the reduced supervisors are presented below.

The resulting supervisors S11, S12 and S32 as well as the corresponding
reduced supervisors are equal to the automaton presented in the part without
reworking the pieces.

Since to the specifications corresponding to the system without rework some
events were added to E13 and E14, the resulting supervisors are not exactly
the same as shown above. However, they wont be presented here, because the
reduced supervisors equal their specifications. The events stclock, sttes1 and
sttes2 or stclock, stgra1, stgra6, stput3, stput4 and stput5, respectively, have to
be disabled in state 1.

Although the local supervisor is different to the versions before due to a
different local plant, the reduced supervisor R2 has the same structure as seen
before and disables stclock in state 0.

R31 is equal to Figure 3.3 even though the non reduced supervisor S31

cannot be the same as in the part without rework. Now let us have a look at
R33 in Figure 3.9. Every piece of work will only be tested once. Which routine
is used (sttes1 or sttes2) corresponds to the origin of the piece. Standard pieces

3.3. MODULAR SUPERVISORS 49

Table 3.4: Local and reduced supervisors for model 1 with rework 2

Gi Ei Si Ri

Mutual exclusion, 11 4 2 3 2
Mutual exclusion, 12 4 2 3 2
Mutual exclusion, 13 4 2 3 2
Mutual exclusion, 14 8 2 5 2s
Avoid rot. empty table, 2 64 2 128 2
Operating sequence, 31 16 4 56 4
Operating sequence, 32 8 4 24 4
Operating sequence, 33 8 9 60 9
Operating sequence, 34 16 4 36 5
Corresponding outcome, 41 8 7 56 7
Corresponding outcome, 42 8 7 40 7
Get new pieces, 5 4 4 16 4
Only one piece at a time, 6 8 2 12 2

have been welded before and will pass the first test routine; reworked ones will
be tested by the second routine.

Figure 3.9: Reduced supervisor model 1 rework 2: operating sequence, R33

fiwel

stclock

fiwel

sigwel

sigwel
sttes2

fiwel

sttes1

stwel

sigwel, stwel

stclock

fiwel

sigwel

fiwel

sigwel

sigwel

sttes2

sttes1
fiwel sttes2

sigwel sigwel, stwel

sttes1 stwel

stwel, sigwel

stclock, stwel

sttes1, sttes2

stwel, sttes1, sttes2 sttes1, sttes2

stclock, sttes1stclock, sttes2

stclock,
sttes1

stclock,
stwel,
sttes2

stclock,
stwel,
sttes1

stclock,
sttes2

The information about the used test routine then is used to chose the corre-
sponding outcome in Figure 3.10. Standard pieces, which have been tested by
using the first test routine should be put to outcome 3 or 5. Reworked pieces
will be put to outcome 3 or 4 corresponding to the test result of sttes2. Both
R41 and R42, which won’t be presented here because it is like the corresponding
specification, are symmetric.

The reduced supervisor R5 remains the same as mentioned above, realizing
the rework in the first way. To make sure, that only one piece can be taken to
the table before rotating the table at least once, R6, Figure 3.11 was computed.

50 CHAPTER 3. SUPERVISORS

Figure 3.10: Reduced supervisor model 1 rework 2: corres. outcome, R41

2

12 22

1

11 21

0
stput3, stput5

stput3, stput4

stput3, stput5

sttes2

sttes2stput3, stput5

stput4, stput3
sttes1

sttes1

sttes2

stput3, stput4

sttes1

stput3, stput4, stput5

stput4 stput5

sttes1,
sttes2,
stput4

sttes1,
sttes2,
stput4

sttes1,
sttes2,
stput5

sttes1,
sttes2,
stput5

Figure 3.11: Reduced supervisor model 1 rework 2: only one piece, R6

10

figra6, figra1

stgra1, stgra6, stclock

stclock

stgra1, stgra6

Model 2

All local supervisors for the second model without rework have been computed
and reduced by TCT. The size of the local plants G, specifications E, local
supervisors S and reduced supervisors R for the parts, which differ from model
1 are shown in Table 3.5.

Table 3.5: Local and reduced supervisors for model 2 without rework

Gi Ei Si Ri

Mutual exclusion, 11 4 2 3 2
Mutual exclusion, 12 4 2 3 2
Mutual exclusion, 13 4 2 3 2
Mutual exclusion, 14 20 2 18 2
Avoid rot. empty table, 2 160 2 320 2
Operating sequence, 31 40 4 152 4
Operating sequence, 32 8 4 24 4
Operating sequence, 33 8 4 24 4
Operating sequence, 34 40 4 102 5
Corresponding outcome, 4 20 15 196 15
Get new pieces, 5 10 2 20 2

As it can be seen in Figure 3.12, while the table is rotating or the robot is
putting pieces to or from the table no one of these events may occur.

The reduced supervisors R2, R31, R34 and R5 are not the same as for model
1, but they differ only in the events of the robot, corresponding to the same
action of the plant. So they are not presented here.

3.3. MODULAR SUPERVISORS 51

Figure 3.12: Reduced supervisor model 2 without rework: mutual exclusion,
R14

10

ficlock, fi12, fi23

stclock, st12, st23

stclock, st12, st23

Although it is fairly large, the reduced supervisor R4, which takes care of
putting the pieces to the corresponding outcome, is presented in Figure 3.13.

Figure 3.13: Reduced supervisor model 2 without rework: corres. outcome, R4

pn

ppn

npp

pp

ppp

npn

n

nnppnp

nn

p

nnnpnn

np

0

st32o, st42

st32o, st42

sttes1

st34

fipos

sttes1

st32o, st42
st32o, st42

st34

fipos

st32o, st42

fipos

st34

fineg fineg

fipos

st32o, st42fineg

sttes1

st34

fipos

sttes1

st34

sttes1

fipos

sttes1

fineg

fipos

st34

fineg

st32o, st42

st34

fineg
fineg

sttes1

st32o, st34

st34 st32o

st34

st34

st32o

st32o

sttes1, st34

sttes1, st34

sttes1, st34

sttes1, st34

sttes1, st32o

sttes1, st32o

sttes1, st32o

sttes1,
st32o

Now let us look at the results, if we take the second model of the robot and
the first way to realize the rework in Table 3.6.

As S11, S12, S13, S32 and S33 do not depend on the robot, they are the same
as mentioned above for model 1 with rework 1. The remaining supervisors are
not equal but as seen before only differ in the events of the robot corresponding
to the same physical action of the robot.

Before we will look at the third model, the size of all local plantsG, specifica-
tions E, local supervisors S and reduced supervisors R are shown in Table 3.7.
We will not present them in detail, because they are quite similar or equal to
their specifications or to supervisors presented before.

Model 3

Finally we want to have a look at the resulting supervisors and reduced super-
visors for the third model.

52 CHAPTER 3. SUPERVISORS

Table 3.6: Local and reduced supervisors for model 2 with rework 1

Gi Ei Si Ri

Mutual exclusion, 11 6 2 4 2
Mutual exclusion, 12 6 2 4 2
Mutual exclusion, 13 6 2 4 2
Mutual exclusion, 14 54 2 42 2
Avoid rot. empty table, 2 96 2 768 2
Operating sequence, 31 108 6 444 5
Operating sequence, 32 12 8 40 11
Operating sequence, 33 12 8 40 10
Operating sequence, 34 108 6 266 8
Corresponding outcome, 4 36 18 278 26
Get new pieces, 5 72 4 64 4
Alternative routine, 6 24 7 80 11

Table 3.7: Local and reduced supervisors for model 2 with rework 2

Gi Ei Si Ri

Mutual exclusion, 11 4 2 3 2
Mutual exclusion, 12 4 2 3 2
Mutual exclusion, 13 4 2 3 2
Mutual exclusion, 14 32 2 29 2
Avoid rot. empty table, 2 256 2 64 2
Operating sequence, 31 64 4 248 4
Operating sequence, 32 16 4 24 4
Operating sequence, 33 8 9 60 9
Operating sequence, 34 64 4 156 5
Corresponding outcome, 41 32 15 424 17
Corresponding outcome, 42 32 15 304 15
Get new pieces, 5 16 4 64 4
Only one piece at a time, 6 32 2 60 2

As the last specification only influences the robot, we replace the original
automaton for the robot, Figure 2.41 on page 37, by the resulting supervisor
S6, Figure 3.14. To compute the missing modular supervisors S6 will taken as
the automaton for the robot.

To implement the system later on, we can use the original automaton for
the robot and the corresponding reduced supervisor, shown in Figure 3.15, or
only the supervisor S6 as a part of the plant.

A overview over all local plants G, specifications E, modular supervisors S
and reduced local supervisors R is presented in Table 3.8.

3.3.2 Conflicts

If we build the synchronous product of all local supervisor for the first model,
we can see, that the product is equal to the monolithic supervisor which was
computed before. Thus to control the plant by a monolithic or a set of local

3.3. MODULAR SUPERVISORS 53

Figure 3.14: Supervisor model 3: robot control, S6

stope4

stclo1

fi32
st12

fi12

st32
fiope4

ficlo2

fi23

fi34

fiope2

fi21

fiope3

st34

fi43

ficlo1

stclo2

st43

stope2

stope3

st23

st21

st23, stope2

st12 st21, stclo2, stope2

stclo1 st32

st21, st23, stclo2

st43

st34, stope3

stope4

Figure 3.15: Reduced supervisor model 3: robot control, R6

1 20

stope2

st21, st34, stclo1, stclo2, stope3, stope4

fi43, ficlo1, ficlo2, fiope3, fiope4

st12, st23, st32, st43fi12

st12, st23, st32,
st43, stope2

st21, st34, stclo1, stclo2,
stope2, stope3, stope4

st21, st23, stclo2

Table 3.8: Local and reduced supervisors for model 3 without rework

Gi Ei Si Ri

Mutual exclusion, 11 4 2 3 2
Mutual exclusion, 12 4 2 3 2
Mutual exclusion, 13 4s 2 3 2
Mutual exclusion, 14 40 2 34 2
Avoid rot. empty table, 2 320 2 640 2
Operating sequence, 31 80 4 312 4
Operating sequence, 32 8 4 24 4
Operating sequence, 33 8 4 24 4
Operating sequence, 34 80 4 198 5
Corresponding outcome, 4 40 15 416 15
Get new pieces, 5 20 2 40 2
Robot control, 6 15 3 20 3

supervisors, won’t influence the behavior of the system. So as local, reduced
supervisors are smaller and easier to implement as a monolithic supervisor, the
set of modular supervisors can be used.

Creating the synchronous product S of all local supervisors Si for the second
and third model, we will see, that the result is not equal to the monolithic
supervisor Smon. S is not trim; its trim part will be equal to Smon. It generates
a language LS, which is greater than the language generated by Smon. The
marked languages are equal. This means, that the set of modular supervisors
let the system run into a state, from which it is not possible to reach a marked
state again, a conflict.

54 CHAPTER 3. SUPERVISORS

Detect conflicts

The system is conflicting, if Smon ⊂ ||i∈JSi. To find out which strings lead into
a conflict can be very complex. Often several subsets of two local supervisors
can conflict. But on the one hand the total system can be non conflicting and
on the other hand solving the conflict problems of subsets of local supervisors
will not always lead to a non conflicting system.

If only a subset of local supervisors cause the overall conflicting problem,
it is possible to detect them by the following procedure:

• Build the synchronous product of a subset of supervisors Sconf = ||i∈I⊂JSi.

• Build the corresponding SupC(Sconf).

• Build the synchronous product of the resulting automaton and the re-
maining supervisors, S = SupC(Sconf)||(||i∈J,i/∈ISi).

• If S = Smon, the conflict can be solved by building a supervisor for Sconf .

The conflict in the presented example is caused by the local supervisors S31,
S33 and S34. As long as the place next to the table is not occupied, the robot
can rotate and get a new piece from port 1 (or port 2, if the rework section is
modeled). While the robot is working but has not yet entered the security area
around the table, the table can rotate. If a piece of work was situated on the
test station before, the place on the table is not empty anymore and the robot
cannot release the piece on the table or take the proceeded piece away, because
it is not possible to release the new piece at another place. A scheme, which
supervisor influences the behavior of which part of the plant for the second
plant without rework, is shown in Figure 3.16. Although the conflict is only
caused by S31, S33 and S34, it may help to use S11, S12, S13 and S14 as well,
because the resulting supervisor will be smaller and easier to reduce if we build
the synchronous product with S11, S12, S13 and S14.

Figure 3.16: Scheme of supervisors and parts of the plant

3.3. MODULAR SUPERVISORS 55

Creating a coordinator

Some methods used in this work to find coordinators, which handle overall
conflicts, are taken from [9], [14] and [27].

If a system is conflicting, it may be possible to create a coordinator, which
will avoid conflicts. To understand how this supervisor is created, it is useful
to have a look at the procedure to create an optimal, nonblocking supervisor
in Subsection 1.3.1 on page 9 again. The coordinator will not only assure,
that the controlled plant will not generate undesired strings, but also build a
nonblocking supervisor.

So if we consider the synchronous product of all local supervisors S as a
plant, we could create a coordinator, which avoid entering non coaccessible
parts of the plant.

The trim part of S, the monolithic supervisor Smon, S or an one state
automaton, with a selfloop of all events appearing in the system, can be used
as a specification to compute the coordinator. As the specification does not
influence the language generated by the plant, the result should always be the
monolithic supervisor Smon.

As we have seen before, the monolithic supervisor can be very large and so
it might be very helpful to reduce the supervisor before implementing it. In
the presented example of the manufacturing cell this was not possible using
IDES, GRAIL or TCT.

Heuristic methods

If it is not possible to reduce the monolithic supervisor in order to get coordi-
nator, there are some more possibilities to obtain a non conflicting system.

It is possible to combine the specifications, whose supervisors cause the
conflict and obtain a new set of less but probably larger local supervisors. By
building the synchronous product of all local supervisors and testing if the
result is trim, one can verify if the problem was solved.

In the presented example the resulting local supervisor for E31, E33 and
E34 could not been reduced and was too large to be implemented.

Instead of taking the synchronous product of all local supervisors as the
plant to create a coordinator, it may also be possible to take only the con-
flicting subset. As the reduction of the coordinator was not possible using
the presented tools, we built a coordinator taking only a subset of the local
supervisors causing the conflicting situation as the plant.

The synchronous product of S31 and S34 would be sufficient to solve the
conflict between them. As the resulting automaton is smaller by adding the
supervisors S11, S13 and S14, the plant was created building the synchronous
product of these five automata (Sconf1).

The resulting coordinator C has been reduced using TCT. The result for
the second model without rework is presented in Figure 3.17.

As the combination of C1 and S33 still can lead us into a non coaccessible
state, we have to create another coordinator. But reducing the supervisor,
which has been created by using the synchronous product of them as the plant,
was not possible.

56 CHAPTER 3. SUPERVISORS

Figure 3.17: Reduced coordinator for model 2 without rework: Cred,1

fi12

stclock

st21
sttes1

st21

sttes1

st21, stclock

stclock

stclock

fi12

sttes1 st21

In most cases the developer will have a vague idea, which parts of the plant
do not provoke a conflict. To delete these events in order to obtain a smaller
automaton which may be easier to reduce seems worth a try. Afterward one
has to check, if the result leads to a nonblocking system.

In this work, we build the synchronous product of C1 and S33 (Sconf2 =
C1||S33) and deleted stdri and fiwel (S′

conf2). The supervisor could be reduced.
The reduced supervisor is presented in Figure 3.18.

Figure 3.18: Reduced coordinator for model 2 without rework: Cred,2

sttes1

ficlock

sttes1

sttes1
sttes1

fiwel

fi12

fi12, st21, ficlock

st21

fi12

fiwel

fiwel

st21

fi12, st21

st21 st21

As you can see in Table 3.9, only one coordinator for the third model was
created, because the first one already prevent the conflict.

Table 3.9: Coordinators for model 2 and 3

model 2, wr model 2, r1 model 2, r 2 model 3, wr
S = ||iSi 3318 12237 37580 5922
Smon 3264 12156 37472 5760
Sconf1 159 295 265 309
C1 147 277 247 267
Cred,1 4 5 4 4
Sconf2 564 1077 1591 -
S′
conf2 244 441 677 -

C2 238 432 668 -
Cred,2 6 8 19 -

3.4. COMPARISON 57

3.4 Comparison

Before we will discuss how to implement the results on a PLC in Chapter 4,
we will briefly resume the obtained reduced supervisors.

First let us compare the size of all reduced local supervisors for model 1,
2 and 3 for the manufacturing cell, without the option to rework the pieces in
Table 3.10.

Table 3.10: Reduced supervisors for model 1, 2 and 3 without rework

Model 1 2 3
R11 2 2 2
R12 2 2 2
R13 2 2 2
R14 2 2 2
R2 2 2 2
R31 4 4 4
R32 4 4 4
R33 4 4 4
R34 5 5 5
R4 7 15 15
R5 2 2 2
R6 - - 3

Cred,1 - 4 4
Cred,2 - 6 -

Besides R4 the local supervisors differ little or not at all. But model 2 and
3 need additional supervisors to control the robot and prevent conflicts. It
seems to be surprising, that supervisors of nearly the same size are needed to
control the system with three different models for the robot, which differ a lot
in terms of potential moves of the robot. Even to control model 3 of the robot
with its fairly basic movements requires a manageable set of small supervisors.

The size of all local supervisors, which are needed to control the system
with the possibility to rework the pieces, are shown in Table 3.11.

It might be interesting to see, that whether handle reworked pieces in the
first or the second way only make a small difference. If an interruption of
the standard routine to just test the reworked pieces and take them to the
corresponding outcome the required supervisors are a little bit larger than
applying the second possibility (rotating the table always clockwise and ignore
reworked pieces at the drilling and the welding station). Which way will be
used in practice will depend on the time needed for every procedure and the
percentage of reworked pieces.

Although the second model offer a faster proceeding of pieces because the
table and the robot sometimes can work at the same time, the amount of the
required supervisors and their size is not much higher than for the first model.

58 CHAPTER 3. SUPERVISORS

Table 3.11: Reduced supervisors for model 1 and 2 with rework

Model 1, rework 1 1, rework 2 2, rework 1 2, rework 2
R11 2 2 2 2
R12 2 2 2 2
R13 2 2 2 2
R14 2 2 2 2
R2 2 2 2 2
R31 5 4 5 4
R32 11 4 11 4
R33 10 9 10 9
R34 8 5 8 5
R4 14 7 26 17

- 7 - 15
R5 4 4 4 4
R6 9 2 11 2
RAB1 - - 5 4
RAB2 - - 8 19

Chapter 4

Implementation

In the last chapter we have seen the supervisors, which
are needed to control the given system of a manufac-
turing cell. Now we want to discuss how these results
can be implemented on a PLC. In this chapter we will
see, how to implement a DES in general and how it
was realized in detail to control the manufacturing
using an Altus and a Siemens PLC.

4.1 Introduction

In Chapter 2 and Chapter 3 we have seen, how the manufacturing cell could
be modeled as a set of automata and how it could be controlled by a set of
supervisors. Now we want to use these results in order to control and drive the
real system and test the computed supervisors.

An implementation using a microprocessor or a programmable logic con-
troller (PLC) would be a fairly reasonable approach. In this project, we used
two PLC’s, one of the Brazilian company Altus, [1], and one produced by the
German firm Siemens, [6].

Some general aspects should be considered independent of the used hard-
ware. The general idea to create the source code will be very similar. For
example in which sequence the different parts of the code are implemented and
the structure might be analog. The hierarchical structure will be explained in
Subsection 4.2.1.

PLC’s may accept different programming languages. As in this project Lad-
der Diagram, Instruction List and Structured Text were used, we will introduce
them in Subsection 4.2.4.

After talking about general information in Section 4.2, we will discuss how
the system was implemented on an Altus and a Siemens PLC in detail in
Section 4.3.

4.2 General information

This section is based on [17],[10] and [15].

59

60 CHAPTER 4. IMPLEMENTATION

4.2.1 Hierarchical structure

The highest hierarchical rank has the supervisor. It register the occurring con-
trollable and non controllable events, which might change its state. According
to the current state the supervisor will disable some controllable events. If
more than one supervisor are implemented an event will be disabled, if it is
disabled in at least one supervisor.

If the plant is in a state, where a controllable and not disabled event can
occur, it will call the corresponding subroutine and execute the corresponding
transition in the plant.

Once called the subroutine, it will send the suitable output signals and read
the input signals coming from the real system and send responses to the plant.

If the plant is in a state, where a non controllable event may occur and the
according response is given from a subroutines, it will execute the corresponding
transition and send the information about the occurrence of this event to the
supervisor.

The scheme in Figure 4.1 presenting the hierarchical structure is taken from
[17].

Figure 4.1: Hierarchical structure

Real System

Subroutines

Plant

Supervisors

disabling events

commands

output signals

events

responses

input signals

Control System

Respecting this structure the program used to control the plant was realized
in the following way:

1. execute transitions of supervisors

2. compute disabled events

3. if an uncontrollable event occurred: execute the corresponding transition
of the plant and go back to step 1

4. if not: call a controllable event, if it is possible and not disabled and go
back to step 1

There are two possible ways to organize the calling of subroutines.
First the subroutines can be called by setting the corresponding bit in mem-

ory to one. Once started they operate independently and set an according bit
in memory when finished the operational procedure.

Inputs are read by subroutines as well. If one detect the occurrence of an
uncontrollable event, it will set the corresponding bit in memory and hence
submit the information about this event to the program described above.

4.2. GENERAL INFORMATION 61

Another possibility would be to execute every routine, whose start bit was
set once in the program, before starting the main program and execute possible
transitions of supervisors again.

4.2.2 Initializing the system

Before the program can work properly the initial states of all supervisors and
plants need to be set.

Furthermore one might provide an additional part of the program which
set the system into the corresponding physical initial state before entering to
the standard procedure.

4.2.3 Implementation of transitions

Transitions of supervisors

If a supervisor is in a certain state and an event occurred, which would change
its state, we might execute the corresponding transition by setting the bit
corresponding to the source state to 0 and the one corresponding to the target
state to 1.

Not all transitions in an automaton representing a supervisor need to be
implemented. Selfloops do not change the sate of the supervisor and so do not
change the set of disabled events. The transition arr1 from and to state 1 does
not change the state of the supervisor presented in Figure 3.5 on page 46 and
won’t be implemented later on.

Selfloops of controllable events, however, are very important to find out
which controllable events need to be disabled in which state. In every state,
where no transition with an controllable event, which is part of the supervisor’s
event set, can be found, need to be disabled in this state. So if the occurrence
of a controllable event does not change the current state but should not be
disables in this situation need to be added as an selfloop to this state but
won’t be implemented.

Looking at Figure 3.4 on page 46 we can see, that the event fineg cause
a transition from the initial state 0 to n and from n to nn. If the program
executes the transition from 0 to n first and afterwards the one from n to nn,
it might cause a problem.

After checking that the supervisor is in state 0 and detecting the event
fineg, the transition will be executed, state n will be set and 0 will be reset.
When checking the conditions for the execution of the second transition, they
will be true, because state n is already set and the transition will be executed.
So although the event occurred just once, it will provoke two transitions and
hence probably change the behavior of the entire system.

To avoid this problem it would be possible to make sure, that all transitions
always in the right order. Also check first if the current state is n and execute
the transition to state nn before checking the transition from0 to n.

Another way would be to use an additional variable to assure, that only
one transition can be executed at a time.

62 CHAPTER 4. IMPLEMENTATION

Transitions of the plant

As the plant is represented by a set of automata as well, we need to implement
its transitions, too.

An event just might occur, if the plant is in the according state. If the
automaton in Figure 2.5 on page 19 is in state 1 the occurrence of the events
stclock, stcounter and ficounter is not possible.

If a bit corresponding to the end of an procedure (fi· · ·) or another uncon-
trollable event (e.g. arr1) has been set by a subroutine and the plant is in a
state, where a transition with this event exists, the transition will be executed,
the bit corresponding to the event inside the main program will be set (to be
able to change states of supervisors by running the program the next time) and
reset the bit, which was set by the subroutine. If the bit set by the subroutine
is not set or the plant is not in the according state, the variable corresponding
to the event inside the main program will be reset.

After checking the occurrence of an uncontrollable event, now we want to
execute possible controllable events. Those can occur only if the event is not
disabled and the plant is in a corresponding state. In case an event is physically
possible and not disabled a bit, which will call the subroutine, and the target
state will be set and the source sate will be reset.

Looking at the model for the ports in Figure 2.7 on page 20, we see, that
selfloops need to be implemented now as well to make it possible, that events
like arr1 or sigdri can occur.

The occurrence of one event can change the states of several supervisors
and so change the set of disabled events, too. Thus it is important to execute
all possible transitions of the supervisors and update the set of disabled events
after the occurrence of every event.

Using an additional variable might solve this problem and make sure, that
only one event can occur every time the main program is executed.

The idea of an uncontrollable event is, that is not possible to prevent it. So
if a bit corresponding to an uncontrollable event was set, it need to be detected
very fast and so we want to check the occurrence of uncontrollable events before
executing the part of the main program which calls the controllable events.

4.2.4 Programming languages

According to the International Electrotechnical Commission standard IEC 61131
two graphical and two textual PLC programming language standards are de-
fined:

• Ladder diagram (LD), graphical

• Function block diagram (FBD), graphical

• Instruction list (IL), textual

• Structured text (ST), textual

As in this project we only used Ladder diagram (subroutines), Instruction
List (main program) and Structured text (main program), we want to introduce
those languages briefly.

4.2. GENERAL INFORMATION 63

Ladder diagram

All subroutines were written by Luis Gustavo Marquez and Guilherme Siviero
Lise using Ladder diagram. It is a method of drawing electrical logic schemat-
ics. It is composed of rungs, which consists basically of contacts and coils.
Contacts are the inputs of a rung, may refer to input signals or bits in memory
and can be true or false. A coil, the output of a rung, may represent and output
signal or a bit in memory and depends on the contacts in the same rung.

An example is given in Figure 4.2.

Figure 4.2: Ladder diagram: an example

()
A B

C

S

(S = A and (not B or C))

()
S

C

T

(not T = S or not C)

contact, true

when its coil is true

“negativ” contact, false

when its coil is true

() coil, true

when its rung is true

() “negativ” coil, false

when its rung is true

Instruction list

Instruction list is a low level textual language. Some of the most common
commands and an example are given above.

• LD load

• N not

• A and

• O or

• S set

• R reset

Example 4.2.1 (Instrction list). The following commands would mean
reset S and set T, if A and not B.

LD A

AN B

R S

S T

64 CHAPTER 4. IMPLEMENTATION

IDES can be used to create the main program automatically. If the code
for the subroutines is given as IL as well, it is possible to generate not even the
code for the supervisor but the whole program.

Structured text

As the Altus PLC did not accept Instruction list but ony Ladder diagram and
Structured text, this programming language was used as well in this project
and will be introduced briefly.

Structured text is a high level programming language. Iteration loops
(REPEAT–UNTIL; WHILE–DO), conditional executions (IF–THEN–ELSE;
CASE) and fundamental functions (SQRT(), SIN()) can be used.

More information is available in the book Automating Manufacturing Sys-
tems with PLCs by Hugh Jack, [13].

In order to automate the generation of the main program source code, the
program IDES2ST was written within this project. All automata representing
supervisors and parts of the plant, should be saved as automata in IDES. To
learn more about IDES2ST see Chapter A.

4.3 Manufacturing cell

4.3.1 Initialization and reinitialization

To assure, that the system is physically in the initial state before entering the
proper procedure, an initial procedure might run.

As we modeled the robot to be located next to the table with the open grab-
ber, the initializing routine opens first the grabber till detect the corresponding
signal. When the grabber is open, the robot arm should rotate counterclock-
wise towards position 0 and rotate back until arriving at position 2 next to
the table.

When the main procedure is running quite a time, steps may be lost or dis-
turbances may manipulate the actual position of the robot. Thus to reinitialize
the system while processing the standard program, the robot arm coming from
position 2 always rotates towards position 0 before moving to position 1 in
order to get a new piece from port 1.

4.3.2 Siemens PLC

The first model without rework was implemented on a Siemens S7 - 200 PLC.
The implementation was realized by the program Step 7 – Micro/WIN 32,
which accepts only Instruction list, Ladder diagram and Function block dia-
grams.

The code for the main program was generated by IDES. Examples are
shown in Example 4.3.1, Example 4.3.2 and Example 4.3.3.

Example 4.3.1 (Implementation of a transition of a supervisor using IL). For
the transition from state 0 to 1 by the event stclock in Figure 3.1 on page 45

4.3. MANUFACTURING CELL 65

IDES would generate the following code:

LD SUP0S0

AN evtblk

A stclock

R SUP0S0, 1

S SUP0S1, 1

S evtblk, 1

So, if the variable SUP0S0 is true (supervisor 0 (= R11) is in state 0), evtblk
is false (no transition has been executed in this supervisor so far) and the event
stclock occurs, the state 0 will be reset, state 1 set and evtblk will be set. evtblk
might be reset before entering the program code of the next supervisor. To
point out, that the variables SUP0S0, SUP0S1 and evtblk are boolean , 1 was
added.

Example 4.3.2 (Implementation of a uncontrollable plant transition using IL).
For the transition from state 1 to 0 by the event fipos in Figure 2.6 on page
19 IDES would generate the following code:

LDN evtblk

A PS0S1

A Afipos

= fipos

R Afipos, 1

R PS0S1, 1

S PS0S0, 1

S evtblk, 1

If the variable P0S1 is true (plant 0 (= test) is in state 1), evtblk is false (no
plant transition has been executed so far) and the aviable Afipos is true (it
has been set by the subroutine to announce the positiv testresult), the state
1 will be reset, state 0 set and evtblk will be set. The variable fipos will be
true once to execute the corresponding transitions in the supervisors and false
in the next execution of the main program. As fipos should occur only once,
Afipos will be reset. evtblk need to be reset before entering the program code
of the plant.

Example 4.3.3 (Implementation of a controllable plant transition using IL).
For the transition from state 0 to 1 by the event sttes1 in Figure 2.6 on page
19 IDES would generate the following code:

LDN evtblk

A PS0S0

AN Dsttes1

= sttes1

R PS0S0, 1

S PS0S1, 1

S evtblk, 1

The event sttes1 can occur, if the plant is in the corresponding state (PS0S0
is true), the event is not disabled (Dsttes1 is false) and no event has occurred
before in this run of the main program (evtblk is false).

66 CHAPTER 4. IMPLEMENTATION

The Siemens PLC is equipped with a memory of 4 kilobyte. The implemen-
tation of the first model with the possibility to rework pieces or of the second
or third models required more space in memory. Hence the Altus PLC with a
memory of 512 kilobyte was used to implement the remaining models.

4.3.3 Altus PLC

Model 1 with the rework part in both ways, model 2 and model 3 have been
implemented on a PO 3147 PLC made by the Brazilian company Altus. The
communication between the PLC and the PC as well as the programming of the
subroutines was made with MasterTool Extended Edition MT 8000 Advanced
5.11.

This program accepts Ladder diagram, Function bloc diagram and Struc-
tured text. As it was not possible to find a suitable tool to manage the
automatic transformation from the main program written in Instruction list
by IDES into Structured Text, the tool IDES2ST was written within this
project to generate automatically the code for the main program in Structured
text. More information about the program and the source code is available in
Chapter A on page 71.

Because the PLC is equipped with a memory of 512 kilobyte, memory
limitations did not cause problems at first view. But every sequence written in
Structured text need to be put in a function block, which is not allowed to be
greater than 32 kilobyte. As the main program written in Structured text used
more space in memory than written in Instruction list, the main programs for
the second and the third model grew larger than that and needed to be cut
into smaller pieces.

By setting additional auxiliary variables we assured, that every part of the
main program is executed separately and in the right order.

After the implementation of the first model, all subroutines for the third
model were written. As all events of the second model can be seen as sequences
of events used in model 3, an interface was written in Structured text to or-
ganize the calling of the corresponding subroutines of model 3 while working
with the second model.

The interface sets a bit in memory, which corresponds to the event in model
2 (n_st·), if the event (e_st·) was called by the main program. On the same
time it starts the subroutine of the first event of model 3, which is part of
model 2. When the first subroutine has finished it starts the next and so on.
When the last subroutine has finished the bit in memory corresponding to the
fi· – event is set. An example is shown in Example 4.3.4.

An additional auxiliary variable was needed to make sure, that the interface
is executed right after the last part of the main program and before entering
the subroutines.

Example 4.3.4 (Interface sequence).
(∗ e_st21 ∗)
IF (e_st21) THEN

n_st21 := 1 ;
s t21 := 1 ;

END_IF ;
IF (n_st21 AND f i 2 1) THEN

4.3. MANUFACTURING CELL 67

f i 2 1 := 0 ;
s t c l o := 1 ;

END_IF ;
IF (n_st21 AND f i c l o) THEN

f i o p e := 0 ;
n_st21 := 0 ;
Ae_fi21 := 1 ;

END_IF ;

Conclusions

In the first chapter of this Studienarbeit we have seen some basic definitions
and theorems about Discrete Event Systems and how they can be modeled
as automata. Furthermore we introduced the Supervisory Control Theory to
control systems modeled as automata and three software tools, which were used
in this project.

In the following chapter we explained how the testbed of a manufacturing
cell, upon which the practical part is based, operates and which specifications
should be respected to assure the desired behavior. The cell can proceed pieces
of work at several workstations and rework pieces, which have been disapproved
the first time.

Smaller parts of the testbed have been modeled in just one way. For the
robot four different models have been presented. They differ not only in terms
of size but also in potential moves and restrictions. To control the system in
divers ways with or without the possibility to rework pieces, different specifi-
cations for three of the four models were created.

The comparison of the models and the corresponding specifications we have
seen in the last part of this chapter.

Since the creation of monolithic supervisors involve a set of problems, mod-
ular supervisors for each specifications were computed. In chapter 3 we can
see, that contrary to monolithic supervisors all of them could be computed and
reduced to a reasonable number of states and transitions. Although a modu-
lar approach implicated major advantages like the easier implementation and
debugging process due to their size, some problems appeared.

For the second and the third model the local supervisors could lead to
situations, from which it was not possible to reach a marked state in all modular
supervisors without violating at least one specification. We have seen how these
blocking situations can be solved and the resulting additional supervisors.

After comparing the different resulting supervisors for three models, the
implementation of the system has been discussed in the fourth chapter. We
have seen general issues to respect while implementing a Discrete Event System
modeled as automata and controlled by supervisors on a programmable logic
controller (PLC). We introduced three different programming languages, which
can be used, and explained how they were used to implement the subroutines
and main programs in order to control the manufacturing cell.

While modeling the system in the second chapter we could see, that great
parts of the plant could be modeled in a very similar or even the same way. Most
specifications presented in this chapter can be summarized in small groups of
analogue or equal automata as well. That suggests to use these similarities in
order to simplify the modeling process both of the plant and the specifications.

69

70 CHAPTER 4. IMPLEMENTATION

Due to the fact that once the plant and the specifications have been modeled
properly the computation of the supervisors follows a determined procedure it
would be interesting to automate this routine. Minimal changes in parts of
the plant or on specifications sometimes asked for a total rewriting of parts of
the plant or specifications and the creation of new supervisors. In some cases
small errors during the manual modeling of automata or the computation of
supervisors caused huge problems in the total system and were hard to find.

The template design shown in [16] might help to solve these problems and
improve the procedure to model and control a Discrete Event System.

Appendix A

IDES2ST

A.1 Introduction

Within this project the program IDES2ST was written to generate automati-
cally code for the main program in Structured text. The program need as in
input two directories. The first should contain all supervisors or reduced super-
visors saved as an IDES–file, the second all parts of the plant as an IDES–file.

The same events should have the same names in the supervisors and the
parts of the plant! As event names in IDES may start with a number as well
and all variables in Structured text must begin with a letter, e_ is added to
every event name in the generated code.

Variable names for states of supervisors and plants are given corresponding
to the IDES – file name and the state id with an additional prefix.
(s_<filename>_St<stateid> or p_<filename>_St<stateid>)

As no information about disabled events is available in the first view, the
program disables every event in a state, where the event, which is part of the
supervisor automaton, build no outgoing transition from this certain state . So
it is important not to delete any selfloop in an supervisor automaton.

While declaring variable names for events and states, the connection to
spaces in memory is maid automatically starting with the space in memory 0,
bit 0.

A.2 IDES2ST.java

package codeGenIdes2St ;

import java . i o . F i l e ;
import java . i o . F i l e F i l t e r ;

public class Ides2St {

public static void main (St r ing [] a rgs) {
// er ror message i f more or l e s s then

f o l d e r s are found
i f (a rgs . l ength != 2) {

71

72 APPENDIX A. IDES2ST

System . out . p r i n t l n ("Too␣ few␣or␣
too␣many␣ input ␣arguments ! ! ") ;

System . e x i t (1) ;
}
// er ror message i f f i r s t f o l d e r does not

e x i s t
F i l e d i r 1 = new F i l e (a rgs [0]) ;
i f (! d i r 1 . e x i s t s ()) {

System . out . p r i n t l n ("The␣ f i r s t ␣
input ␣ d i r e c t o r y ␣does ␣not␣
e x i s t : ") ;

System . out . p r i n t l n (d i r 1 . toSt r ing
()) ;

System . e x i t (0) ;
}
// er ror message i f second f o l d e r does

not e x i s t
F i l e d i r 2 = new F i l e (a rgs [1]) ;
i f (! d i r 2 . e x i s t s ()) {

System . out . p r i n t l n ("The␣ second ␣
input ␣ d i r e c t o r y ␣does ␣not␣
e x i s t : ") ;

System . out . p r i n t l n (d i r 1 . toSt r ing
()) ;

System . e x i t (0) ;
}
// i n i t i a l i z e s u pe r v i s o r s and p l an t s
F i l e [] s up e r v i s o rF i l e s , p l a n tF i l e s ;
// t e s t i f f i l e s in f o l d e r s are xmd f i l e s
try {

s up e r v i s o r F i l e s = d i r 1 . l i s t F i l e s
(new F i l e F i l t e r () {

public boolean

accept (F i l e
pathname) {

i f (
pathname
.
i s F i l e
() &&

pathname
.
toSt r ing
() .
endsWith
(" .
xmd")
)
return

A.2. IDES2ST.JAVA 73

true

;
else

return

fa l se

;
}

}
) ;
p l a n tF i l e s = d i r 2 . l i s t F i l e s (new

F i l e F i l t e r () {
public boolean

accept (F i l e
pathname) {

i f (
pathname
.
i s F i l e
() &&

pathname
.
toSt r ing
() .
endsWith
(" .
xmd")
)
return

true

;
else

return

fa l se

;
}

}
) ;
// crea t e con t r o l system
ControlSystem cs = ControlSystem

. f r omF i l eL i s t s (
s upe r v i s o rF i l e s , p l a n tF i l e s) ;

// f i n d d i s a b l e d s t a t e s
cs . f indStatesWhereEventDisabled

() ;
// generate ST code
cs . printST () ;

74 APPENDIX A. IDES2ST

// s e c u r i t y e r ror message
} catch (Secur i tyExcept ion e1) {

System . out . p r i n t l n (" Secur i ty ␣
Exception␣whi l e ␣ read ing ␣out ␣
d i r e c t o r i e s . ") ;

// er ror message wh i l e reading the f i l e s
} catch (Exception e2) {

System . out . p r i n t l n ("Error␣whi l e ␣
read ing ␣out␣ d i r e c t o r i e s . ") ;

e2 . pr intStackTrace () ;
}

}
}

A.3 ControlSystem.java

package codeGenIdes2St ;

import java . i o . F i l e ;
import java . u t i l . HashSet ;
import java . u t i l . I t e r a t o r ;

import org . kxml2 . i o . KXmlParser ;
import org . kxml2 . kdom . Document ;

class ControlSystem {
//a con t r o l system con ta in s
private HashSet<Automaton> supe r v i s o r s ;
private HashSet<Automaton> plant s ;
private HashSet<Event> ct lEvent s ;
private HashSet<Event> unCtlEvents ;

// i n i t i a l i z e parser
protected static KXmlParser pa r s e r ;
protected static Document doc ;

// crea t e con t r o l system
protected static ControlSystem f r omF i l eL i s t s (

F i l e [] s up e r v i s o rF i l e s , F i l e [] p l a n tF i l e s) {
// i n i t i a l i z e parser
ControlSystem . pa r s e r = new KXmlParser () ;
// i n i t i a l i z e c on t r o l system
ControlSystem cs = new ControlSystem () ;
// con t r o l system con ta in s s u pe r v i s o r s

and p l an t s
cs . s up e r v i s o r s = new HashSet<Automaton

>() ;
c s . p l ant s = new HashSet<Automaton>() ;
c s . c t lEvent s = new HashSet<Event>() ;
c s . unCtlEvents = new HashSet<Event>() ;

A.3. CONTROLSYSTEM.JAVA 75

// i n i t i a l i z e automaton
Automaton a ;
// f i r s t read supe r v i s o r s
for (int i =0; i<s up e r v i s o r F i l e s . l ength ; i

++) {
F i l e f = s up e r v i s o r F i l e s [i] ;
a = new Automaton(f , false , c s) ;
c s . addSupervisor (a) ;

}
// then read p l an t s
for (int i =0; i<p l a n tF i l e s . l ength ; i++) {

F i l e f = p l a n tF i l e s [i] ;
a = new Automaton(f , true , c s) ;
c s . addPlant (a) ;

}
return cs ;

}

//add automaton to s e t o f s u pe r v i s o r s
protected void addSupervisor (Automaton a) {

supe r v i s o r s . add (a) ;
}

//add automaton to s e t o f p l an t s
protected void addPlant (Automaton a) {

p lant s . add (a) ;
}

//add event to s e t o f c o n t r o l l a b l e or
u n c on t r o l l a b l e even t s

protected void addEvent (Event e) {
i f (e . i sC o n t r o l l a b l e ()) c t lEvent s . add (e) ;
else unCtlEvents . add (e) ;

}

// look f o r event in s e t o f c o n t r o l l a b l e and
un c on t r o l l a b l e even t s

protected Event getEvent (St r ing name) {
I t e r a t o r<Event> i t = ct lEvent s . i t e r a t o r

() ;
while (i t . hasNext ()) {

Event e = i t . next () ;
i f (e . getName () . equa l s (name))

return e ;
}
i t = unCtlEvents . i t e r a t o r () ;
while (i t . hasNext ()) {

Event e = i t . next () ;
i f (e . getName () . equa l s (name))

return e ;

76 APPENDIX A. IDES2ST

}
return null ;

}

// f i n d s t a t e s , where event i s d i s a b l e d
protected void f indStatesWhereEventDisabled () {

I t e r a t o r<Event> i t = ct lEvent s . i t e r a t o r
() ;

while (i t . hasNext ()) {
Event e = i t . next () ;
e . f indStatesWhereEventDisabled (e

) ;
}

}

// generate ST code
protected void printST () {

// generate ST code
System . out . p r i n t l n ("PROGRAM␣main\n") ;
// de f i n e s t a t e s v a r i a b l e s
int b = 0 ;
int m = 0 ;
System . out . p r i n t l n (" (∗ de f i n e ␣ a l l ␣

v a r i a b l e s : ∗) \n␣VAR") ;
System . out . p r i n t l n ("\ t i l c_ i n i t e d ␣AT␣%m"+

m+" . "+b+"␣ : ␣BOOL; ") ;
b+=1;
System . out . p r i n t l n ("\ tevt_blk ␣AT␣%m"+m+"

. "+b+"␣ : ␣BOOL; ") ;
b+=1;
System . out . p r i n t l n ("\n\ t (∗ de f i n e ␣ s t a t e s ␣

v a r i a b l e s : ∗) ") ;
I t e r a t o r<Automaton> i t = supe r v i s o r s .

i t e r a t o r () ;
while (i t . hasNext ()) {

Automaton a = i t . next () ;
int x ;
x = a . p r i n tS t a t e s (b , m) ;
b = x%8;
m = (x−b) /8 ;

}
i t = p lant s . i t e r a t o r () ;
while (i t . hasNext ()) {

Automaton a = i t . next () ;
int x ;
x = a . p r i n tS t a t e s (b , m) ;
b = x%8;
m = (x−b) /8 ;

}
// de f i n e event v a r i a b l e s

A.3. CONTROLSYSTEM.JAVA 77

System . out . p r i n t l n ("\n\ t (∗ de f i n e ␣ event␣
v a r i a b l e s : ∗) ") ;

I t e r a t o r<Event> i t 2 = ct lEvent s . i t e r a t o r
() ;

while (i t 2 . hasNext ()) {
Event e = i t 2 . next () ;
int x ;
x = e . pr intEvent (true , b , m) ;
b = x%8;
m = (x−b) /8 ;

}
i t 2 = unCtlEvents . i t e r a t o r () ;
while (i t 2 . hasNext ()) {

Event e = i t 2 . next () ;
int x ;
x = e . pr intEvent (false , b , m) ;
b = x%8;
m = (x−b) /8 ;

}
System . out . p r i n t l n ("END_VAR\n") ;
// s e t i n i t i a l s t a t e s
System . out . p r i n t l n (" (∗ s e t ␣ i n i t i a l ␣ s t a t e s

∗) ") ;
System . out . p r i n t l n ("IF␣ (NOT␣ i l c_ i n i t e d) ␣

THEN") ;
i t = supe r v i s o r s . i t e r a t o r () ;
while (i t . hasNext ()) {

Automaton a = i t . next () ;
a . p r i n t I n i t () ;

}
i t = p lant s . i t e r a t o r () ;
while (i t . hasNext ()) {

Automaton a = i t . next () ;
a . p r i n t I n i t () ;

}
System . out . p r in t ("\ t i l c_ i n i t e d ␣:=␣ 1 ; ") ;
System . out . p r in t ("\nEND_IF; \ n") ;
// supe r v i s o r t r an s i t i o n s
System . out . p r in t ("\n(∗ Supe rv i s o r s : ∗) ") ;
i t = supe r v i s o r s . i t e r a t o r () ;
while (i t . hasNext ()) {

Automaton a = i t . next () ;
a . pr intTrans i t ionSub () ;

}
// d i s a b l e even t s
System . out . p r i n t l n ("\n(∗Disabled␣ events

: ∗) ") ;
i t 2 = ct lEvent s . i t e r a t o r () ;
while (i t 2 . hasNext ()) {

Event e = i t 2 . next () ;

78 APPENDIX A. IDES2ST

e . p r in tDi sab l ed () ;
}
// r e l e a s e even t s
System . out . p r i n t l n (" (∗ Release ␣Event : ∗) ")

;
System . out . p r i n t l n (" evt_blk ␣:=␣ 0 ; ") ;
i t = p lant s . i t e r a t o r () ;
while (i t . hasNext ()) {

Automaton a = i t . next () ;
a . pr intTrans i t ionPlantUnCtl () ;

}
i t = p lant s . i t e r a t o r () ;
while (i t . hasNext ()) {

Automaton a = i t . next () ;
a . p r in tTrans i t i onPlantCt l () ;

}
System . out . p r in t ("\nEND_PROGRAM") ;

}
}

A.4 Automaton.java

package codeGenIdes2St ;

import java . i o . F i l e ;
import java . i o . FileNotFoundException ;
import java . i o . F i l eReader ;
import java . i o . IOException ;
import java . u t i l . HashSet ;
import java . u t i l . I t e r a t o r ;

import org . kxml2 . kdom . Document ;
import org . kxml2 . kdom . Element ;
import org . xmlpul l . v1 . XmlPul lParserException ;

class Automaton {
// con ta in s
private Str ing automatonName ;
private State i n i S t a t e ;
private HashSet<State> s t a t e s ;
private HashSet<Event> unCtlEvent ;
private HashSet<Event> ct lEvent ;
private HashSet<Trans i t ion> c t lT r a n s i t i o n s ;
private HashSet<Trans i t ion> unCtlTrans i t ions ;
private ControlSystem contro lSystem ;
private boolean automatonType ;

// crea t e automaton
Automaton(F i l e f i l e , boolean type , ControlSystem

cs) {

A.4. AUTOMATON.JAVA 79

// i n i t i a l i z e s e t s
s t a t e s = new HashSet<State >() ;
unCtlEvent = new HashSet<Event>() ;
c t lEvent = new HashSet<Event>() ;
c t lT r a n s i t i o n s = new HashSet<Trans i t ion

>() ;
unCt lTrans i t ions = new HashSet<

Trans i t ion >() ;
contro lSystem = cs ;
automatonType = type ;
// use f i l ename fo r name o f automaton
automatonName = f i l e . getName () ;
automatonName = automatonName . r ep l a c e (" .

xmd" , "") ;
i f (type) automatonName = "p_" +

automatonName ;
else automatonName = "s_" +

automatonName ;
// t r y to f i n d f i l e
try {

ControlSystem . doc = parse (f i l e) ;
} catch (FileNotFoundException e1) {

System . out . p r i n t l n (" F i l e ␣not␣
found ! ") ;

} catch (IOException e2) {
System . out . p r i n t l n ("IO␣Error␣

whi l e ␣ t ry ing ␣ to ␣open␣ f i l e ! ") ;
} catch (XmlPul lParserException e3) {

System . out . p r i n t l n ("Error␣whi l e ␣
pa r s ing␣xml␣document . ␣ i s ␣ i t ␣
we l l ␣ formed?") ;

}
// f i l e can be read s u c c e s s f u l l y
i f (ControlSystem . doc != null) {

try{
Element root =

ControlSystem . doc .
getRootElement () ;

Element data = root .
getElement ("" , "data"
) ;

int i = 0 , k ;
while ((k=data . indexOf (""

, " s t a t e " , i)) != −1)
{

// read s t a t e
data

Element s = data
. getElement (k
) ;

80 APPENDIX A. IDES2ST

Str ing id = s .
getAttr ibuteVa lue
("" , " id ") ;

Element prop = s
. getElement ("
" , "
p r ope r t i e s ") ;

boolean i n i t i a l
= (prop .
indexOf ("" , "
i n i t i a l " , 0)
!= −1) ? true

: fa l se ;
boolean marked =

(prop .
indexOf ("" , "
marked" ,0) !=
−1) ? true :
fa l se ;

// save s t a t e
data

State s t a t e =
new State (id ,

automatonName
+ "_St" + id
, i n i t i a l ,
marked) ;

addState (s t a t e) ;
i=k+1;

}

i = 0 ;
while ((k=data . indexOf (""

, " event " , i)) != −1)
{

// read event
data

Element e = data
. getElement (k
) ;

S t r ing id = e .
getAttr ibuteVa lue
("" , " id ") ;

Element prop = e
. getElement ("
" , "
p r ope r t i e s ") ;

boolean

obse rvab l e =

A.4. AUTOMATON.JAVA 81

(prop . indexOf
("" , "
obs e rvab l e"
, 0) != −1) ?
true : fa l se ;

boolean

c o n t r o l l a b l e
= (prop .
indexOf ("" , "
c o n t r o l l a b l e "
, 0) != −1) ?
true : fa l se ;

S t r ing name = ""
;

i f (e . indexOf ("" ,
"name" , 0)

!= −1) name =
e . getElement

("" , "name") .
getText (0) ;

i f (name . l ength ()
==0) name =
id ;

name = "e_" +
name ;

// save event
data

Event tmpEvent =
cs . getEvent (

name) ;
Event event =

new Event (id ,
name ,
observable ,
c o n t r o l l a b l e)
;

// i f event does
not e x i s t ye t
in con t r o l

system
i f (tmpEvent ==

null) {
cs .

addEvent
(
event
) ;

tmpEvent
=

82 APPENDIX A. IDES2ST

event
;

}
// i f event

a l r eady
e x i s t s in
con t r o l
system

addEvent (event) ;
i f (automatonType

== fa l se)
tmpEvent .
addSupervisor
(this) ;

i=k+1;
}

i = 0 ;
while ((k=data . indexOf (""

, " t r a n s i t i o n " , i))
!= −1) {

// read
t r an s i t i o n
data

Element t = data
. getElement (k
) ;

S t r ing id = t .
getAttr ibuteVa lue
("" , " id ") ;

S t r ing sour c e Id
= t .
getAttr ibuteVa lue
("" , " source "
) ;

S t r ing t a r g e t I d
= t .
getAttr ibuteVa lue
("" , " t a r g e t "
) ;

S t r ing eventId =
t .

getAttr ibuteVa lue
("" , " event ")
;

// ge t source
s t a t e , t a r g e t
s t a t e and

event o f

A.4. AUTOMATON.JAVA 83

t r a n s i t i o n by
id

State source =
getStateById (
sour c e Id) ;

State t a r g e t =
getStateById (
t a r g e t I d) ;

Event event =
getEventsById
(eventId) ;

// S t r ing
eventName =
event . getName
() ;

// save
t r an s i t i o n
data

Trans i t i on
t r a n s i t i o n =
new

Trans i t i on (id
, source ,
ta rget , event
) ;

i f (event .
i sC o n t r o l l a b l e
())
addCtlTrans i t ion
(t r a n s i t i o n) ;

else

addUnCtlTransition
(t r a n s i t i o n) ;

i=k+1;
}

} catch (Exception e) {
e . pr intStackTrace () ;
System . out . p r i n t l n ("

Error␣whi l e ␣ pa r s ing␣
XML␣document") ;

}
}

}

// crea t e document
protected Document parse (F i l e f i l e) throws

FileNotFoundException , IOException ,
XmlPul lParserException {

Fi l eReader reader = new Fi leReader (f i l e
) ;

84 APPENDIX A. IDES2ST

ControlSystem . pa r s e r . s e t Input (reader) ;
Document d = new Document () ;
d . par se (ControlSystem . pa r s e r) ;
return d ;

}

//add i n i t i a l s t a t e
protected void addState (State s) {

s t a t e s . add (s) ;
i f (s . i s I n i t i a l ()) i n i S t a t e = s ;

}

//add event to s e t o f c o n t r o l l a b l e or
u n c on t r o l l a b l e even t s

protected void addEvent (Event e) {
i f (e . i sC o n t r o l l a b l e ()) c t lEvent . add (e) ;
else unCtlEvent . add (e) ;

}

//add c o n t r o l l a b l e t r an s i t i o n
protected void addCtlTrans i t ion (Trans i t i on t) {

c t lT r a n s i t i o n s . add (t) ;
}

//add un c on t r o l l a b l e t r an s i t i o n
protected void addUnCtlTransition (Trans i t i on t) {

unCtlTrans i t ions . add (t) ;
}

// ge t s t a t e by id
protected State getStateById (St r ing id) {

I t e r a t o r<State> i t = s t a t e s . i t e r a t o r () ;
while (i t . hasNext ()) {

State s = i t . next () ;
i f (s . get Id () . equa l s (id)) return

s ;
}
return null ;

}

// ge t event by id
protected Event getEventsById (St r ing id) {

// f i r s t u n c on t r o l l a b l e even t s
I t e r a t o r<Event> i t = unCtlEvent . i t e r a t o r

() ;
while (i t . hasNext ()) {

Event e = i t . next () ;
i f (e . get Id () . equa l s (id)) return

e ;
}

A.4. AUTOMATON.JAVA 85

// then c o n t r o l l a b l e even t s
i t = ct lEvent . i t e r a t o r () ;
while (i t . hasNext ()) {

Event e = i t . next () ;
i f (e . get Id () . equa l s (id)) return

e ;
}
return null ;

}

// ge t name o f automaton
protected Str ing getName() {

return automatonName ;
}

// f i n d d i s a b l e d s t a t e s
protected void f indStatesWhereEventDisabled (

Event event) {
I t e r a t o r<State> i t = s t a t e s . i t e r a t o r () ;
while (i t . hasNext ()) {

State s = i t . next () ;
i f (s . i sD i s ab l e d (event)) { event .

addStateWhereDisabled (s) ; }
}

}

// v a r i a b l e d e c l a r a t i on s t a t e s
protected int p r i n tS t a t e s (int b , int m) {

I t e r a t o r<State> i t 1 = s t a t e s . i t e r a t o r () ;
while (i t 1 . hasNext ()) {

State s = i t 1 . next () ;
s . p r i n tS t a t e s (b , m) ;
b +=1;
i f (b%8 == 0){

b = 0 ;
m +=1;

}
}
return m∗8+b ;

}

// v a r i a b l e d e c l a r a t i on even t s
protected int pr intEvents (boolean type , int b ,

int m){
i f (type) {

// un c on t r o l l a b l e even t s
I t e r a t o r<Event> i t 3 = ct lEvent .

i t e r a t o r () ;
while (i t 3 . hasNext ()) {

Event e = i t 3 . next () ;

86 APPENDIX A. IDES2ST

int x ;
x = e . pr intEvent (true , b

, m) ;
b = x%8;
m = (x−b) /8 ;

}
// c o n t r o l l a b l e even t s
I t e r a t o r<Event> i t 4 = unCtlEvent

. i t e r a t o r () ;
while (i t 4 . hasNext ()) {

Event e = i t 4 . next () ;
int x ;
x = e . pr intEvent (false ,

b , m) ;
b = x%8;
m = (x−b) /8 ;

}
}
return m∗8+b ;

}

// s e t i n i t i a l s t a t e s
protected void p r i n t I n i t () {

I t e r a t o r<State> i t 1 = s t a t e s . i t e r a t o r () ;
while (i t 1 . hasNext ()) {

State s = i t 1 . next () ;
s . p r i n t I n i t () ;

}
}
// pr in t t r an s i t i o n o f s u pe r v i s o r s
protected void pr intTrans i t ionSub () {

System . out . p r i n t l n ("\n(∗ "+automatonName+
" : ∗) ") ;

System . out . p r i n t l n (" evt_blk ␣:=␣ 0 ; ") ;
I t e r a t o r<Trans i t ion> i t =

unCtlTrans i t ions . i t e r a t o r () ;
while (i t . hasNext ()) {

Trans i t i on t = i t . next () ;
t . pr intTrans i t ionSub () ;

}
i t = c t lT r a n s i t i o n s . i t e r a t o r () ;
while (i t . hasNext ()) {

Trans i t i on t = i t . next () ;
t . pr intTrans i t ionSub () ;

}
}

// pr in t u n c on t r o l l a b l e t r an s i t i o n s o f a l l p l an t s
protected void pr intTrans i t ionPlantUnCtl () {

A.5. STATE.JAVA 87

I t e r a t o r<Trans i t ion> i t =
unCtlTrans i t ions . i t e r a t o r () ;

System . out . p r i n t l n (" (∗ uncon t r o l l a b l e ␣
events ␣ o f ␣␣"+automatonName+" : ∗) ") ;

while (i t . hasNext ()) {
Trans i t i on t = i t . next () ;
t . pr intTrans i t ionPlantUnCtl () ;

}
}

// pr in t c o n t r o l l a b l e t r an s i t i o n s o f a l l p l an t s
protected void pr in tTrans i t i onPlantCt l () {

I t e r a t o r<Trans i t ion> i t = c t lT r a n s i t i o n s
. i t e r a t o r () ;

System . out . p r i n t l n (" (∗ c o n t r o l l a b l e ␣
events ␣ o f ␣"+automatonName+" : ∗) ") ;

while (i t . hasNext ()) {
Trans i t i on t = i t . next () ;
t . p r in tTrans i t i onPlantCt l () ;

}
}

}

A.5 State.java

package codeGenIdes2St ;

import java . u t i l . HashSet ;
import java . u t i l . I t e r a t o r ;

class State {
//a s t a t e con ta in s
private boolean i n i t i a l ;
private boolean marked ;
private Str ing id ;
private Str ing name ;
private HashSet<Trans i t ion> outgo ingCt l ;
private HashSet<Trans i t ion> outgoingUnCtl ;

// crea t e s t a t e
State (S t r ing id , S t r ing name , boolean i n i t i a l ,

boolean marked) {
// s t a t e con ta in s
outgo ingCt l = new HashSet<Trans i t ion >() ;
outgoingUnCtl = new HashSet<Trans i t ion

>() ;
this . i n i t i a l = i n i t i a l ;
this . marked = marked ;
this . id = id ;

88 APPENDIX A. IDES2ST

this . name = name ;
}

// t e s t i f s t a t e i s i n i t i a l s t a t e
protected boolean i s I n i t i a l () {

return i n i t i a l ;
}

// t e s t i f e i s d i s a b l e d in s t a t e
protected boolean i sD i s ab l e d (Event e) {

I t e r a t o r<Trans i t ion> i t = outgo ingCt l .
i t e r a t o r () ;

while (i t . hasNext ()) {
Trans i t i on t = i t . next () ;
S t r ing re fEvent = t . getEventName

() ;
i f (r e fEvent . equa l s (e . getName ()))

return fa l se ;
}
return true ;

}

//add a t r an s i t i o n to s e t o f ou tgoing
c o n t r o l l a b l e t r an s i t i o n s

protected void addOutgoingCtlTrans (Trans i t i on t)
{

outgo ingCt l . add (t) ;
}

//add a t r an s i t i o n to s e t o f ou tgoing
u n c on t r o l l a b l e t r an s i t i o n s

protected void addOutgoingUnCtlTrans (Trans i t i on
t) {

outgoingUnCtl . add (t) ;
}

// return s t a t e id
protected Str ing getId () {

return id ;
}

// return s t a t e name
protected Str ing getName () {

return name ;
}

// v a r i a b l e d e c l a r a t i on s t a t e s
protected void p r i n tS t a t e s (int b , int m) {

System . out . p r i n t l n ("\ t "+name+"␣AT␣%m"+m+
" . "+b+"␣ : ␣BOOL; ") ;

A.6. EVENT.JAVA 89

}

// s e t i n i t i a l s t a t e
protected void p r i n t I n i t () {

i f (i n i t i a l) System . out . p r i n t l n ("\ t "+name+
"␣:=␣ 1 ; ") ;

}
}

A.6 Event.java

package codeGenIdes2St ;

import java . u t i l . HashSet ;
import java . u t i l . I t e r a t o r ;

class Event {
// con ta in s
private Str ing id ;
private Str ing name ;
private boolean obse rvab l e ;
private boolean c o n t r o l l a b l e ;
private HashSet<State> statesWhereDisabled ;
private HashSet<Automaton> supe r v i s o r s ;

// crea t e event
Event (St r ing id , S t r ing name , boolean

observable , boolean c o n t r o l l a b l e) {
this . id = id ;
this . name = name ;
statesWhereDisabled = new HashSet<State

>() ;
s up e r v i s o r s = new HashSet<Automaton>() ;
this . ob s e rvab l e = obse rvab l e ;
this . c o n t r o l l a b l e = c o n t r o l l a b l e ;

}

// t e s t i f event i s c o n t r o l l a b l e
protected boolean i s C o n t r o l l a b l e () {

return c o n t r o l l a b l e ;
}

// ge t event id
protected Str ing getId () {

return id ;
}

// ge t event name
protected Str ing getName() {

return name ;

90 APPENDIX A. IDES2ST

}

//
protected void addSupervisor (Automaton

supe r v i s o r) {
s upe r v i s o r s . add (s upe r v i s o r) ;

}

protected void f indStatesWhereEventDisabled (
Event event) {

I t e r a t o r<Automaton> i t = supe r v i s o r s .
i t e r a t o r () ;

while (i t . hasNext ()) {
Automaton a = i t . next () ;
a . f indStatesWhereEventDisabled (

event) ;
}

}
// crea t e s e t o f s t a t e s , where event i s d i s a b l e d
protected void addStateWhereDisabled (State s) {

statesWhereDisabled . add (s) ;
}

// t e s t i f two even t s are equa l
protected boolean equa l s (Event e) {

i f (id . equa l s (e . get Id ())) return true ;
else return fa l se ;

}

// v a r i a b l e d e c l a r a t i on even t s
protected int pr intEvent (boolean c on t r o l l a b l e ,

int b , int m) {
i f (c o n t r o l l a b l e) {

System . out . p r in t ("\ t "+name+"␣AT␣
%m␣ : ␣BOOL;\n") ;

System . out . p r i n t l n ("\tD"+name+"␣
AT␣%m"+m+" . "+b+"␣ : ␣BOOL;\ n") ;

b +=1;
i f (b%8 == 0){

b = 0 ;
m +=1;

}
}
else {

System . out . p r in t ("\ t "+name+"␣AT␣
%m"+m+" . "+b+"␣ : ␣BOOL;\ n") ;

b +=1;
i f (b%8 == 0){

b = 0 ;

A.7. TRANSITION.JAVA 91

m +=1;
}
System . out . p r i n t l n ("\tA"+name+"␣

AT␣%m␣ : ␣BOOL;\n") ;
}
return m∗8+b ;

}

// pr in t d i s a b l e d even t s
protected void pr in tDi sab l ed () {

System . out . p r i n t l n (" (∗ "+name+" : ∗) ") ;
boolean f i r s tE l emen t=true ;
System . out . p r in t ("IF (") ;
I t e r a t o r<State> i t = statesWhereDisabled

. i t e r a t o r () ;
while (i t . hasNext ()) {

State s = i t . next () ;
i f (f i r s tE l emen t) f i r s tE l emen t=

fa l se ;
else System . out . p r in t ("␣OR␣") ;
System . out . p r in t (s . getName ()) ;

}
System . out . p r i n t l n (") ␣THEN") ;
System . out . p r i n t l n ("\tD"+name+"␣:=␣ 1 ; ") ;
System . out . p r i n t l n ("ELSE") ;
System . out . p r i n t l n ("\tD"+name+"␣:=␣ 0 ; ") ;
System . out . p r i n t l n ("END_IF; \ n") ;

}
}

A.7 Transition.java

package codeGenIdes2St ;

import java . u t i l . I t e r a t o r ;

class Trans i t i on {
// con ta in s
private Str ing id ;
private State sour c eSta te ;
private State t a r g e tS t a t e ;
// pr i v a t e S t r ing eventName ;
private Event event ;
// pr i v a t e ControlSystem cs ;

// crea t e t r an s i t i o n
Trans i t i on (St r ing id , State source , State target

, Event event) {
this . id = id ;
this . s our c eSta te = source ;

92 APPENDIX A. IDES2ST

this . t a r g e tS t a t e = ta r g e t ;
// t h i s . eventName = eventName ;
this . event = event ;

//add to s e t o f ou tgoing t r an s i t i o n s o f
source s t a t e

i f (event . i sC o n t r o l l a b l e ()) s our c eSta te .
addOutgoingCtlTrans (this) ;

else s our c eSta te . addOutgoingUnCtlTrans (
this) ;

}

// ge t event
protected Str ing getEventName () {

St r ing eventName = event . getName () ;
return eventName ;

}

// ge t event name
protected Event getEvent () {

return event ;
}

// ge t t r an s i t i o n id
protected Str ing getId () {

return id ;
}

// ge t source s t a t e
protected State getSourceState () {

return s our c eSta te ;
}

// ge t t a r g e t s t a t e
protected State getTargetState () {

return t a r g e tS t a t e ;
}

// pr in t t r an s i t i o n s o f s u pe r v i s o r s
protected void pr intTrans i t ionSub () {

i f (s our c eSta te . get Id () != ta r g e tS t a t e .
get Id ()) {

System . out . p r i n t l n ("IF␣ (NOT␣
evt_blk ␣AND␣"+sour ceSta te .
getName ()+"␣AND␣"+event .
getName ()+") ␣THEN") ;

System . out . p r i n t l n ("\ tevt_blk ␣:=
␣ 1 ; ") ;

A.7. TRANSITION.JAVA 93

System . out . p r i n t l n ("\ t "+
sour ceSta te . getName ()+"␣:=␣ 0 ;
") ;

System . out . p r i n t l n ("\ t "+
ta r g e tS t a t e . getName ()+"␣:=␣ 1 ;
") ;

System . out . p r i n t l n ("END_IF; \ n") ;
}

}

// pr in t u n c on t r o l l a b l e t r an s i t i o n s o f a l l p l an t s
protected void pr intTrans i t ionPlantUnCtl () {

// i f (sou rceS ta t e . g e t I d () != t a r g e t S t a t e .
g e t I d ()) {

i f (true) {
System . out . p r i n t l n ("IF␣ (NOT␣

evt_blk␣AND␣" +sour ceSta te .
getName ()+"␣AND␣A"+event .
getName ()+") ␣THEN") ;

System . out . p r i n t l n ("\ t "+event .
getName ()+"␣:=␣ 1 ; ") ;

System . out . p r i n t l n ("\tA"+event .
getName ()+"␣:=␣ 0 ; ") ;

System . out . p r i n t l n ("\ tevt_blk ␣:=
␣ 1 ; ") ;

System . out . p r i n t l n ("\ t "+
sour ceSta te . getName ()+"␣:=␣ 0 ;
") ;

System . out . p r i n t l n ("\ t "+
ta r g e tS t a t e . getName ()+"␣:=␣ 1 ;
") ;

System . out . p r i n t l n ("ELSE") ;
System . out . p r i n t l n ("\ t "+event .

getName ()+"␣:=␣ 0 ; ") ;
System . out . p r i n t l n ("END_IF; \ n") ;

}
}

// pr in t c o n t r o l l a b l e t r an s i t i o n s o f a l l p l an t s
protected void pr in tTrans i t i onPlantCt l () {

// i f (sou rceS ta t e . g e t I d () != t a r g e t S t a t e .
g e t I d ()) {

i f (true) {
System . out . p r i n t l n ("IF␣ (NOT␣

evt_blk␣AND␣" +sour ceSta te .
getName ()+"␣AND␣NOT␣D"+event .
getName ()+") ␣THEN") ;

System . out . p r i n t l n ("\ t "+event .
getName ()+"␣:=␣ 1 ; ") ;

94 APPENDIX A. IDES2ST

System . out . p r i n t l n ("\ tevt_blk ␣:=
␣ 1 ; ") ;

System . out . p r i n t l n ("\ t "+
sour ceSta te . getName ()+"␣:=␣ 0 ;
") ;

System . out . p r i n t l n ("\ t "+
ta r g e tS t a t e . getName ()+"␣:=␣ 1 ;
") ;

System . out . p r i n t l n ("ELSE") ;
System . out . p r i n t l n ("\ t "+event .

getName ()+"␣:=␣ 0 ; ") ;
System . out . p r i n t l n ("END_IF; \ n") ;

}
}

}

Bibliography

[1] Altus webpage.

[2] CEFETS’ s webpage.

[3] http://www.csd.uwo.ca/research/grail/.

[4] IDES lab webpage, Queen’ s University.

[5] José E. R. Cury’ s webpage.

[6] Siemens webpage.

[7] W. M. Wonham’ s webpage.

[8] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete
Event Systems. Kluwer Academic Publishers, 1999.

[9] Chen, Y.-L., S. Lafortune and F. Lin. Modular Supervisory Control with
Priorities for Discrete Event Systems. In Proceedings of the 34th Confer-
ence on Decision and Control, pages 409 – 415, December 1995.

[10] M. Fabian and A.Hellgren. PLC-based Implementation of Supervisory
Control for Discrete Event Systems. In Proceedings of the 37th IEEE
Conference on Decision and Control, Tampa, Florida, USA, December
1998.

[11] José M. E. González. Aspectos de síntese de supervisores para sistemas
a eventos discretos e sistemas híbridos. PhD thesis, Universidade Federal
de Sante Catarina, April 2000.

[12] José M. E. González and José E.R. Cury. Exploiting Symmetry in the
Synthesis of Supervisors for Discrete Event Systems. IEEE Transactions
on automatic control, 46(9):1500–1505, December 2001.

[13] Hugh Jack. Automating Manufacturing Systems with PLCs. 2007.

[14] K. C. Wong, J. G. Thistle, H.-H. Hoang and R. P. Malhamé. Conflict
resolution in modular control with applications to feature interaction. In
Proceedings of the 34th Conference on Decision and Control, pages 416 –
421, December 1995.

[15] Ryan James Leduc. PLC implementation of a DES supervisor for a man-
ufacturing testbed: An implemention perspective. Master’s thesis, Uni-
versity of Toronto, 1996.

95

96 BIBLIOGRAPHY

[16] Lenko Grigorov. Template Design of Discrete-Event Systems. Technical
report 2007-538, School of Computing, Queen’s University, Canada, 2007.

[17] Max H. de Queiroz, José E. R. Cury. Synthesis and implementation of
local modular supervisory control for a manufacturing cell. In WODES
2002, 2002.

[18] Rajinderjeet Singh Minhas. Complexity reduction in Discrete Event Sys-
tems. Master’s thesis, University of Toronto, 2002.

[19] Institute of Electrical and Electronics Engineers. IEEE Standard Dictio-
nary of Electrical and Electronic Terms.

[20] Carl Adam Petri. Kommunikation mit Automaten. Schriften des
Rheinisch-Westfälischen Institutes für instrumentelle Mathematik an der
Universität Bonn, 1962.

[21] P.J. Ramadge and W.M. Wonham. Supervision of Discrete Event Pro-
cesses. In Proceedings of the 21th IEEE Conference on Decision and Con-
trol, pages 1228–1229, 1982.

[22] Darrell R. Raymond and Derick Wood. Grail: A C++ Library for Au-
tomata and Expressions. Journal of Symbolic Computation, 17(4):341–350,
1994.

[23] Christianne Reiser. O Ambiente GRAIL para Controle Supervisório de
Sistemas a Eventos Discretos: Reestruturação e Implementação de Novos
Algoritmos. Master’s thesis, Universidade Federal de Sante Catarina, 2005.

[24] R. Su and W. M. Wonham. Supervisor Reduction for Discrete-Event Sys-
tems. Discrete Event Dynamic Systems, 14(1):31–53, 2004.

[25] A. F. Vaz and W. M. Wonham. On supervisor reduction in discrete-event
systems. International Journal of Control, 44(2):475–491, 1986.

[26] Sarah-Jane Whittaker. Does size matter? The effects of supervisor reduc-
tion on minimal communication between distributed discrete-event agents.
Master’s thesis, Queen’s University, 2005.

[27] K. C. Wong and W. M. Wonham. Modular Control and Coordination of
Discrete-Event Systems. Discrete Event Dynamic Systems, 8(3):241 – 273,
1998.

[28] W.M. Wonham. Notes on Control of Discrete Event Systems. Dept. of
Elec. and Comp. Eng., 2001.

	Title Page
	Table of contents
	List of figures
	List of tables
	Outlines and objectives
	Preface
	Acknowledgments
	Declaration of originality

	Introduction
	1 Theory and tools
	1.1 Introduction
	1.2 Discrete Event Systems
	1.2.1 Languages
	1.2.2 Automata

	1.3 Supervisory Control Theory
	1.3.1 Construction of an optimal, nonblocking supervisor
	1.3.2 Reduction of supervisors

	1.4 Tools
	1.4.1 TCT
	1.4.2 GRAIL
	1.4.3 IDES

	2 Models and specifications
	2.1 Introduction
	2.2 Testbed
	2.2.1 Verbal description
	2.2.2 Sensors and actuators
	2.2.3 Desired proceeding

	2.3 Similarities
	2.3.1 Modeling the plant
	2.3.2 Modeling the specifications

	2.4 Model 1
	2.4.1 Modeling the robot
	2.4.2 Modeling the specifications without rework
	2.4.3 Modeling the specifications with rework 1
	2.4.4 Modeling the specifications with rework 2

	2.5 Model 2
	2.5.1 Modeling the robot
	2.5.2 Modeling the specifications without rework
	2.5.3 Modeling the specifications with rework 1
	2.5.4 Modeling the specifications with rework 2

	2.6 Model 3 and 4
	2.6.1 Modeling the robot
	2.6.2 Modeling the specifications without rework

	2.7 Comparison

	3 Supervisors
	3.1 Introduction
	3.2 Monolithic supervisors
	3.3 Modular supervisors
	3.3.1 Results
	3.3.2 Conflicts

	3.4 Comparison

	4 Implementation
	4.1 Introduction
	4.2 General information
	4.2.1 Hierarchical structure
	4.2.2 Initializing the system
	4.2.3 Implementation of transitions
	4.2.4 Programming languages

	4.3 Manufacturing cell
	4.3.1 Initialization and reinitialization
	4.3.2 Siemens PLC
	4.3.3 Altus PLC

	Conclusions
	A IDES2ST
	A.1 Introduction
	A.2 IDES2ST.java
	A.3 ControlSystem.java
	A.4 Automaton.java
	A.5 State.java
	A.6 Event.java
	A.7 Transition.java

	Bibliography

